Processing math: 86%
Research article Special Issues

Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel

  • Received: 21 October 2021 Revised: 27 December 2021 Accepted: 30 December 2021 Published: 05 January 2022
  • MSC : 35Bxx, 35Qxx, 37Mxx, 65Mxx, 41Axx

  • We investigate the nonlinear Klein-Gordon equation with Caputo fractional derivative. The general series solution of the system is derived by using the composition of the double Laplace transform with the decomposition method. It is noted that the obtained solution converges to the exact solution of the model. The existence of the model in the presence of Caputo fractional derivative is performed. The validity and precision of the presented method are exhibited with particular examples with suitable subsidiary conditions, where good agreements are obtained. The error analysis and its corresponding surface plots are presented for each example. From the numerical solutions, we observe that the proposed system admits soliton solutions. It is noticed that the amplitude of the wave solution increases with deviations in time, that concludes the factor ω considerably increases the amplitude and disrupts the dispersion/nonlinearity properties, as a result, may admit the excitation in the dynamical system. We have also depicted the physical behavior that states the advancement of localized mode excitations in the system.

    Citation: Sayed Saifullah, Amir Ali, Zareen A. Khan. Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel[J]. AIMS Mathematics, 2022, 7(4): 5275-5290. doi: 10.3934/math.2022293

    Related Papers:

    [1] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [2] Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681
    [3] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [4] Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780
    [5] Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143
    [6] Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
    [7] Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227
  • We investigate the nonlinear Klein-Gordon equation with Caputo fractional derivative. The general series solution of the system is derived by using the composition of the double Laplace transform with the decomposition method. It is noted that the obtained solution converges to the exact solution of the model. The existence of the model in the presence of Caputo fractional derivative is performed. The validity and precision of the presented method are exhibited with particular examples with suitable subsidiary conditions, where good agreements are obtained. The error analysis and its corresponding surface plots are presented for each example. From the numerical solutions, we observe that the proposed system admits soliton solutions. It is noticed that the amplitude of the wave solution increases with deviations in time, that concludes the factor ω considerably increases the amplitude and disrupts the dispersion/nonlinearity properties, as a result, may admit the excitation in the dynamical system. We have also depicted the physical behavior that states the advancement of localized mode excitations in the system.



    Let q be a positive integer. For each integer a with 1a<q,(a,q)=1, we know that there exists one and only one ˉa with 1ˉa<q such that aˉa1(q). Let r(q) be the number of integers a with 1a<q for which a and ˉa are of opposite parity.

    D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:

    r(q)=12ϕ(q)+O(q12d2(q)log2q).

    Zhang [4] generalized the problem over short intervals and proved that

    aNaR(q)1=12Nϕ(q)q1+O(q12d2(q)log2q),

    where

    R(q):={a:1aq,(a,q)=1,2a+ˉa}.

    Let n2 be a fixed positive integer, q3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ21. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as

    rn(δ1,δ2,c;q):=aδ1qˉaδ2qaˉacmodqna+ˉa1,

    and obtained an interesting asymptotic formula,

    rn(δ1,δ2,c;q)=(1n1)δ1δ2ϕ(q)+O(q12d6(q)log2q).

    Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by

    Bα,β:=(αn+β)n=1,

    where t denotes the integer part of any tR. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate

    #{ prime px:pBα,β}α1π(x) as x

    where π(x) is the prime counting function.

    We define type τ=τ(α) for any irrational number α by the following definition:

    τ:=sup{tR:lim infnntαn=0}.

    Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,

    rn(δ1,δ2,,δk,c,α,β;q):=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,βnx1++xk1,(0<δ1,δ2,,δk1),

    and where k = 2, we get the result of [7].

    By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.

    Theorem 1.1. Let k2 be a fixed positive integer, qn3 and c be two integers with (n,q)=(c,q)=1, and δ1,δ2,,δk be real numbers satisfying 0<δ1,δ2,,δk1. Let α>1 be an irrational number of finite type. Then, we have the following asymptotic formula:

    rn(δ1,δ2,,δk,c,α,β;q)=(1n1)α(k1)δ1δ2δkϕk1(q)+O(qk11τ+1+ε),

    where ϕ() is the Euler function, ε is a sufficiently small positive number, and the implied constant only depends on n.

    Notation. In this paper, we denote by t and {t} the integral part and the fractional part of t, respectively. As is customary, we put

    e(t):=e2πit and {t}:=tt.

    The notation t is used to denote the distance from the real number t to the nearest integer; that is,

    t:=minnZ|tn|.

    Let χ0 be the principal character modulo q. The letter p always denotes a prime. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, and may depend (where obvious) on the parameters α,n,ε but are absolute otherwise. For given functions F and G, the notations FG, GF and F=O(G) are all equivalent to the statement that the inequality |F|C|G| holds with some constant C>0.

    To complete the proof of the theorem, we need the following several definitions and lemmas.

    Definition 2.1. For an arbitrary set S, we use 1S to denote its indicator function:

    1S(n):={1ifnS,0ifnS.

    We use 1α,β to denote the characteristic function of numbers in a Beatty sequence:

    1α,β(n):={1ifnBα,β,0ifnBα,β.

    Lemma 2.2. Let a,q be integers, δ(0,1) be a real number, θ be a rational number. Let α be an irrational number of finite type τ and H=qε>0. We have

    aδqaBα,β1=α1δϕ(q)+O((ϕ(q))ττ+1+ε),

    and

    aδqaBα,βe(θa)=α1aδ1qe(θa)+O(θ1qε+qε).

    Taking

    H=θ1τ+1+ε,

    we have

    aδqaBα,βe(θa)=α1aδ1qe(θa)+O(θ(ττ+1+ε)).

    Proof. This is Lemma 2.4 and Lemma 2.5 of [7].

    Lemma 2.3. Let

    Kl(r1,r2,,rk;q)=x1q1xk1q1e(r1x1++rk1xk1+rk¯x1xk1p).

    Then

    Kl(r1,r2,,rk;q)qk12kω(q)(r1,rk,q)12(rk1,rk,q)12

    where (a,b,c) is the greatest common divisor of a,b and c.

    Proof. See [9].

    Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If

    a=sr+θr2,(r,s)=1,r1,|θ|1,

    then

    kKmin(U,1ak+b)(Kr+1)(U+rlogr).

    Proof. The proof is given in [10].

    We begin by the definition

    rn(δ1,δ2,,δk,c,α,β;q)=S1S2,

    where

    S1:=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,β1,

    and

    S2:=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,βnx1++xk1.

    By the Definition 2.1, Lemma 2.2 and congruence properties, we have

    S1=x1δ1qxkδkqx1xkcmodq1α,β(x1)1α,β(xk1)=1ϕ(q)x1δ1qxkδkqχmodqχ(x1)χ(xk)χ(¯c)1α,β(x1)1α,β(xk1)=S11+S12,

    where

    S11:=1ϕ(q)x1δ1qxkδkq1α,β(x1)1α,β(xk1),

    and

    S12:=1ϕ(q)χmodqχχ0χ(¯c)(x1δ1qxkδkqχ(x1)χ(xk)1α,β(x1)1α,β(xk1)).

    For S2, it follows that

    S2=1ϕ(q)x1δ1qxkδkqnx1++xkχmodqχ(x1)χ(xk)χ(¯c)1α,β(x1)1α,β(xk1)=S21+S22,

    where

    S21:=1ϕ(q)x1δ1qxkδkqnx1++xk1α,β(x1)1α,β(xk1),

    and

    S22:=1ϕ(q)χmodqχχ0χ(¯c)x1δ1qxkδkqnx1++xkχ(x1)χ(xk1)1α,β(x1)1α,β(xk1).

    From the classical bound

    aδq1=δϕ(q)+O(d(q))

    and Lemma 2.2, we have

    S11=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkq1)=(δk+O(d(q)ϕ(q)))k1i=1(α1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α(k1)ϕk1(q)k1i=1δi+O(qk11τ+1+ε). (3.1)

    From Lemma 2.2, we obtain

    S21=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkqnxk+(x1++xk1)1)=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkqxk(x1++xk1)modnd(xk,q)μ(d))=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(dqμ(d)xkδkqdxkxk(x1++xk1)modn1)=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(dqμ(d)(δkqnd+O(1)))=1ϕ(q)(δkϕ(q)n+O(d(q)))k1i=1(α1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α(k1)n1ϕk1(q)k1i=1δi+O(qk11τ+1+ε). (3.2)

    By the properties of exponential sums,

    S22=1nϕ(q)χmodqχχ0χ(¯c)(x1δ1qxkδk1qχ(x1)χ(xk)1α,β(x1)1α,β(xk1))×(nl=1e(x1++xknl))=1nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(xiδiq1α,β(xi)χ(xi)e(xinl))(xkδkqχ(xk)e(xknl)). (3.3)

    Let

    G(r,χ):=qh=1χ(h)e(rhq)

    be the Gauss sum, and we know that for χχ0,

    χ(xi)=1qqr=1G(r,χ)e(xirq)=1qq1r=1G(r,χ)e(xirq),

    and

    lnrq0

    for 1ln,1rq1 and (n,q)=1.

    Therefore,

    xkδkqχ(xk)e(xknl)=1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqlh)1, (3.4)

    where

    f(δ,l,r;n,p):=1e((lnrq)δq)

    and

    |f(δk,l,rk;n,q)|2.

    For xi(1ik1), using Lemma 2.2, we also have

    xiδiq1α,β(xi)χ(xi)e(xinl)=1qxiδiq1α,β(xi)q1ri=1G(ri,χ)e((lnriq)xi)=1qq1ri=1G(ri,χ)xiδiq1α,β(xi)e((lnriq)xi)=1qq1ri=1G(ri,χ)(α1aδiqe((lnriq)xi)+O(qεlnriq+qε))=1qαq1ri=1G(ri,χ)(f(δi,l,ri;n,q)e(riqln)1+O(qεlnriq+qε)). (3.5)

    Let

    S23=1nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(1qαq1ri=1G(ri,χ)f(δi,l,ri;n,q)e(riqln)1)(1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqln)1)=1nϕ(q)qkαk1nl=1q1r1=1q1rk=1f(δ1,l,r1;n,q)f(δk,l,rk;n,q)(e(r1qln)1)(e(rkqln)1)×χmodqχχ0χ(¯c)G(r1,χ)G(rk,χ). (3.6)

    From the definition of Gauss sum and Lemma 2.3, we know that

    χmodqχ(¯c)G(r1,χ)G(rk,χ)=q1h1=1q1hk=1χmodqχ(¯c)χ(h1)χ(hk)e(r1h1++rkhkq)=ϕ(q)q1h1=1q1hk=1h1hkcmodqe(r1h1++rkhkq)=ϕ(q)q1h1=1q1hk=1e(r1h1+rk1hk1+rkc¯h1hk1q)=ϕ(q)Kl(r1,r2,,rkc;q)ϕ(q)qk12kω(q)(r1,rkc,q)12(rk1,rkc,q)12ϕ(q)qk12kω(q)(r1,q)(rk,q). (3.7)

    By Mobius inversion, we get

    G(r,χ0)=qh=1e(rhq)=μ(q(r,q))φ(q)φ(q/(r,q))(r,q),

    and

    χ0(¯c)G(r1,χ0)G(rk,χ0)(r1,q)(rk,q).

    Hence,

    χmodqχχ0χ(¯c)G(r1,χ)G(rk,χ)=χmodqχ(¯c)G(r1,χ)G(rk,χ)χ0(¯c)G(r1,χ0)G(rk,χ0)ϕ(q)qk12kω(q)(r1,q)(rk,q). (3.8)

    From (3.8) we may deduce the following result:

    S23kω(q)nqk+12αk1nl=1(q1r=1(r,q)|e(rqln)1|)kkω(q)nqk+12αk1nl=1(q1r=1(r,q)|sinπ(rqln)|)kkω(q)nqk+12αk1nl=1(q1r=1(r,q)rqln)k=kω(q)nqk+12αk1nl=1(dqd<qrq1(r,q)=ddrqln)k=kω(q)nqk+12αk1nl=1(dqd<qdmq1d(m,q)=11mdqln)k=kω(q)nqk+12αk1nl=1(dqd<qdkqμ(k)mq1kd1mkdqln)k.

    It is easy to see

    mkdqln=mknl(q/d)(q/d)n1(q/d)n,

    and we obtain

    S23kω(q)nϕ(q)qk+12αk1nl=1(dqd<qdkqmq1kdmin(qnd,1mkdqln))k.

    Let kd/q=h0/q0, where q01,(h0,q0)=1, and we will easily obtain q/(kd)q0q/d. By using Lemma 2.4, we have

    S23kω(q)nqk+12αk1nl=1(dqd<qdkq((q1)/(kd)q0+1)(qnd+q0logq0))kkω(q)nqk+12αk1nl=1(dqd<qdkq((q1)/(kd)q/(kd)+1)(qnd+qdlogqd))kkω(q)qk12αk1(dqd<qkqn+logq)kqk12d2k(q)(logq+n)k.

    Let

    S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right)

    and

    S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right).

    By the same argument of S_{23} , it follows that

    S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k},
    S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n).

    Since n\ll q^{\frac{1}{3}} , we have

    \begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} (3.9)

    Taking n = 1 , we get

    \begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} (3.10)

    With (3.1), (3.2), (3.9) and (3.10), the proof is complete.

    This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

    This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] I. Podlubny, Fractional differential equations, Academic, New York, 1999.
    [2] Z. A. Khan, H. Ahmad, Qualitative properties of solutions of fractional differential and difference equations arising in physical models, Fractals, 29 (2021), 1–10. http://dx.doi.org/10.1142/S0218348X21400247 doi: 10.1142/S0218348X21400247
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
    [4] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [5] R. Toledo-Hernandez, V. Rico-Ramirez, A. Gustavo Iglesias-Silva, Urmila M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chem. Eng. Sci., 117 (2014), 217–228. https://doi.org/10.1016/j.ces.2014.06.034 doi: 10.1016/j.ces.2014.06.034
    [6] Y. Zhang, X. J. Yang, An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics, Appl. Math. Mod., 40 (2016), 1793–1799. https://doi.org/10.1016/j.apm.2015.08.017 doi: 10.1016/j.apm.2015.08.017
    [7] L. Kexue, P. Jigen, Laplace transform and fractional differential equations, Appl. Math. Lett., 24 (2011), 2019–2023. https://doi.org/10.1016/j.aml.2011.05.035 doi: 10.1016/j.aml.2011.05.035
    [8] S. Saifullah, A. Ali, M. Irfan, K. Shah, Time-fractional Klein-Gordon equation with solitary/shock waves solutions, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/6858592
    [9] R. Gazizov, A. Kasatkin, Construction of exact solutions for fractional order differential equations by the invariant subspace method, Comput. Math. Appl., 66 (2013), 576–584. https://doi.org/10.1016/j.camwa.2013.05.006 doi: 10.1016/j.camwa.2013.05.006
    [10] D. G. Duffy, Transform methods for solving partial differential equations, CRC Press, 2004. https://doi.org/10.1201/9781420035148
    [11] S. T. Demiray, H. Bulut, F. Bin, M. Belgacem, Sumudu transform method for analytical solutions of fractional type ordinary differential equations, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/131690 doi: 10.1155/2015/131690
    [12] M. Valizadeh, Y. Mahmoudi, F. Dastmalchi Saei, Application of natural transform method to fractional pantograph delay differential equations, J. Math., 2019 (2019). https://doi.org/10.1155/2019/3913840
    [13] D. J. Evans, H. Bulut, A new approach to the gas dynamics equation: An application of the decomposition method, Int. J. Comput. Math., 79 (2002), 752–761. https://doi.org/10.1080/00207160211297 doi: 10.1080/00207160211297
    [14] W. Gordon, Der comptoneffekt nach der schrödingerschen theorie, Zeitschrift für Physik, 40 (1926). https://doi.org/10.1007/BF01390840 doi: 10.1007/BF01390840
    [15] O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Zeitschrift für Physik, 37 (1926). https://doi.org/10.1007/BF01397481
    [16] D. Bambusi, S. Cuccagna, On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential, Am. J. Math., 133 (2011), 1421–1468. https://doi.org/10.1353/ajm.2011.0034
    [17] W. Bao, X. Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120 (2012), 189–229. https://doi.org/10.1007/s00211-011-0411-2 doi: 10.1007/s00211-011-0411-2
    [18] N. A. Khan, F. Riaz, A. Ara, A note on soliton solutions of Klein-Gordon-Zakharov equation by variational approach, Nonlinear Eng., 5 (2016), 135–139. https://doi.org/10.1515/nleng-2016-0001 doi: 10.1515/nleng-2016-0001
    [19] B. Bülbül, M. Sezer, A new approach to numerical solution of nonlinear Klein-Gordon equation, Math. Probl. Eng., 2013 (2013). https://doi.org/10.1155/2013/869749
    [20] A. Atangana, J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. D. E., 34 (2018), 1502–1523. https://doi.org/10.1002/num.22195 doi: 10.1002/num.22195
    [21] M. Caputo, Linear model of dissipation whose Q is almost frequency independent–-II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [22] Z. A. Khan, R. Gul, K. Shah, On impulsive boundary value problem with Riemann-Liouville fractional order derivative, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/8331731 doi: 10.1155/2021/8331731
    [23] Z. A. Khan, I. Ahmad, K. Shah, Applications of fixed point theory to investigate a system of fractional order differential equations, J. Func. Space., 2021 (2021), 1–7. https://doi.org/10.1155/2021/1399764 doi: 10.1155/2021/1399764
    [24] M. Çiçek, C. Yakar, M. B. Gücen, Practical stability in terms of two measures for fractional order dynamic systems in Caputo's sense with initial time difference, J. Franklin I., 2 (2014), 732–742. https://doi.org/10.1016/j.jfranklin.2013.10.009 doi: 10.1016/j.jfranklin.2013.10.009
    [25] J. Saelao, N. Yokchoo, The solution of Klein-Gordon equation by using modified Adomian decomposition method, Math. Comput. Simulat., 171 (2020), 94–102. https://doi.org/10.1016/j.matcom.2019.10.010 doi: 10.1016/j.matcom.2019.10.010
    [26] M. M. Khader, N. H. Swetlam, A. M. S. Mahdy, The chebyshev collection method for solving fractional order Klein-Gordon equation, Wseas Trans. Math., 13 (2014), 31–38.
    [27] A. Wazwaz, Abdul-Majid, The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167 (2005), 1179–1195. https://doi.org/10.1016/j.amc.2004.08.006 doi: 10.1016/j.amc.2004.08.006
    [28] X. Li, B. Y. Guo, A Legendre pseudospectral method for solving nonlinear Klein-Gordon equation, J. Comp. Math., 15 (1997), 105–126.
    [29] H. Li, X. H. Meng, B. Tian, Bilinear form and soliton solutions for the coupled nonlinear Kleain-Gordon equations, Inter. J. Mod. Phys. B, 26 (2012). https://doi.org/10.1142/S0217979212500579 doi: 10.1142/S0217979212500579
    [30] A. M. Wazwaz, New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun. Nonlinear. Sci., 13 (2008), 889–901. https://doi.org/10.1016/j.cnsns.2006.08.005 doi: 10.1016/j.cnsns.2006.08.005
    [31] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 204 (2006).
    [32] I. N. Sneddon, The use of integral transforms, Tata McGraw Hill Edition, 1974.
    [33] H. Afshari, H. Aydi, E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, E. Asian Math. J., 32 (2016), 319–332. https://doi.org/10.7858/eamj.2016.024 doi: 10.7858/eamj.2016.024
    [34] F. Rahman, A. Ali, S. Saifullah, Analysis of time-fractional \phi^{4}-equation with singular and non-singular kernels, J. Appl. Comput. Math., 7 (2021), 192. https://doi.org/10.1007/s40819-021-01128-w doi: 10.1007/s40819-021-01128-w
    [35] K. Khan, Z. Khan, A. Ali, M. Irfan, Investigation of Hirota equation: Modified double Laplace decomposition method, Phys. Scripta, 96 (2021). https://doi.org/10.1088/1402-4896/ac0d33 doi: 10.1088/1402-4896/ac0d33
    [36] G. Adomian, Modification of the decomposition approach to heat equation, J. Math. Anal. Appl., 124 (1987), 290–291. https://doi.org/10.1016/0022-247X(87)90040-0 doi: 10.1016/0022-247X(87)90040-0
    [37] D. Huang, G. Zou, L. W. Zhang, Numerical approximation of nonlinear Klein-Gordon equation using an element-free approach, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/548905 doi: 10.1155/2015/548905
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2557) PDF downloads(137) Cited by(32)

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog