In this work, we extended fractional optimal control (OC) theory by proving a version of Pontryagin's maximum principle and establishing sufficient optimality conditions for an OC problem. The dynamical system constraint in the OC problem under investigation is described by a generalized fractional derivative: the left-sided Caputo distributed-order fractional derivative with an arbitrary kernel. This approach provides a more versatile representation of dynamic processes, accommodating a broader range of memory effects and hereditary properties inherent in diverse physical, biological, and engineering systems.
Citation: Fátima Cruz, Ricardo Almeida, Natália Martins. A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives[J]. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539
In this work, we extended fractional optimal control (OC) theory by proving a version of Pontryagin's maximum principle and establishing sufficient optimality conditions for an OC problem. The dynamical system constraint in the OC problem under investigation is described by a generalized fractional derivative: the left-sided Caputo distributed-order fractional derivative with an arbitrary kernel. This approach provides a more versatile representation of dynamic processes, accommodating a broader range of memory effects and hereditary properties inherent in diverse physical, biological, and engineering systems.
| [1] |
O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. https://doi.org/10.1007/s11071-004-3764-6 doi: 10.1007/s11071-004-3764-6
|
| [2] |
O. P. Agrawal, A formulation and a numerical scheme for fractional optimal control problems, IFAC Proc. Vol., 39 (2006), 68–72. https://doi.org/10.3182/20060719-3-PT-4902.00011 doi: 10.3182/20060719-3-PT-4902.00011
|
| [3] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
|
| [4] |
R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
|
| [5] |
M. Bergounioux, L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM Control Optim. Calc. Var., 26 (2020), 35. https://doi.org/10.1051/cocv/2019021 doi: 10.1051/cocv/2019021
|
| [6] |
A. Boukhouima, K. Hattaf, E. M. Lotfi, M. Mahrouf, D. F. M. Torres, N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Solitons Fractals, 140 (2020), 110224. https://doi.org/10.1016/j.chaos.2020.110224 doi: 10.1016/j.chaos.2020.110224
|
| [7] | B. van Brunt, The calculus of variations, New York: Springer, 2003. https://doi.org/10.1007/b97436 |
| [8] |
M. Caputo, Mean fractional-order-derivatives differential equations and filters, Ann. Univ. Ferrara, 41 (1995), 73–84. https://doi.org/10.1007/BF02826009 doi: 10.1007/BF02826009
|
| [9] |
J. F. Chen, H. T. Quan, Optimal control theory for maximum power of Brownian heat engines, Phys. Rev. E, 110 (2024), L042105. https://doi.org/10.1103/PhysRevE.110.L042105 doi: 10.1103/PhysRevE.110.L042105
|
| [10] |
F. Cruz, R. Almeida, N. Martins, Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels, AIMS Mathematics, 6 (2021), 5351–5369. https://doi.org/10.3934/math.2021315 doi: 10.3934/math.2021315
|
| [11] |
A. N. Daryina, A. I. Diveev, D. Yu. Karamzin, F. L. Pereira, E. A. Sofronova, R. A. Chertovskikh, Regular approximations of the fastest motion of mobile robot under bounded state variables, Comput. Math. Math. Phys., 62 (2022), 1539–1558. https://doi.org/10.1134/S0965542522090093 doi: 10.1134/S0965542522090093
|
| [12] |
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
|
| [13] |
W. Ding, S. Patnaik, S. Sidhardh, F. Semperlotti, Applications of distributed-order fractional operators: A review, Entropy, 23 (2021), 110. https://doi.org/10.3390/e23010110 doi: 10.3390/e23010110
|
| [14] | G. S. F. Frederico, D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum, 3 (2008), 479–493. |
| [15] |
G. S. F. Frederico, D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn., 53 (2008), 215–222. https://doi.org/10.1007/s11071-007-9309-z doi: 10.1007/s11071-007-9309-z
|
| [16] |
J. J. Gasimov, J. A. Asadzade, N. I. Mahmudov, Pontryagin maximum principle for fractional delay differential equations and controlled weakly singular Volterra delay integral equations, Qual. Theory Dyn. Syst., 23 (2024), 213. https://doi.org/10.1007/s12346-024-01049-1 doi: 10.1007/s12346-024-01049-1
|
| [17] | H. P. Geering, Optimal control with engineering applications, Heidelberg: Springer Berlin, 2007. https://doi.org/10.1007/978-3-540-69438-0 |
| [18] |
J. Jiang, The distributed order models to characterize the flow and heat transfer of viscoelastic fluid between coaxial cylinders, Phys. Scr., 99 (2024), 015233. https://doi.org/10.1088/1402-4896/ad1379 doi: 10.1088/1402-4896/ad1379
|
| [19] |
R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668–1686. https://doi.org/10.1002/mma.2928 doi: 10.1002/mma.2928
|
| [20] |
R. Kamocki, Pontryagin's maximum principle for a fractional integro-differential Lagrange problem, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107598. https://doi.org/10.1016/j.cnsns.2023.107598 doi: 10.1016/j.cnsns.2023.107598
|
| [21] |
S. L. Khalaf, K. K. Kassid, A. R. Khudair, A numerical method for solving quadratic fractional optimal control problems, Results Control Optim., 13 (2023), 100330. https://doi.org/10.1016/j.rico.2023.100330 doi: 10.1016/j.rico.2023.100330
|
| [22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Elsevier, 204 (2006), 1–523. |
| [23] | D. Kumar, J. Singh, Fractional calculus in medical and health science, Boca Raton: CRC Press, 2020. https://doi.org/10.1201/9780429340567 |
| [24] | S. Lenhart, J. T. Workman, Optimal control applied to biological models, New York: Chapman & Hall/CRC, 2007. https://doi.org/10.1201/9781420011418 |
| [25] |
W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control, J. Optim. Theory Appl., 180 (2019), 556–573. https://doi.org/10.1007/s10957-018-1418-y doi: 10.1007/s10957-018-1418-y
|
| [26] | D. Liberzon, Calculus of variations and optimal control theory: A concise introduction, Princeton University Press, 2012. |
| [27] |
A. Lotfi, M. Dehghan, S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Comput. Math. Appl., 62 (2011), 1055–1067. https://doi.org/10.1016/j.camwa.2011.03.044 doi: 10.1016/j.camwa.2011.03.044
|
| [28] |
F. Ndairou, I. Area, J. J. Nieto, C. J. Silva, D. F. M. Torres, Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos Solitons Fract., 144 (2021), 110652. https://doi.org/10.1016/j.chaos.2021.110652 doi: 10.1016/j.chaos.2021.110652
|
| [29] |
F. Ndairou, D. F. M. Torres, Distributed-order non-local optimal control, Axioms, 9 (2020), 124. https://doi.org/10.3390/axioms9040124 doi: 10.3390/axioms9040124
|
| [30] |
F. Ndairou, D. F. M. Torres, Pontryagin maximum principle for distributed-order fractional systems, Mathematics, 9 (2021), 1883. https://doi.org/10.3390/math9161883 doi: 10.3390/math9161883
|
| [31] |
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
|
| [32] |
S. F. Omid, S. Javad, D. F. M. Torres, A necessary condition of Pontryagin type for fuzzy fractional optimal control problems, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 59–76. https://doi.org/10.3934/dcdss.2018004 doi: 10.3934/dcdss.2018004
|
| [33] |
R. Ozarslan, E. Bas, D. Baleanu, B. Acay, Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel, AIMS Mathematics, 5 (2020), 467–481. https://doi.org/10.3934/math.2020031 doi: 10.3934/math.2020031
|
| [34] | L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, New York: John Wiley & Sons, 1962. |
| [35] |
F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581–3592. https://doi.org/10.1103/PhysRevE.55.3581 doi: 10.1103/PhysRevE.55.3581
|
| [36] | R. T. Rockafellar, Convex analysis, Princeton University Press, 1997. |
| [37] |
S. Rogosin, M. Karpiyenya, Fractional models for analysis of economic risks, Fract. Calc. Appl. Anal., 26 (2023), 2602–2617. https://doi.org/10.1007/s13540-023-00202-y doi: 10.1007/s13540-023-00202-y
|
| [38] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
| [39] | A. Seierstad, K. Sydsaeter, Optimal control theory with economic applications, 1 Eds., North Holland, 1987. |
| [40] |
J. V. C. Sousa, E. C. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. http://dx.doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
|
| [41] | D. Tonon, M. S. Aronna, D. Kalise, Optimal control: Novel directions and applications, Springer International Publishing, 2017. |
| [42] |
X. Yi, Z. Gong, C. Liu, H. T. Cheong, K. L. Teo, S. Wang, A control parameterization method for solving combined fractional optimal parameter selection and optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 141 (2025), 108462. https://doi.org/10.1016/j.cnsns.2024.108462 doi: 10.1016/j.cnsns.2024.108462
|