We investigate the nonlinear Klein-Gordon equation with Caputo fractional derivative. The general series solution of the system is derived by using the composition of the double Laplace transform with the decomposition method. It is noted that the obtained solution converges to the exact solution of the model. The existence of the model in the presence of Caputo fractional derivative is performed. The validity and precision of the presented method are exhibited with particular examples with suitable subsidiary conditions, where good agreements are obtained. The error analysis and its corresponding surface plots are presented for each example. From the numerical solutions, we observe that the proposed system admits soliton solutions. It is noticed that the amplitude of the wave solution increases with deviations in time, that concludes the factor ω considerably increases the amplitude and disrupts the dispersion/nonlinearity properties, as a result, may admit the excitation in the dynamical system. We have also depicted the physical behavior that states the advancement of localized mode excitations in the system.
Citation: Sayed Saifullah, Amir Ali, Zareen A. Khan. Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel[J]. AIMS Mathematics, 2022, 7(4): 5275-5290. doi: 10.3934/math.2022293
[1] | Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603 |
[2] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[3] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[4] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[5] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[6] | Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461 |
[7] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[10] | Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227 |
We investigate the nonlinear Klein-Gordon equation with Caputo fractional derivative. The general series solution of the system is derived by using the composition of the double Laplace transform with the decomposition method. It is noted that the obtained solution converges to the exact solution of the model. The existence of the model in the presence of Caputo fractional derivative is performed. The validity and precision of the presented method are exhibited with particular examples with suitable subsidiary conditions, where good agreements are obtained. The error analysis and its corresponding surface plots are presented for each example. From the numerical solutions, we observe that the proposed system admits soliton solutions. It is noticed that the amplitude of the wave solution increases with deviations in time, that concludes the factor ω considerably increases the amplitude and disrupts the dispersion/nonlinearity properties, as a result, may admit the excitation in the dynamical system. We have also depicted the physical behavior that states the advancement of localized mode excitations in the system.
Let q be a positive integer. For each integer a with 1⩽a<q,(a,q)=1, we know that there exists one and only one ˉa with 1⩽ˉa<q such that aˉa≡1(q). Let r(q) be the number of integers a with 1⩽a<q for which a and ˉa are of opposite parity.
D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:
r(q)=12ϕ(q)+O(q12d2(q)log2q). |
Zhang [4] generalized the problem over short intervals and proved that
∑a≤Na∈R(q)1=12Nϕ(q)q−1+O(q12d2(q)log2q), |
where
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}. |
Let n⩾2 be a fixed positive integer, q⩾3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ2≤1. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as
rn(δ1,δ2,c;q):=∑a⩽δ1q∑ˉa⩽δ2qaˉa≡cmodqn∤a+ˉa1, |
and obtained an interesting asymptotic formula,
rn(δ1,δ2,c;q)=(1−n−1)δ1δ2ϕ(q)+O(q12d6(q)log2q). |
Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by
Bα,β:=(⌊αn+β⌋)∞n=1, |
where ⌊t⌋ denotes the integer part of any t∈R. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate
#{ prime p⩽x:p∈Bα,β}∼α−1π(x) as x→∞ |
where π(x) is the prime counting function.
We define type τ=τ(α) for any irrational number α by the following definition:
τ:=sup{t∈R:lim infn→∞nt‖αn‖=0}. |
Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,
rn(δ1,δ2,⋯,δk,c,α,β;q):=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,βn∤x1+⋯+xk1,(0<δ1,δ2,⋯,δk≤1), |
and where k = 2, we get the result of [7].
By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.
Theorem 1.1. Let k≥2 be a fixed positive integer, q≥n3 and c be two integers with (n,q)=(c,q)=1, and δ1,δ2,⋯,δk be real numbers satisfying 0<δ1,δ2,⋯,δk≤1. Let α>1 be an irrational number of finite type. Then, we have the following asymptotic formula:
rn(δ1,δ2,⋯,δk,c,α,β;q)=(1−n−1)α−(k−1)δ1δ2⋯δkϕk−1(q)+O(qk−1−1τ+1+ε), |
where ϕ(⋅) is the Euler function, ε is a sufficiently small positive number, and the implied constant only depends on n.
Notation. In this paper, we denote by ⌊t⌋ and {t} the integral part and the fractional part of t, respectively. As is customary, we put
e(t):=e2πit and {t}:=t−⌊t⌋. |
The notation ‖t‖ is used to denote the distance from the real number t to the nearest integer; that is,
‖t‖:=minn∈Z|t−n|. |
Let χ0 be the principal character modulo q. The letter p always denotes a prime. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O,≪ and ≫ may depend (where obvious) on the parameters α,n,ε but are absolute otherwise. For given functions F and G, the notations F≪G, G≫F and F=O(G) are all equivalent to the statement that the inequality |F|⩽C|G| holds with some constant C>0.
To complete the proof of the theorem, we need the following several definitions and lemmas.
Definition 2.1. For an arbitrary set S, we use 1S to denote its indicator function:
1S(n):={1ifn∈S,0ifn∉S. |
We use 1α,β to denote the characteristic function of numbers in a Beatty sequence:
1α,β(n):={1ifn∈Bα,β,0ifn∉Bα,β. |
Lemma 2.2. Let a,q be integers, δ∈(0,1) be a real number, θ be a rational number. Let α be an irrational number of finite type τ and H=qε>0. We have
∑a≤δqa∈Bα,β′1=α−1δϕ(q)+O((ϕ(q))ττ+1+ε), |
and
∑a⩽δqa∈Bα,βe(θa)=α−1∑a⩽δ1qe(θa)+O(‖θ‖−1q−ε+qε). |
Taking
H=‖θ‖−1τ+1+ε, |
we have
∑a⩽δqa∈Bα,βe(θa)=α−1∑a⩽δ1qe(θa)+O(‖θ‖−(ττ+1+ε)). |
Proof. This is Lemma 2.4 and Lemma 2.5 of [7].
Lemma 2.3. Let
Kl(r1,r2,⋯,rk;q)=∑x1⩽q−1⋯∑xk−1⩽q−1e(r1x1+⋯+rk−1xk−1+rk¯x1⋯xk−1p). |
Then
Kl(r1,r2,⋯,rk;q)≪qk−12kω(q)(r1,rk,q)12⋯(rk−1,rk,q)12 |
where (a,b,c) is the greatest common divisor of a,b and c.
Proof. See [9].
Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If
a=sr+θr2,(r,s)=1,r≥1,|θ|≤1, |
then
∑k⩽Kmin(U,1‖ak+b‖)≪(Kr+1)(U+rlogr). |
Proof. The proof is given in [10].
We begin by the definition
rn(δ1,δ2,⋯,δk,c,α,β;q)=S1−S2, |
where
S1:=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,β1, |
and
S2:=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodqx1,⋯xk−1∈Bα,βn∣x1+⋯+xk1. |
By the Definition 2.1, Lemma 2.2 and congruence properties, we have
S1=∑x1⩽δ1q⋯∑xk⩽δkqx1⋯xk≡cmodq1α,β(x1)⋯1α,β(xk−1)=1ϕ(q)∑x1⩽δ1q⋯∑xk⩽δkq∑χmodqχ(x1)⋯χ(xk)χ(¯c)1α,β(x1)⋯1α,β(xk−1)=S11+S12, |
where
S11:=1ϕ(q)∑′x1⩽δ1q⋯∑′xk⩽δkq1α,β(x1)⋯1α,β(xk−1), |
and
S12:=1ϕ(q)∑χmodqχ≠χ0χ(¯c)(∑x1⩽δ1q⋯∑xk⩽δkqχ(x1)⋯χ(xk)1α,β(x1)⋯1α,β(xk−1)). |
For S2, it follows that
S2=1ϕ(q)∑x1⩽δ1q⋯∑xk⩽δkqn∣x1+⋯+xk∑χmodqχ(x1)⋯χ(xk)χ(¯c)1α,β(x1)⋯1α,β(xk−1)=S21+S22, |
where
S21:=1ϕ(q)∑′x1⩽δ1q⋯∑′xk⩽δkqn∣x1+⋯+xk1α,β(x1)⋯1α,β(xk−1), |
and
S22:=1ϕ(q)∑χmodqχ≠χ0χ(¯c)∑x1⩽δ1q⋯∑xk⩽δkqn∣x1+⋯+xkχ(x1)⋯χ(xk−1)1α,β(x1)⋯1α,β(xk−1). |
From the classical bound
∑a≤δq′1=δϕ(q)+O(d(q)) |
and Lemma 2.2, we have
S11=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑′xk⩽δkq1)=(δk+O(d(q)ϕ(q)))k−1∏i=1(α−1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α−(k−1)ϕk−1(q)k−1∏i=1δi+O(qk−1−1τ+1+ε). | (3.1) |
From Lemma 2.2, we obtain
S21=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑′xk⩽δkqn∣xk+(x1+⋯+xk−1)1)=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑xk⩽δkqxk≡−(x1+⋯+xk−1)modn∑d∣(xk,q)μ(d))=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑d∣qμ(d)∑xk⩽δkqd∣xkxk≡−(x1+⋯+xk−1)modn1)=1ϕ(q)(∑′x1⩽δ1q1α,β(x1))⋯(∑′xk−1⩽δk−1q1α,β(xk−1))(∑d∣qμ(d)(δkqnd+O(1)))=1ϕ(q)(δkϕ(q)n+O(d(q)))k−1∏i=1(α−1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α−(k−1)n−1ϕk−1(q)k−1∏i=1δi+O(qk−1−1τ+1+ε). | (3.2) |
By the properties of exponential sums,
S22=1nϕ(q)∑χmodqχ≠χ0χ(¯c)(∑x1⩽δ1q⋯∑xk⩽δk−1qχ(x1)⋯χ(xk)1α,β(x1)⋯1α,β(xk−1))×(n∑l=1e(x1+⋯+xknl))=1nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(∑xi⩽δiq1α,β(xi)χ(xi)e(xinl))(∑xk⩽δkqχ(xk)e(xknl)). | (3.3) |
Let
G(r,χ):=q∑h=1χ(h)e(rhq) |
be the Gauss sum, and we know that for χ≠χ0,
χ(xi)=1qq∑r=1G(r,χ)e(−xirq)=1qq−1∑r=1G(r,χ)e(−xirq), |
and
ln−rq≠0 |
for 1⩽l⩽n,1⩽r⩽q−1 and (n,q)=1.
Therefore,
∑xk⩽δkqχ(xk)e(xknl)=1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−lh)−1, | (3.4) |
where
f(δ,l,r;n,p):=1−e((ln−rq)⌊δq⌋) |
and
|f(δk,l,rk;n,q)|⩽2. |
For xi(1⩽i⩽k−1), using Lemma 2.2, we also have
∑xi⩽δiq1α,β(xi)χ(xi)e(xinl)=1q∑xi⩽δiq1α,β(xi)q−1∑ri=1G(ri,χ)e((ln−riq)xi)=1qq−1∑ri=1G(ri,χ)∑xi⩽δiq1α,β(xi)e((ln−riq)xi)=1qq−1∑ri=1G(ri,χ)(α−1∑a⩽δiqe((ln−riq)xi)+O(q−ε‖ln−riq‖+qε))=1qαq−1∑ri=1G(ri,χ)(f(δi,l,ri;n,q)e(riq−ln)−1+O(q−ε‖ln−riq‖+qε)). | (3.5) |
Let
S23=1nϕ(q)∑χmodqχ≠χ0χ(¯c)n∑l=1k−1∏i=1(1qαq−1∑ri=1G(ri,χ)f(δi,l,ri;n,q)e(riq−ln)−1)(1qq−1∑rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkq−ln)−1)=1nϕ(q)qkαk−1n∑l=1q−1∑r1=1⋯q−1∑rk=1f(δ1,l,r1;n,q)⋯f(δk,l,rk;n,q)(e(r1q−ln)−1)⋯(e(rkq−ln)−1)×∑χmodqχ≠χ0χ(¯c)G(r1,χ)⋯G(rk,χ). | (3.6) |
From the definition of Gauss sum and Lemma 2.3, we know that
∑χmodqχ(¯c)G(r1,χ)⋯G(rk,χ)=q−1∑h1=1⋯q−1∑hk=1∑χmodqχ(¯c)χ(h1)⋯χ(hk)e(r1h1+⋯+rkhkq)=ϕ(q)q−1∑h1=1⋯q−1∑hk=1h1⋯hk≡cmodqe(r1h1+⋯+rkhkq)=ϕ(q)q−1∑h1=1⋯q−1∑hk=1e(r1h1+⋯rk−1hk−1+rkc¯h1⋯hk−1q)=ϕ(q)Kl(r1,r2,⋯,rkc;q)≪ϕ(q)qk−12kω(q)(r1,rkc,q)12⋯(rk−1,rkc,q)12≪ϕ(q)qk−12kω(q)(r1,q)⋯(rk,q). | (3.7) |
By Mobius inversion, we get
G(r,χ0)=q∑h=1′e(rhq)=μ(q(r,q))φ(q)φ(q/(r,q))≪(r,q), |
and
χ0(¯c)G(r1,χ0)⋯G(rk,χ0)≪(r1,q)⋯(rk,q). |
Hence,
∑χmodqχ≠χ0χ(¯c)G(r1,χ)⋯G(rk,χ)=∑χmodqχ(¯c)G(r1,χ)⋯G(rk,χ)−χ0(¯c)G(r1,χ0)⋯G(rk,χ0)≪ϕ(q)qk−12kω(q)(r1,q)⋯(rk,q). | (3.8) |
From (3.8) we may deduce the following result:
S23≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)|e(rq−ln)−1|)k≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)|sinπ(rq−ln)|)k≪kω(q)nqk+12αk−1n∑l=1(q−1∑r=1(r,q)‖rq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<q∑r≤q−1(r,q)=dd‖rq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑m≤q−1d(m,q)=11‖mdq−ln‖)k=kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣qμ(k)∑m≤q−1kd1‖mkdq−ln‖)k. |
It is easy to see
‖mkdq−ln‖=‖mkn−l(q/d)(q/d)n‖≥1(q/d)n, |
and we obtain
S23≪kω(q)nϕ(q)qk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q∑m≤q−1kdmin(qnd,1‖mkdq−ln‖))k. |
Let kd/q=h0/q0, where q0≥1,(h0,q0)=1, and we will easily obtain q/(kd)≤q0≤q/d. By using Lemma 2.4, we have
S23≪kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q((q−1)/(kd)q0+1)(qnd+q0logq0))k≪kω(q)nqk+12αk−1n∑l=1(∑d∣qd<qd∑k∣q((q−1)/(kd)q/(kd)+1)(qnd+qdlogqd))k≪kω(q)qk−12αk−1(∑d∣qd<q∑k∣qn+logq)k≪qk−12d2k(q)(logq+n)k. |
Let
S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) |
and
S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right). |
By the same argument of S_{23} , it follows that
S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k}, |
S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n). |
Since n\ll q^{\frac{1}{3}} , we have
\begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} | (3.9) |
Taking n = 1 , we get
\begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} | (3.10) |
With (3.1), (3.2), (3.9) and (3.10), the proof is complete.
This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | I. Podlubny, Fractional differential equations, Academic, New York, 1999. |
[2] |
Z. A. Khan, H. Ahmad, Qualitative properties of solutions of fractional differential and difference equations arising in physical models, Fractals, 29 (2021), 1–10. http://dx.doi.org/10.1142/S0218348X21400247 doi: 10.1142/S0218348X21400247
![]() |
[3] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993. |
[4] |
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
![]() |
[5] |
R. Toledo-Hernandez, V. Rico-Ramirez, A. Gustavo Iglesias-Silva, Urmila M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chem. Eng. Sci., 117 (2014), 217–228. https://doi.org/10.1016/j.ces.2014.06.034 doi: 10.1016/j.ces.2014.06.034
![]() |
[6] |
Y. Zhang, X. J. Yang, An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics, Appl. Math. Mod., 40 (2016), 1793–1799. https://doi.org/10.1016/j.apm.2015.08.017 doi: 10.1016/j.apm.2015.08.017
![]() |
[7] |
L. Kexue, P. Jigen, Laplace transform and fractional differential equations, Appl. Math. Lett., 24 (2011), 2019–2023. https://doi.org/10.1016/j.aml.2011.05.035 doi: 10.1016/j.aml.2011.05.035
![]() |
[8] | S. Saifullah, A. Ali, M. Irfan, K. Shah, Time-fractional Klein-Gordon equation with solitary/shock waves solutions, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/6858592 |
[9] |
R. Gazizov, A. Kasatkin, Construction of exact solutions for fractional order differential equations by the invariant subspace method, Comput. Math. Appl., 66 (2013), 576–584. https://doi.org/10.1016/j.camwa.2013.05.006 doi: 10.1016/j.camwa.2013.05.006
![]() |
[10] | D. G. Duffy, Transform methods for solving partial differential equations, CRC Press, 2004. https://doi.org/10.1201/9781420035148 |
[11] |
S. T. Demiray, H. Bulut, F. Bin, M. Belgacem, Sumudu transform method for analytical solutions of fractional type ordinary differential equations, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/131690 doi: 10.1155/2015/131690
![]() |
[12] | M. Valizadeh, Y. Mahmoudi, F. Dastmalchi Saei, Application of natural transform method to fractional pantograph delay differential equations, J. Math., 2019 (2019). https://doi.org/10.1155/2019/3913840 |
[13] |
D. J. Evans, H. Bulut, A new approach to the gas dynamics equation: An application of the decomposition method, Int. J. Comput. Math., 79 (2002), 752–761. https://doi.org/10.1080/00207160211297 doi: 10.1080/00207160211297
![]() |
[14] |
W. Gordon, Der comptoneffekt nach der schrödingerschen theorie, Zeitschrift für Physik, 40 (1926). https://doi.org/10.1007/BF01390840 doi: 10.1007/BF01390840
![]() |
[15] | O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Zeitschrift für Physik, 37 (1926). https://doi.org/10.1007/BF01397481 |
[16] | D. Bambusi, S. Cuccagna, On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential, Am. J. Math., 133 (2011), 1421–1468. https://doi.org/10.1353/ajm.2011.0034 |
[17] |
W. Bao, X. Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120 (2012), 189–229. https://doi.org/10.1007/s00211-011-0411-2 doi: 10.1007/s00211-011-0411-2
![]() |
[18] |
N. A. Khan, F. Riaz, A. Ara, A note on soliton solutions of Klein-Gordon-Zakharov equation by variational approach, Nonlinear Eng., 5 (2016), 135–139. https://doi.org/10.1515/nleng-2016-0001 doi: 10.1515/nleng-2016-0001
![]() |
[19] | B. Bülbül, M. Sezer, A new approach to numerical solution of nonlinear Klein-Gordon equation, Math. Probl. Eng., 2013 (2013). https://doi.org/10.1155/2013/869749 |
[20] |
A. Atangana, J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. D. E., 34 (2018), 1502–1523. https://doi.org/10.1002/num.22195 doi: 10.1002/num.22195
![]() |
[21] |
M. Caputo, Linear model of dissipation whose Q is almost frequency independent–-II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
![]() |
[22] |
Z. A. Khan, R. Gul, K. Shah, On impulsive boundary value problem with Riemann-Liouville fractional order derivative, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/8331731 doi: 10.1155/2021/8331731
![]() |
[23] |
Z. A. Khan, I. Ahmad, K. Shah, Applications of fixed point theory to investigate a system of fractional order differential equations, J. Func. Space., 2021 (2021), 1–7. https://doi.org/10.1155/2021/1399764 doi: 10.1155/2021/1399764
![]() |
[24] |
M. Çiçek, C. Yakar, M. B. Gücen, Practical stability in terms of two measures for fractional order dynamic systems in Caputo's sense with initial time difference, J. Franklin I., 2 (2014), 732–742. https://doi.org/10.1016/j.jfranklin.2013.10.009 doi: 10.1016/j.jfranklin.2013.10.009
![]() |
[25] |
J. Saelao, N. Yokchoo, The solution of Klein-Gordon equation by using modified Adomian decomposition method, Math. Comput. Simulat., 171 (2020), 94–102. https://doi.org/10.1016/j.matcom.2019.10.010 doi: 10.1016/j.matcom.2019.10.010
![]() |
[26] | M. M. Khader, N. H. Swetlam, A. M. S. Mahdy, The chebyshev collection method for solving fractional order Klein-Gordon equation, Wseas Trans. Math., 13 (2014), 31–38. |
[27] |
A. Wazwaz, Abdul-Majid, The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167 (2005), 1179–1195. https://doi.org/10.1016/j.amc.2004.08.006 doi: 10.1016/j.amc.2004.08.006
![]() |
[28] | X. Li, B. Y. Guo, A Legendre pseudospectral method for solving nonlinear Klein-Gordon equation, J. Comp. Math., 15 (1997), 105–126. |
[29] |
H. Li, X. H. Meng, B. Tian, Bilinear form and soliton solutions for the coupled nonlinear Kleain-Gordon equations, Inter. J. Mod. Phys. B, 26 (2012). https://doi.org/10.1142/S0217979212500579 doi: 10.1142/S0217979212500579
![]() |
[30] |
A. M. Wazwaz, New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun. Nonlinear. Sci., 13 (2008), 889–901. https://doi.org/10.1016/j.cnsns.2006.08.005 doi: 10.1016/j.cnsns.2006.08.005
![]() |
[31] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 204 (2006). |
[32] | I. N. Sneddon, The use of integral transforms, Tata McGraw Hill Edition, 1974. |
[33] |
H. Afshari, H. Aydi, E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, E. Asian Math. J., 32 (2016), 319–332. https://doi.org/10.7858/eamj.2016.024 doi: 10.7858/eamj.2016.024
![]() |
[34] |
F. Rahman, A. Ali, S. Saifullah, Analysis of time-fractional \phi^{4}-equation with singular and non-singular kernels, J. Appl. Comput. Math., 7 (2021), 192. https://doi.org/10.1007/s40819-021-01128-w doi: 10.1007/s40819-021-01128-w
![]() |
[35] |
K. Khan, Z. Khan, A. Ali, M. Irfan, Investigation of Hirota equation: Modified double Laplace decomposition method, Phys. Scripta, 96 (2021). https://doi.org/10.1088/1402-4896/ac0d33 doi: 10.1088/1402-4896/ac0d33
![]() |
[36] |
G. Adomian, Modification of the decomposition approach to heat equation, J. Math. Anal. Appl., 124 (1987), 290–291. https://doi.org/10.1016/0022-247X(87)90040-0 doi: 10.1016/0022-247X(87)90040-0
![]() |
[37] |
D. Huang, G. Zou, L. W. Zhang, Numerical approximation of nonlinear Klein-Gordon equation using an element-free approach, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/548905 doi: 10.1155/2015/548905
![]() |