Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

The q-WZ pairs and divisibility properties of certain polynomials

  • Received: 07 October 2021 Revised: 05 December 2021 Accepted: 06 December 2021 Published: 15 December 2021
  • MSC : 11B65, 05A10, 05A30

  • Using the q-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some q-congruences obtained by Guo earlier, or q-analogues of some congruences of Sun. For example, we prove that, for n1 and 0jn, the following two polynomials

    nk=j(1)k[3k2j+1][2k2jk](q;q2)k(q;q2)kj(q;q)3n(q;q)k(q2;q2)kj,nk=j(1)nkq(kj)2[4k+1](q;q2)2k(q;q2)k+j(q;q)6n(q2;q2)2k(q2;q2)kj(q;q2)2j.

    are divisible by (1+qn)2[2n+1][2nn]. Here [m]=1+q++qm1,(a;q)m=(1a)(1aq)(1aqm1), and [mk]=(qmk+1;q)k/(q;q)k.

    Citation: Su-Dan Wang. The q-WZ pairs and divisibility properties of certain polynomials[J]. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227

    Related Papers:

    [1] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [2] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [3] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [4] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [5] Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824
    [6] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [7] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [8] Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689
    [9] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [10] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
  • Using the q-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some q-congruences obtained by Guo earlier, or q-analogues of some congruences of Sun. For example, we prove that, for n1 and 0jn, the following two polynomials

    nk=j(1)k[3k2j+1][2k2jk](q;q2)k(q;q2)kj(q;q)3n(q;q)k(q2;q2)kj,nk=j(1)nkq(kj)2[4k+1](q;q2)2k(q;q2)k+j(q;q)6n(q2;q2)2k(q2;q2)kj(q;q2)2j.

    are divisible by (1+qn)2[2n+1][2nn]. Here [m]=1+q++qm1,(a;q)m=(1a)(1aq)(1aqm1), and [mk]=(qmk+1;q)k/(q;q)k.



    The following abbreviations are used in this manuscript:

    H-HHermite-HadamardH-H-MHermite-Hadamard-MercerH-H-FHermite-Hadamard-Fejér

    In science, convex functions have a long and distinguished history, and they have been the focus of study for almost a century. The rapid growth of convexity theory and applications of fractional calculus has kept the interest of a number of researchers on integral inequalities. Inequalities such as the H-H type, the Ostrowski-type, the H-H-M type, the Opial type, and other types, by using convex functions have been the focus of research for many years. The H-H inequality given in [1] has piqued the curiosity of most academics among all of these integral inequalities. Dragomir et al. [2] and Kirmaci et al. [3] presented some trapezoidal type inequalities and also some applications to special means. Following these articles, several mathematicians proposed new refinements of the Hermite-Hadamard inequality for various classes of convex functions and mappings such as quasi convex function [4], convex functions [5], m-convex functions [6], s-type convex functions of Raina type [7], σ-s-convex function [8] and harmonically convex functions [9]. Recently, this inequality was also investigated via different fractional integral operators, like Riemann-Liouville [10], ψ-Riemann-Liouville [11], Proportional fractional [12,13], k-Riemann-Liouville [14], Caputo-Fabrizio [15,16], generalized Atangana-Baleanu operator [17] to name a few.

    It is important to emphasise that Leibniz and L'Hospital are credited with developing the idea of fractional calculus (1695). Other mathematicians, such as Riemann, Liouville, Letnikov, Erdéli, Grünwald, and Kober, have made significant inputs to the field of fractional calculus and its numerous applications. Many physical and engineering experts are interested in fractional calculus because of its behaviour and capacity to address a wide range of practical issues. Fractional calculus is currently concerned with the study of so-called fractional order integral and derivative functions over real and complex domains, as well as its applications. In many cases, fractional analysis requires the use of arithmetic from classical analysis to produce more accurate conclusions. Numerous mathematical models can be handled by differential equations of fractional order. Fractional mathematical models have more conclusive and precise results than classical mathematical models because they are particular examples of fractional order mathematical models. In classical analysis, integer orders do not serve as an adequate representation of nature. By using mathematical modelling, it is possible to identify the endemics' unique transmission dynamics and get insight into how infection impacts a new population. To enhance the actual phenomena to a higher degree of precision and accuracy, non-integer order fractional differential equations (FDEs) are applied. Additionally, [18,19,20,21,22] use and reference their utilization of fractional calculus. Other interesting results for fractional calclus can be found in [23,24,25]. However, fractional computation enables us to consider any number of orders and formulate far more measurable objectives. In recent years, mathematicians have become more and more interested in presenting well-known inequalities using a variety of novel theories of fractional integral operators. There are several different integral inequality results for fractional integrals. For generalizing significant and well-known integral inequalities, these operators are helpful. The Hermite-Hadamard integral inequality is a particular type of integral inequality. It is frequently used in the literature and outlines the necessary and sufficient conditions for a function to be convex. The Hermite-Hadamard inequalities were generalized by Sarikaya et al. [10] using Riemann-Liouville fractional integrals. Işcan [26] expanded Sarikaya et al. [10] 's findings to include Hermite-Hadamard-Fejer-type inequalities. By utilizing the product of two convex functions, Chen [27] produced fractional Hermite-Hadamard-type integral inequalities. Ögülmüs et al. [28] incorporated the Hermite-Hadamard and Jensen-Mercer inequalities to present Hermite-Hadamard-Mercer type inequalities for Riemann-Liouville fractional integrals. Motivated by the above articles, Butt et al. (see [29]), presented new versions of Jensen and Jensen-Mercer type inequalities in the fractal sense. New fractional versions of Hermite-Hadamard-Mercer and Pachpatte-Mercer type inclusions are established for convex [30] and harmonically convex functions [31] respectively. Latif et al. [32] established Hermite-Hadamard-Fejér type inequalities for convex harmonic and a positive symmetric increasing function. New refinements of Hermite-Mercer type inequalities are presented in [33], Mercer-Ostrowski type inequalities are presented in [34]. Further, the Hermite-Hadamard inequality is also generalized for convexity and quasi convexity [35] and differentiable convex functions [36]. For further information on other fractional-order integral inequalities, see the papers [37,38,39,40,41].

    Definition 1.1. (see [42]) Let G:XR be a function and X be a convex subset of a real vector space R. Then we say that the function G is convex if and only if the following condition:

    G(Φr+(1Φ)s)ΦG(r)+(1Φ)G(s),

    holds true for all r,sX and Φ[0,1].

    For further discussion, we first present the classical Hermite-Hadmard (H-H) inequality, which states that (see [1]):

    If the function G:XRR is convex in X for r,sX and r<s, then

    G(r+s2)1srsrG(x)dxG(r)+G(s)2. (1.1)

    Definition 1.2. (see [43]) Let there be a function G:[r,s][0,) and it is symmetric with respect to r+s2, if

    G(r+sx)=G(x).

    In 1906, Fejér [44] preposed the following weighted variant of Hermite-Hadamard inequality famously known as Hermite-Hadamard-Fejér inequality, given as

    Theorem 1.1. Let there be a convex function G:[r,s]R{0}R with r<s. If D:[r,s]R{0}R be a convex symmetric and integrable function with respect to r+s2. Then

    G(r+s2)srD(x)dx1srsrG(x)D(x)dxG(r)+G(s)2srD(x)dx, (1.2)

    holds true.

    Definition 1.3. (see [9]) Let G:XR be a function and X be a subset of a real vector space R. Then we say that the function G is harmonically convex if and only if the following condition

    G(rsΦr+(1Φ)s)ΦG(s)+(1Φ)G(r),

    holds true for all r,sX and Φ[0,1].

    For further discussion, we first present the classical Hermite-Hadmard (H-H) inequality, which states that (see [9]):

    If the function G:XRR is harmonically convex in X for r,sX and r<s, then

    G(2rsr+s)rssrsrG(x)x2dxG(r)+G(s)2. (1.3)

    Definition 1.4. (see [45]) Let there be a function G:[r,s][0,) and it is harmonically symmetric with respect to 2rsr+s, if

    G(Φ)=G(11r+1s1Φ).

    In the year 2014, Chen and Wu [46] proposed the following weighted variant of Hermite-Hadamard inequality for harmonically convex function, given as

    Theorem 1.2. Let there be a convex function G:[r,s]R{0}R with r<s. If D:[r,s]R{0}R be a convex symmetric and integrable function with respect to r+s2. Then,

    G(2rsr+s)srD(x)x2dxrssrsrG(x)D(x)x2dxG(r)+G(s)2srD(x)x2dx, (1.4)

    holds true.

    Definition 1.5. (see, for details, [10,47]; see also [48]) Let \(\mathscr{G} \in \mathcal{L} \left\lbrack \mathfrak{r}, \ \mathfrak{s} \right\rbrack\). Then, the Riemann-Liouville fractional integrals of the order α>0, are defined as follows:

    Iαr+G(x)=1Γ(α)xr(xm)α1G(m)dm(x>r),

    and

    IαsG(x)=1Γ(α)sx(mx)α1G(m)dm(x<s),

    respectively, where \(\Gamma\left(\alpha \right) = \int_{0}^{\infty}{\Phi^{\alpha - 1}e^{- \Phi}}{d\Phi}\) is the Euler gamma function.

    Definition 1.6. (see, [49] for details) Let GL[r,s]. Then, the new left and right fractional integrals Iαr+ and Iαs of order α>0 are defined as

    Iαr+G(x):=1αxre1αα(xm)G(m)dm(0r<x<s),

    and

    IαsG(x):=1αsxe1αα(mx)G(m)dm(0r<x<s),

    respectively.

    It should be noted that

    lim

    Sarikaya et al. [37], in their article proved some interesting mid-point type Hermite-Hadamard inequalities. Here, we present one of his main results as follows:

    Theorem 1.3. (see [37]) Let \mathscr{G}:[\mathfrak{r}, \mathfrak{s}]\longrightarrow{\mathcal{R}} be a convex function with 0\leq\mathfrak{r}\leq\mathfrak{s} . If \mathscr{G}\in\mathcal{L}[\mathfrak{r}, \mathfrak{s}] , then the following inequality for Riemann-Liouville fractional integral operator holds true:

    \mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right) \leq\frac{2^{\alpha -1}\Gamma(\alpha+1)}{(\mathfrak{s}-\mathfrak{r})^{\alpha}}\left[ \mathtt{I}_{(\frac {\mathfrak{r}+\mathfrak{s}}{2})^{+}}^{\alpha}\mathscr{G}(\mathfrak{s})+\mathtt{I}_{(\frac {\mathfrak{r}+\mathfrak{s}}{2})^{-}}^{\alpha}\mathscr{G}(\mathfrak{r})\right] \leq \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}.

    The major goal of this paper is to establish Fejér type fractional inequalities using differintegrals of the \left(\frac{\mathfrak{r}+\mathfrak{s}}{2}\right) type for both convex and harmonically convex functions via a novel fractional integral operator. In order to derive those inequalities, first we prove two new lemmas i.e., Lemmas 2.1 and 3.1 for convex and harmonic convex functions respectively.

    In this study, we used a new fractional integral operator to achieve more generalized results. This is caused by the exponential function that makes up the kernel of this fractional operator. Our results differ from prior generalizations in that they do not lead to the aforementioned fractional integral inequalities. Numerous experts have suggested utilizing different fractional integral operators to extend the Hermite-Hadamard and Fejér type inequalities, however, none of their findings exhibit an exponential property. This study generated interest in using an exponential function as the kernel to create more generalized fractional inequalities. Furthermore, the application of symmetric and harmonically symmetric functions to the main results gives the study of inequalities a new path. For other generalization regarding exponential kernel interested reader can see e.g., on distributed-order fractional derivative in [50]. There are many research gaps to be filled for integral inequalities involving fractional calculus for different types of convex functions, despite the fact that there exist many different forms of research on the growth of fractional integral inequalities. As a result, the main purpose of this research is to find new Hermite-Hadamard and Fejér type inequalities for positive symmetric functions using fractional integral operators.

    Our present investigation is structured as follows. In Sections 2 and 3, we discuss two additional characteristics of the relevant fractional operator before proving some enhanced versions (mid-point types) of the Fejér and Hermite-Hadamard type inequalities for convex and harmonically convex functions respectively. Some applications are also taken into consideration in Section 4 to determine whether the predetermined results are appropriate. Section 5 explores a brief conclusion and possible areas for additional research that is related to the findings in this paper are discussed in Section 6.

    In this section for simplicity, we denote \rho_{c} = \frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r}). If \alpha \to 1 , then \rho_{c} = \frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\to 0.

    Lemma 2.1. Let \mathscr{D}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} be a symmetric convex function with respect to \frac{\mathfrak{r}+\mathfrak{s}}{2} . Then for \alpha > 0 , the following equality holds true:

    \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{D}(\mathfrak{s}) = \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r}) = \frac{1}{2} \left[ \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r})+\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{D}(\mathfrak{s})\right].

    Proof. Since \mathscr{D} :[\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} is integrable and symmetric to \frac{\mathfrak{r}+\mathfrak{s}}{2} we have \mathscr{D}(\mathfrak{r}+\mathfrak{s}-\mathrm{x}) = \mathscr{D}(\mathrm{x}) . Also, Setting \Phi = \mathfrak{r}+\mathfrak{s}-\mathrm{x} and d\Phi = -d\mathrm{x} , we have

    \begin{align*} \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{D}(\mathfrak{s}) & = \frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2}}^{\mathfrak{s}} e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{s}-\Phi\right) } \mathscr{D}(\Phi) d\Phi\\ & = - \frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2}}^{\mathfrak{r}} e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{s}-(\mathfrak{r}+\mathfrak{s}-\mathrm{x})\right) } \mathscr{D}(\mathfrak{r}+\mathfrak{s}-\mathrm{x}) d\mathrm{x} \nonumber\\ & = \frac{1}{\alpha}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}} e^{-\frac{1-\alpha}{\alpha}(\mathrm{x}-\mathfrak{r})} \mathscr{D}(\mathfrak{r}+\mathfrak{s}-\mathrm{x}) d\mathrm{x} \nonumber\\ & = \frac{1}{\alpha}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}} e^{-\frac{1-\alpha}{\alpha}(\mathrm{x}-\mathfrak{r})} \mathscr{D}(\mathrm{x}) d\mathrm{x} \nonumber\\ & = \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r}). \end{align*}
    \implies \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{D}(\mathfrak{s}) = \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r}) = \frac{1}{2} \left[ \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r})+\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{D}(\mathfrak{s})\right].

    This led us to the desired equality.

    First, we prove both the first and second kind Fejér type inequalities in a different approach. Then, we also prove the Hermite-Hadamard inequality using symmetric convex functions.

    Theorem 2.1. Let there be a convex function \mathscr{G}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} with \mathfrak{r} < \mathfrak{s} . If \mathscr{D}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} be a convex symmetric and integrable function with respect to \frac{\mathfrak{r}+\mathfrak{s}}{2} . Then for \alpha > 0 , the following inequality holds true:

    \begin{array}{l} \mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{D}(\mathfrak{s})\right]\leq \left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{G}\mathscr{D})(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}(\mathscr{G}\mathscr{D})(\mathfrak{s})\right]. \end{array}

    Proof. Using the convexity of \mathscr{G} on [\mathfrak{r}, \mathfrak{s}] , we have

    \begin{array}{l} 2\mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\leq \mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right)+\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right). \end{array} (2.1)

    Upon multiplication of both sides of the inequality (2.1) by e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{D}\left(\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) and then integrating the resultant over \left[0, \frac{1}{2}\right] , we obtain

    \begin{array}{l} &2\mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{D}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right)d\Phi\\ &\leq \int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right)\mathscr{D}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right)d\Phi \\ &+\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right)\mathscr{D}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right)d\Phi. \end{array} (2.2)

    Since \mathscr{D} is symmetric with respect to \frac{\mathfrak{r}+\mathfrak{s}}{2} , we have \mathscr{D}(\mathrm{x}) = \mathscr{D}(\mathfrak{r}+\mathfrak{s}-\mathrm{x}) .

    Moreover, setting \mathrm{x} = \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r} and d\mathrm{x} = (\mathfrak{s}-\mathfrak{r})d\Phi in (2.2), we have

    \begin{align*} &2\mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\frac{1}{\mathfrak{s}-\mathfrak{r}}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathrm{x}-\mathfrak{r})}\mathscr{D}(\mathrm{x})d\mathrm{x} = 2\mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r})\right] \nonumber\\ & \leq \frac{1}{\mathfrak{s}-\mathfrak{r}}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathrm{x}-\mathfrak{r})}\mathscr{G}(\mathfrak{r}+\mathfrak{s}-\mathrm{x})\mathscr{D}(\mathrm{x})d\mathrm{x} + \frac{1}{\mathfrak{s}-\mathfrak{r}}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathrm{x}-\mathfrak{r})}\mathscr{G}(\mathrm{x})\mathscr{D}(\mathrm{x})d\mathrm{x} \nonumber\\ & = \frac{1}{\mathfrak{s}-\mathfrak{r}}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2}}^{\mathfrak{s}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathrm{x})}\mathscr{G}(\mathrm{x})\mathscr{D}(\mathfrak{r}+\mathfrak{s}-\mathrm{x})d\mathrm{x} + \frac{1}{\mathfrak{s}-\mathfrak{r}}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathrm{x}-\mathfrak{r})}\mathscr{G}(\mathrm{x})\mathscr{D}(\mathrm{x})d\mathrm{x} \nonumber\\ & = \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2}}^{\mathfrak{s}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathrm{x})}\mathscr{G}(\mathrm{x})\mathscr{D}(\mathrm{x})d\mathrm{x} + \frac{1}{\alpha}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathrm{x}-\mathfrak{r})}\mathscr{G}(\mathrm{x})\mathscr{D}(\mathrm{x})d\mathrm{x}\right] . \end{align*}

    It follows from the above developments and Lemma 2.1 that,

    \begin{array}{l} \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{D}(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{D}(\mathfrak{s})\right] \leq \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{G}\mathscr{D})(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}(\mathscr{G}\mathscr{D})(\mathfrak{s})\right]. \end{array}

    This concludes the proof of the required result.

    Example 2.1. Let \mathscr{G}\left(\mathfrak{m}\right) = e^{\mathfrak{m}} , \mathfrak{m}\in\left[1, 9\right] and \mathscr{D}\left(\mathfrak{m}\right) = \left(5-\mathfrak{m}\right) ^{2} , is non-negative symmetric about \mathfrak{m} = 5 . Let 0 < \alpha < 1 , then

    \begin{align*} & \mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right) \left[ \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}^{\alpha}\mathscr{D} (\mathfrak{r})+\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}^{\alpha} \mathscr{D}(\mathfrak{s})\right] \\ & = e^{5}\left[ \mathtt{I}_{5-}^{\alpha}\mathscr{D} (\mathit{1})+\mathtt{I}_{5+}^{\alpha}\mathscr{D}(\mathit{9})\right] \\ & = e^{5}\left[ \frac{1}{\alpha}\int_{1}^{\mathit{5}} e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{m}-1\right) }\;\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}+\frac{1}{\alpha}\int_{\mathit{5}} ^{9}e^{-\frac{1-\alpha}{\alpha}\left( 9-\mathfrak{m}\right) }\;\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}\right] . \end{align*}

    and

    \begin{align*} & \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}^{\alpha}(\mathscr{G} \mathscr{D})(\mathfrak{r})+\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+} ^{\alpha}(\mathscr{G}\mathscr{D})(\mathfrak{s})\\ & = \mathtt{I}_{5-}^{\alpha}(\mathscr{G}\mathscr{D})(\mathit{1})+\mathtt{I} _{5+}^{\alpha}(\mathscr{G}\mathscr{D})(\mathit{9})\\ & = \frac{1}{\alpha}\int_{1}^{\mathit{5}}e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{m}-1\right) }\;e^{\mathfrak{m}}\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}+ \frac{1}{\alpha}\int_{\mathit{5}}^{9}e^{-\frac{1-\alpha}{\alpha}\left( 9-\mathfrak{m}\right) }\;e^{\mathfrak{m}}\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}. \end{align*}

    The graphical representation of Theorem 2.1 is shown in the graph below (see Figure 1) for 0 < \alpha < 1 :

    Figure 1.  The graphical representation of Theorem 2.1 for 0 < \alpha < 1 .

    Theorem 2.2. Let there be a convex function \mathscr{G}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} with \mathfrak{r} < \mathfrak{s} . If \mathscr{D}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} be a convex symmetric and integrable function with respect to \frac{\mathfrak{r}+\mathfrak{s}}{2} . Then for \alpha > 0 , the following inequality holds true:

    \begin{array}{l} \left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{G}\mathscr{D})(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}(\mathscr{G}\mathscr{D})(\mathfrak{s})\right] \leq \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{D})(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}(\mathscr{D})(\mathfrak{s})\right]. \end{array}

    Proof. Since \mathscr{G} is convex function, we have

    \begin{array}{l} \mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right)+\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) \leq \mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s}). \end{array} (2.3)

    Multiplying both side of the above inequality (2.3) by e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{D}\left(\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) and upon integration of the obtained result over \left[0, \frac{1}{2}\right] , one has

    \begin{align*} &\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right) \mathscr{D}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right)d\Phi\\ &+\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right)\mathscr{D}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) d\Phi \\ &\leq [\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})]\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{D}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) d\Phi. \end{align*}

    It follows

    \begin{array}{l} \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{G}\mathscr{D})(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}(\mathscr{G}\mathscr{D})(\mathfrak{s})\right] \leq \alpha\frac{[\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})]}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{D})(\mathfrak{r})\right]. \end{array}

    Furthermore, using the Lemma 2.1, we obtain

    \begin{array}{l} \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{G}\mathscr{D})(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}(\mathscr{G}\mathscr{D})(\mathfrak{s})\right] \leq \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}\frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}(\mathscr{D})(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}(\mathscr{D})(\mathfrak{s})\right]. \end{array}

    This concludes the proof of the desired result.

    Example 2.2. Let \mathscr{G}\left(\mathfrak{m}\right) = e^{\mathfrak{m}} , \mathfrak{m}\in\left[1, 9\right] and \mathscr{D}\left(\mathfrak{m}\right) = \left(5-\mathfrak{m}\right) ^{2} , is non-negative symmetric about \mathfrak{m} = 5 . Let 0 < \alpha < 1 , then

    \begin{align*} & \frac{e+e^{9}}{2}\left[ \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2} -}^{\alpha}(\mathscr{D})(\mathfrak{r})+\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s} }{2}+}^{\alpha}(\mathscr{D})(\mathfrak{s})\right] \\ & = \frac{e+e^{9}}{2}\left[ \mathtt{I}_{5-}^{\alpha}\mathscr{D} (\mathit{1})+\mathtt{I}_{5+}^{\alpha}\mathscr{D}(\mathit{9})\right] \\ & = \frac{e+e^{9}}{2}\left[ \frac{1}{\alpha}\int_{1}^{\mathit{5}} e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{m}-1\right) }\;\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}+\frac{1}{\alpha}\int_{\mathit{5}} ^{9}e^{-\frac{1-\alpha}{\alpha}\left( 9-\mathfrak{m}\right) }\;\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}\right] . \end{align*}

    And

    \begin{align*} & \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}^{\alpha}(\mathscr{G} \mathscr{D})(\mathfrak{r})+\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+} ^{\alpha}(\mathscr{G}\mathscr{D})(\mathfrak{s})\\ & = \mathtt{I}_{5-}^{\alpha}(\mathscr{G}\mathscr{D})(\mathit{1})+\mathtt{I} _{5+}^{\alpha}(\mathscr{G}\mathscr{D})(\mathit{9})\\ & = \frac{1}{\alpha}\int_{1}^{\mathit{5}}e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{m}-1\right) }\;e^{\mathfrak{m}}\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}+ \frac{1}{\alpha}\int_{\mathit{5}}^{9}e^{-\frac{1-\alpha}{\alpha}\left( 9-\mathfrak{m}\right) }\;e^{\mathfrak{m}}\left( 5-\mathfrak{m}\right) ^{2}d\mathfrak{m}. \end{align*}

    The graphical representation of Theorem 2.2 is shown in the graph below (see Figure 2) for 0 < \alpha < 1 :

    Figure 2.  The graphical representation of Theorem 2.2 for 0 < \alpha < 1 .

    Theorem 2.3. Let there be a convex function \mathscr{G}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} with \mathfrak{r} < \mathfrak{s} . Then for \alpha > 0 , the following fractional integral inequality holds true:

    \begin{array}{l} \mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right) \leq\frac{1-\alpha}{2(1-e^{-\frac{\rho_{c}}{2}})}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{G}(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{G}(\mathfrak{s})\right] \leq \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}. \end{array} (2.4)

    Proof. By the hypothesis of convexity, we have

    \begin{array}{l} \mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right) & = \mathscr{G}\left( \frac{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}+\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}{2}\right)\\ &\leq \frac{\mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right)+\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) }{2}. \end{array} (2.5)

    Upon multiplication of both sides of the inequality (2.5) by 2e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi} and then integrating the obtained result over \left[0, \frac{1}{2}\right] , we have

    \begin{array}{l} &2\mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}d\Phi\\ & \leq \int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right)d\Phi+\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) d\Phi. \end{array} (2.6)

    Furthermore, let \mathfrak{m} = \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\implies d\Phi = \frac{d\mathfrak{m}}{\mathfrak{s}-\mathfrak{r}} . Then inequality (2.6) gives

    \begin{array}{l} &\frac{2(1-e^{-\frac{\rho_{c}}{2}})}{\rho}\mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\\ &\leq \left[ \frac{1}{\mathfrak{s}-\mathfrak{r}}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\frac{\mathfrak{m}-\mathfrak{r}}{\mathfrak{s}-\mathfrak{r}}}\mathscr{G}\left( \mathfrak{r}+\mathfrak{s}-\mathfrak{m}\right)d\mathfrak{m} +\frac{1}{\mathfrak{s}-\mathfrak{r}}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\frac{\mathfrak{m}-\mathfrak{r}}{\mathfrak{s}-\mathfrak{r}}}\mathscr{G}\left( \mathfrak{m}\right)d\mathfrak{m}\right] \\ & = \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[\frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2}}^{\mathfrak{s}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{m})}\mathscr{G}\left( \mathfrak{m}\right)d\mathfrak{m} +\frac{1}{\alpha}\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{m}-\mathfrak{r})}\mathscr{G}\left( \mathfrak{m}\right)d\mathfrak{m} \right] \\ & = \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{G}(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{G}(\mathfrak{s})\right]. \end{array} (2.7)

    This concludes the proof of the first part of the inequality (2.4). To prve the next part of inequality, under the given hypothesis, we have

    \begin{array}{l} \mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right)+\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) \leq \mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s}). \end{array} (2.8)

    Upon multiplication of both sides of the inequality (2.8) by e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi} and integrating over \left[0, \frac{1}{2}\right] , we have

    \begin{align*} &\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}\right)d\Phi +\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}\mathscr{G}\left( \Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}\right) d\Phi\\ &\leq [\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})]\int_{0}^{\frac{1}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{r})\Phi}d\Phi. \end{align*}

    Consequently, we obtain

    \begin{array}{l} \frac{\alpha}{\mathfrak{s}-\mathfrak{r}}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{G}(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{G}(\mathfrak{s})\right] \leq \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}\frac{2(1-e^{-\frac{\rho_{c}}{2}})}{\rho_{c}}. \end{array} (2.9)

    Consequently, it follows from the above developments (2.7) and (2.9) that

    \begin{array}{l} \mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right) \leq\frac{1-\alpha}{2(1-e^{-\frac{\rho_{c}}{2}})}\left[ \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}\mathscr{G}(\mathfrak{r})+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}\mathscr{G}(\mathfrak{s})\right] \leq \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}. \end{array}

    This concludes the proof of the required result.

    Remark 2.1. If one chooses \alpha\to 1 i.e., \frac{\rho_{c}}{2}\to 0 , then

    \lim\limits_{\alpha\to 1}\frac{1-\alpha}{2(1-e^{-\frac{\rho_{c}}{2}})} = \frac{1}{\mathfrak{s}-\mathfrak{r}}

    and hence Theorem 2.3 retrieves the classical Hermite-Hadamard inequality (1.1).

    Example 2.3. Let \mathscr{G}\left(\mathfrak{m}\right) = e^{\mathfrak{m}} , \mathfrak{m}\in\left[1, 9\right] and 0 < \alpha < 1 , then

    \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2} = \frac{e+e^{9}}{2},
    \mathscr{G}\left( \frac{\mathfrak{r}+\mathfrak{s}}{2}\right) = e^{{5}}

    and

    \begin{align*} & \frac{1-\alpha}{2(1-e^{-\frac{\rho_{c}}{2}})}\left[ \mathtt{I} _{\frac{\mathfrak{r}+\mathfrak{s}}{2}-}^{\alpha}\mathscr{G}(\mathfrak{r} )+\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}+}^{\alpha}\mathscr{G} (\mathfrak{s})\right] \\ & = \frac{1-\alpha}{2\left( 1-e^{-\frac{4\left( 1-\alpha\right) }{\alpha} }\right) }\left[ \mathtt{I}_{5-}^{\alpha}(\mathscr{G})(\mathit{1} )+\mathtt{I}_{5+}^{\alpha}(\mathscr{G})(\mathit{9})\right] \\ & = \frac{1-\alpha}{2\left( 1-e^{-\frac{4\left( 1-\alpha\right) }{\alpha} }\right) }\left[ \frac{1}{\alpha}\int_{1}^{\mathit{5}}e^{-\frac{1-\alpha }{\alpha}\left( \mathfrak{m}-1\right) }\;e^{\mathfrak{m}}d\mathfrak{m}+\frac{1}{\alpha} \int_{\mathit{5}}^{9}e^{-\frac{1-\alpha}{\alpha}\left( 9-\mathfrak{m}\right) }\;e^{\mathfrak{m}}d\mathfrak{m}\right] . \end{align*}

    The graphical representation of Theorem 2.3 is shown in the graph below (see Figure 3) for 0 < \alpha < 1 :

    Figure 3.  The graphical representation of Theorem 2.3 for 0 < \alpha < 1 .

    The family of Lebesgue measurable functions is represented here by \(\mathcal{L} \left\lbrack \mathfrak{r}, \mathfrak{s} \right\rbrack \). In this section, for brevity we use, \rho_{h} = \frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}} wherever needed. If \alpha \to 1 , then \rho_{h} = \frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\to 0.

    Lemma 3.1. Let \mathscr{D}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} be a harmonically symmetric and integrable function with respect to \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}} . Then for \alpha > 0 , the following equality holds true:

    \begin{array}{l} \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right) = \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right) = \frac{1}{2}\left[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)\right], \end{array}

    where \mathtt{K}(\mathrm{x}) = \frac{1}{\mathrm{x}}, \; \; \mathrm{x}\in\; \; \left[\frac{1}{\mathfrak{s}}, \frac{1}{\mathfrak{r}}\right] .

    Proof. Let \mathscr{D} be a harmonically symmetric function with respect to \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}} . Then using the harmonically symmetric property of \mathscr{D} , given as \mathscr{D}\left(\frac{1}{\Phi}\right) = \mathscr{D}\left(\frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\Phi}\right) for \alpha > 0 .

    \begin{align*} \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right) & = \frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}^{\frac{1}{\mathfrak{r}}}\mathrm{e}^{-\frac{1-\alpha}{\alpha}\left(\frac{1}{\mathfrak{r}}-\Phi \right) }\mathscr{D}\left( \frac{1}{\Phi}\right) d\Phi \nonumber\\ & = \frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}^{\frac{1}{\mathfrak{r}}}\mathrm{e}^{-\frac{1-\alpha}{\alpha}\left(\frac{1}{\mathfrak{r}}-\Phi \right) }\mathscr{D}\left( \frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\Phi}\right) d\Phi \nonumber\\ & = -\frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}^{\frac{1}{\mathfrak{s}}}\mathrm{e}^{-\frac{1-\alpha}{\alpha}\left(\mathrm{x}-\frac{1}{\mathfrak{s}}\right) }\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x} \nonumber\\ & = \frac{1}{\alpha}\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}\mathrm{e}^{-\frac{1-\alpha}{\alpha}\left(\mathrm{x}-\frac{1}{\mathfrak{s}}\right) }\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x} \nonumber\\ & = \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right). \end{align*}

    Consequently, it follows from the above developments that

    \begin{array}{l} \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right) = \mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right) = \frac{1}{2}\left[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)\right], \end{array}

    where \mathtt{K}(\mathrm{x}) = \frac{1}{\mathrm{x}}, \; \; \mathrm{x}\in\; \; \left[\frac{1}{\mathfrak{s}}, \frac{1}{\mathfrak{r}}\right].

    Now, we use the above result to produce new Hadamard-Fejér type inequalities of both first and second kind for harmonically convex functions.

    Let us begin with the Hadamard-Fejér type inequality of the first kind.

    Theorem 3.1. Let there be a harmonically convex function \mathscr{G}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} with \mathfrak{r} < \mathfrak{s} . If \mathscr{D}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} be a harmonically symmetric and integrable function with respect to \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}} . Then for \alpha > 0 , the following inequality holds true:

    \begin{align*} \mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right)\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]\\ \leq \bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]. \end{align*}

    Proof. Since \mathscr{G} is harmonically convex function on [\mathfrak{r}, \mathfrak{s}] , we have

    \mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right) \leq \frac{\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)+\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)}{2}.

    Multiplying both side by 2e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{D}\left(\frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right) and then integrating over [0, \frac{1}{2}] , we find

    \begin{align*} &2\mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right) \int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{D}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi \nonumber\\ &\leq \int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{D}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)d\Phi\nonumber\\ &+ \int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{D}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi. \end{align*}

    Since, \mathscr{D} is harmonically symmetric with respect to \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}} i.e

    \mathscr{D}\left( \frac{1}{\mathrm{x}}\right) = \mathscr{D}\left( \frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\mathrm{x}}\right).

    Also, setting \mathrm{x} = \frac{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}{\mathfrak{r}\mathfrak{s}} \implies d\Phi = \frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}d\mathrm{x} the above developments proceed as follows:

    \alpha \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right)\frac{1}{\alpha}\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x}\nonumber\\ \leq \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}} \bigg[\frac{1}{\alpha}\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{G}\left( \frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\mathrm{x}}\right)\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x} +\frac{1}{\alpha} \int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{G}\left( \frac{1}{\mathrm{x}}\right)\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x}\bigg] \nonumber\\ = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}^{\frac{1}{\mathfrak{r}}} e^{-\frac{1-\alpha}{\alpha}\left( \frac{1}{\mathfrak{r}}-\mathrm{x}\right) } \mathscr{G}\left(\frac{1}{\mathrm{x}} \right)\mathscr{D}\left(\frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\mathrm{x}} \right) d\mathrm{x} +\frac{1}{\alpha}\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{G}\left( \frac{1}{\mathrm{x}}\right)\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x}\bigg] \nonumber\\ = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}^{\frac{1}{\mathfrak{r}}} e^{-\frac{1-\alpha}{\alpha}\left( \frac{1}{\mathfrak{r}}-\mathrm{x}\right) } \mathscr{G}\left(\frac{1}{\mathrm{x}} \right)\mathscr{D}\left(\frac{1}{\mathrm{x}} \right) d\mathrm{x} +\frac{1}{\alpha}\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{G}\left( \frac{1}{\mathrm{x}}\right)\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x}\bigg] \nonumber\\ = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg].

    From the above developments and Lemma 3.1, we have

    \begin{align*} &\alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right)\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]\\ &\leq \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]. \end{align*}

    This concludes the proof of the required result.

    Example 3.1. Let \mathscr{G}\left(\mathfrak{m}\right) = \mathfrak{m}^{2} , \mathfrak{m}\in\left[1, 4\right] , \mathscr{D}\left(\mathfrak{m}\right) = \left(\frac{5\mathfrak{m}-8}{8\mathfrak{m}}\right) ^{2} and 0 < \alpha < 1 , then

    \begin{align*} & \mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s} }\right) \left[ \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r} \mathfrak{s}}-}^{\alpha}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s} }\right) +\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}} +}^{\alpha}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right) \right] \\ & = \frac{64}{25}\left[ \frac{1}{\alpha}\int_{\frac{1}{4}}^{\frac{\mathit{5} }{8}}e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{m}-\frac{\mathit{1}} {4}\right) }\;\left( \frac{5-8\mathfrak{m}}{8}\right) ^{2}d\mathfrak{m}+\frac{1}{\alpha }\int_{\frac{\mathit{5}}{8}}^{1}e^{-\frac{1-\alpha}{\alpha}\left( 1-\mathfrak{m}\right) }\;\left( \frac{5-8\mathfrak{m}}{8}\right) ^{2}d\mathfrak{m}\right] \end{align*}

    and

    \begin{align*} & \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}^{\alpha }\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right) +\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}^{\alpha }\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right) \\ & = \mathtt{I}_{\frac{\mathit{5}}{8}-}^{\alpha}\mathscr{G}\mathscr{D} \circ\mathtt{K}\left( \frac{1}{\mathit{4}}\right) +\mathtt{I}_{\frac {\mathit{5}}{8}+}^{\alpha}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( 1\right) \\ &{ = \frac{1}{\alpha}\int_{\frac{1}{4}}^{\frac{\mathit{5}}{8}}e^{-\frac {1-\alpha}{\alpha}\left( \mathfrak{m}-\frac{\mathit{1}}{4}\right) }\;\left(\frac{1}{\mathfrak{m}}\right)^{2}\left( \frac{5-8\mathfrak{m}}{8}\right) ^{2}d\mathfrak{m}+\frac{1}{\alpha}\int_{\frac{\mathit{5} }{8}}^{1}e^{-\frac{1-\alpha}{\alpha}\left( 1-\mathfrak{m}\right) }\;\left(\frac{1}{\mathfrak{m}}\right)^{2}\left( \frac{5-8\mathfrak{m}}{8}\right) ^{2}d\mathfrak{m}.} \end{align*}

    The graphical representation of Theorem 3.1 is shown in the graph below (see Figure 4) for 0 < \alpha < 1 :

    Figure 4.  The graphical representation of Theorem 3.1 for 0 < \alpha < 1 .

    Now, we will establish the Fejér type inequality of the second kind.

    Theorem 3.2. Let there be a harmonically convex function \mathscr{G}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} with \mathfrak{r} < \mathfrak{s} . If \mathscr{D}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} be a harmonically symmetric and integrable function with respect to \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}} . Then for \alpha > 0 , the following inequality holds true:

    \begin{align*} & \bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]\\ &\leq\frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]. \end{align*}

    Proof. Since \mathscr{G} is harmonically convex function

    \mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)+\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right) \leq\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s}).

    Multiplying both side by e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{D}\left(\frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right) and then integrating the resultant over \left[0, \frac{1}{2}\right] , we find

    \begin{array}{l} &\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)\mathscr{D}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi\\ &+\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)\mathscr{D}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi \\ &\leq [\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})]\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{D}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi. \end{array} (3.1)

    Setting \mathrm{x} = \frac{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}{\mathfrak{r}\mathfrak{s}} and \mathscr{D}\left(\frac{1}{\mathrm{x}}\right) = \mathscr{D}\left(\frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\mathrm{x}} \right) in (3.1), we have

    \begin{array}{l} &\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}} \bigg[\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{G}\left( \frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\mathrm{x}}\right)\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x} \int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{G}\left( \frac{1}{\mathrm{x}}\right)\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x}\bigg] \\ & = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\frac{1}{\alpha}\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}^{\frac{1}{\mathfrak{r}}} e^{-\frac{1-\alpha}{\alpha}\left( \frac{1}{\mathfrak{r}}-\mathrm{x}\right) } \mathscr{G}\left(\frac{1}{\mathrm{x}} \right)\mathscr{D}\left(\frac{1}{\mathrm{x}} \right) d\mathrm{x} +\frac{1}{\alpha}\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{G}\left( \frac{1}{\mathrm{x}}\right)\mathscr{D}\left( \frac{1}{\mathrm{x}}\right) d\mathrm{x}\bigg] \\ & = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]. \end{array} (3.2)

    Also,

    \begin{array}{l} &[\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})]\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{D}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi\\ & = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}[\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})]\frac{1}{\alpha}\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left( \mathrm{x}-\frac{1}{\mathfrak{s}}\right) } \mathscr{D}\left(\frac{1}{\mathrm{x}} \right) d\mathrm{x} \\ & = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}[{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}]\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)\bigg]. \end{array} (3.3)

    From the above developments (3.2), (3.3) and Lemma 3.1, we have

    \begin{align*} &\alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]\\ &\leq\alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right)\bigg]. \end{align*}

    This concludes the proof of the required result.

    Example 3.2. Let \mathscr{G}\left(\mathfrak{m}\right) = \mathfrak{m}^{2} , \mathfrak{m}\in\left[1, 4\right] , \mathscr{D}\left(\mathfrak{m}\right) = \left(\frac{5\mathfrak{m}-8}{8\mathfrak{m}}\right) ^{2} and 0 < \alpha < 1 , then

    \begin{align*} & \frac{17}{2}\left[ \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r} \mathfrak{s}}-}^{\alpha}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s} }\right) +\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}} +}^{\alpha}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right) \right] \\ & = \frac{17}{2}\left[ \frac{1}{\alpha}\int_{\frac{1}{4}}^{\frac{\mathit{5} }{8}}e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{m}-\frac{1}{4}\right) }\;\left( \frac{5-8\mathfrak{m}}{8}\right) ^{2}d\mathfrak{m}+\frac{1}{\alpha}\int _{\frac{\mathit{5}}{8}}^{1}e^{-\frac{1-\alpha}{\alpha}\left( 1-\mathfrak{m} \right) }\;\left( \frac{5-8\mathfrak{m}}{8}\right) ^{2}d\mathfrak{m}\right] \end{align*}

    and

    \begin{align*} & \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}^{\alpha }\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{s}}\right) +\mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}^{\alpha }\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( \frac{1}{\mathfrak{r}}\right) \\ & = \mathtt{I}_{\frac{\mathit{5}}{8}-}^{\alpha}\mathscr{G}\mathscr{D} \circ\mathtt{K}\left( \frac{1}{\mathit{4}}\right) +\mathtt{I}_{\frac {\mathit{5}}{8}+}^{\alpha}\mathscr{G}\mathscr{D}\circ\mathtt{K}\left( 1\right) \\ & = \frac{1}{\alpha}\int_{\frac{1}{4}}^{\frac{\mathit{5}}{8}}e^{-\frac {1-\alpha}{\alpha}\left( \mathfrak{m}-\frac{1}{4}\right) }\;\left( \frac{5-8\mathfrak{m}}{8}\right) ^{4}d\mathfrak{m}+\frac{1}{\alpha}\int_{\frac{\mathit{5}}{8} }^{1}e^{-\frac{1-\alpha}{\alpha}\left( 1-\mathfrak{m}\right) }\;\left( \frac{5-8\mathfrak{m}}{8}\right) ^{4}d\mathfrak{m}. \end{align*}

    The graphical representation of Theorem 3.2 is shown in the graph below (see Figure 5) for 0 < \alpha < 1 :

    Figure 5.  The graphical representation of Theorem 3.2 for 0 < \alpha < 1 .

    Theorem 3.3. Let there be a harmonically convex function \mathscr{G}: [\mathfrak{r}, \mathfrak{s}]\subseteq \mathcal{R}\setminus\{0\}\to\mathcal{R} with \mathfrak{r} < \mathfrak{s} . Then for \alpha > 0 ,

    \begin{array}{l} \mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right)\leq\frac{(1-\alpha)}{2\left( 1-e^{\frac{\rho_{h}}{2}}\right) }\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{r}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{s}}\right)\bigg]\leq\frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}, \end{array} (3.4)

    holds true.

    Proof. Since \mathscr{G} is harmonically convex function on [\mathfrak{r}, \mathfrak{s}] , we have

    \begin{array}{l} \mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right) = \mathscr{G}\left( \frac{2\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right) }{\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)+\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)}\right) \leq \frac{\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)+\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)}{2}{.} \end{array} (3.5)

    Multiplying both side of the inequality (3.5) by 2e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi} and integrating over [0, \frac{1}{2}] , we obtain

    \begin{align*} 2\mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right) \int_{0}^{1/2}e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}d\Phi& \leq \int_{0}^{1/2}e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi} \mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right) d\Phi\\ &+\int_{0}^{1/2}e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi} \mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right) d\Phi. \end{align*}

    Let \mathfrak{m} = \frac{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}{\mathfrak{r}\mathfrak{s}} , then d\mathfrak{m} = \frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}d\Phi

    \begin{array}{l} &\frac{2(1-e^{-\frac{\rho_{h}}{2}})}{\rho_{h}}\mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right)\\ &\leq \int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\left(\mathfrak{m}-\frac{1}{\mathfrak{s}} \right) } \left( \frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\right) \mathscr{G}\left( \frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\mathfrak{m}}\right) d\mathfrak{m}+ \int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\left(\mathfrak{m}-\frac{1}{\mathfrak{s}} \right) } \left( \frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\right) \mathscr{G}\left( \frac{1}{\mathfrak{m}}\right) d\mathfrak{m} \\ & = \frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left(\mathfrak{m}-\frac{1}{\mathfrak{s}} \right) } \mathscr{G}\left( \frac{1}{\frac{1}{\mathfrak{r}}+\frac{1}{\mathfrak{s}}-\mathfrak{m}}\right) d\mathfrak{m} +\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left(\mathfrak{m}-\frac{1}{\mathfrak{s}} \right) } \mathscr{G}\left( \frac{1}{\mathfrak{m}}\right) d\mathfrak{m}\bigg] \\ & = \frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}}^{\frac{1}{\mathfrak{r}}} e^{-\frac{1-\alpha}{\alpha}\left(\frac{1}{\mathfrak{r}} -\mathfrak{m}\right) } \mathscr{G}\left( \frac{1}{\mathfrak{m}}\right) d\mathfrak{m} +\int_{\frac{1}{\mathfrak{s}}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}} e^{-\frac{1-\alpha}{\alpha}\left(\mathfrak{m}-\frac{1}{\mathfrak{s}} \right) } \mathscr{G}\left( \frac{1}{\mathfrak{m}}\right) d\mathfrak{m}\bigg] \\ & = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{r}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{s}}\right)\bigg]. \end{array} (3.6)

    This gives us the first part of the inequality (3.4). Now, for the next part, we use the hypotheses of harmonically convex function i.e.

    \begin{array}{l} \mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)+\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right) \leq\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s}). \end{array} (3.7)

    Multiplying both side of the above inequality (3.7) by e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi} and then integrating the resultant over [0, 1] , we obtain

    \begin{align*} &\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)d\Phi +\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi\nonumber\\ &\leq [\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})]\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}d\Phi \nonumber\\ & = \frac{2(1-e^{-\frac{\rho_{h}}{2}})}{\rho_{h}}\frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}. \end{align*}

    Consequently from the first inequality (3.6), we have

    \begin{array}{l} &\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{r}+(1-\Phi)\mathfrak{s}}\right)d\Phi +\int_{0}^{\frac{1}{2}} e^{-\frac{1-\alpha}{\alpha}\frac{\mathfrak{s}-\mathfrak{r}}{\mathfrak{r}\mathfrak{s}}\Phi}\mathscr{G}\left( \frac{\mathfrak{r}\mathfrak{s}}{\Phi\mathfrak{s}+(1-\Phi)\mathfrak{r}}\right)d\Phi\\ & = \alpha\frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{r}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{s}}\right)\bigg]\leq\frac{2(1-e^{-\frac{\rho_{h}}{2}})}{\rho_{h}}\frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}. \end{array} (3.8)

    From the above developments (3.6) and (3.8), it follows

    \mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right)\leq\frac{(1-\alpha)}{2\left( 1-e^{\frac{\rho_{h}}{2}}\right) }\bigg[\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{r}}\right)+\mathtt{I}^\alpha_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{s}}\right)\bigg]\leq\frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2}.

    This concludes the proof of the required result.

    Remark 3.1. If one chooses \alpha\to 1 i.e., \frac{\rho_{h}}{2}\to 0 , then

    \lim\limits_{\alpha\to 1}\frac{1-\alpha}{2(1-e^{-\frac{\rho_{h}}{2}})} = \frac{\mathfrak{r}\mathfrak{s}}{\mathfrak{s}-\mathfrak{r}}

    and hence Theorem 2.3 retrieves the classical Hermite-Hadamard inequality (1.3) for harmonically convex function.

    Example 3.3. Let \mathscr{G}\left(\mathfrak{m}\right) = \mathfrak{m}^{2} , \mathfrak{m}\in\left[1, 4\right] , \mathtt{K}\left(\mathfrak{m}\right) = \frac{1}{\mathfrak{m}} and 0 < \alpha < 1 , then

    \mathscr{G}\left( \frac{2\mathfrak{r}\mathfrak{s}}{\mathfrak{r}+\mathfrak{s}}\right) = \frac{64}{25},
    \begin{align*} & \frac{(1-\alpha)}{2\left( 1-e^{\frac{\rho_{h}}{2}}\right) }\left[ \mathtt{I}_{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}+}^{\alpha }\mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{r}}\right) +\mathtt{I} _{\frac{\mathfrak{r}+\mathfrak{s}}{2\mathfrak{r}\mathfrak{s}}-}^{\alpha} \mathscr{G}\circ\mathscr{K}\left( \frac{1}{\mathfrak{s}}\right) \right] \\ & = \frac{(1-\alpha)}{2\left( 1-e^{\frac{3\left( 1-\alpha\right) }{8\alpha }}\right) }\left[ \mathtt{I}_{\frac{\mathit{5}}{8}+}^{\alpha}\mathscr{G} \circ\mathscr{K}\left( \frac{1}{\mathfrak{r}}\right) +\mathtt{I} _{\frac{\mathit{5}}{8}-}^{\alpha}\mathscr{G}\circ\mathscr{K}\left( \frac {1}{\mathfrak{s}}\right) \right] \\ & = \frac{(1-\alpha)}{2\left( 1-e^{\frac{3\left( 1-\alpha\right) }{8\alpha }}\right) }\left[ \frac{1}{\alpha}\int_{\frac{1}{4}}^{\frac{\mathit{5}}{8} }e^{-\frac{1-\alpha}{\alpha}\left( \mathfrak{m}-\frac{1}{4}\right) }\;\left( \frac{1}{\mathfrak{m}}\right) ^{2}d\mathfrak{m}+\frac{1}{\alpha}\int_{\frac{\mathit{5} }{8}}^{1}e^{-\frac{1-\alpha}{\alpha}\left( 1-\mathfrak{m}\right) }\;\left( \frac{1}{\mathfrak{m}}\right) ^{2}d\mathfrak{m}\right] \end{align*}

    and

    \frac{\mathscr{G}(\mathfrak{r})+\mathscr{G}(\mathfrak{s})}{2} = \frac{17}{2}.

    The graphical representation of Theorem 3.3 is shown in the graph below (see Figure 6) for 0 < \alpha < 1 :

    Figure 6.  The graphical representation of Theorem 3.3 for 0 < \alpha < 1 .

    Example 4.1. Let \mathbb{C}^{n} be the set of n \times n complex matrices, \mathbb{M}_{n} denote the algebra of n \times n complex matrices, and \mathbb{M}_{n}^{+} denote the strictly positive matrices in \mathbb{M}_{n} . That is, for any nonzero u\in \mathbb{C}^{n} , \mathrm{A} \in \mathbb{M}^{+}_{n} if \big < \mathrm{A}u, u\big > > 0 .

    Sababheh [51], proved that \mathscr{G}(\kappa) = \parallel\mathrm{A}^{\kappa}\mathrm{X}\mathrm{B}^{1-\kappa}+\mathrm{A}^{1-\kappa}\mathrm{X}\mathrm{B}^{\kappa}\parallel , \mathrm{A}, \mathrm{B}\in \mathbb{M}^{+}_{n}, \mathrm{X}\in\mathbb{M}_{n} is convex for all \kappa\in[0, 1] .

    Then, by using Theorem 2.3, we have

    \begin{align*} &\parallel\mathrm{A}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}\mathrm{X}\mathrm{B}^{1-\left(\frac{\mathfrak{r}+\mathfrak{s}}{2}\right)}+\mathrm{A}^{1-\left(\frac{\mathfrak{r}+\mathfrak{s}}{2}\right)}\mathrm{X}\mathrm{B}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}\parallel\\ &\leq \frac{1-\alpha}{2(1-e^{-\frac{\rho_{c}}{2}})}\bigg[\;{\mathtt{I}}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}^{+}}^\alpha \parallel\mathrm{A}^{\mathfrak{s}}\mathrm{X}\mathrm{B}^{1-\mathfrak{s}}+\mathrm{A}^{1-\mathfrak{s}}\mathrm{X}\mathrm{B}^{\mathfrak{s}}\parallel + \;{\mathtt{I}}_{\frac{\mathfrak{r}+\mathfrak{s}}{2}^{-}} ^\alpha \parallel\mathrm{A}^{\mathfrak{r}}\mathrm{X}\mathrm{B}^{1-\mathfrak{r}}+\mathrm{A}^{1-\mathfrak{r}}\mathrm{X}\mathrm{B}^{\mathfrak{r}}\parallel\bigg]\\ &\leq \frac{\parallel\mathrm{A}^{\mathfrak{r}}\mathrm{X}\mathrm{B}^{1-\mathfrak{r}}+\mathrm{A}^{1-\mathfrak{r}}\mathrm{X}\mathrm{B}^{\mathfrak{r}}\parallel+\parallel\mathrm{A}^{\mathfrak{s}}\mathrm{X}\mathrm{B}^{1-\mathfrak{s}}+\mathrm{A}^{1-\mathfrak{s}}\mathrm{X}\mathrm{B}^{\mathfrak{s}}\parallel}{2}. \end{align*}

    Example 4.2. The q -digamma(psi) function \psi_\Phi given as (see [52]):

    \begin{align*} \psi_\Phi(\zeta)& = -\ln \left( 1-\Phi\right) +\ \ln \Phi \sum\limits_{k = 0}^{\infty}\frac{\Phi^{k+\zeta}}{1-\Phi^{k+\zeta}} \\& \ \ \ \ = -\ln \left( 1-\Phi\right) +\ \ln \Phi \sum\limits_{k = 1}^{\infty}\frac{\Phi^{k\zeta}}{1-\Phi^{k\zeta}}. \end{align*}

    For \Phi > 1 and \zeta > 0, \Phi -digamma function \psi_\Phi can be given as:

    \begin{align*} \psi_\Phi(\zeta)& = -\ln \left( \Phi-1\right) +\ \ln \Phi\bigg[\zeta-\frac{1}{2} - \sum\limits_{k = 0}^{\infty}\frac{\Phi^{-(k+\zeta)}}{1-\Phi^{-(k+\zeta)}}\bigg] \\& \ \ \ \ = -\ln \left( \Phi-1\right) +\ \ln \Phi\bigg[\zeta-\frac{1}{2} - \sum\limits_{k = 1}^{\infty}\frac{\Phi^{-k\zeta}}{1-\Phi^{-k\zeta}}\bigg]. \end{align*}

    If we set \mathscr{G}(\zeta) = \psi^{\prime}_{\Phi}(\zeta) in Theorem 2.3, then we have the following inequality.

    \begin{array}{l} \psi^{\prime}_{\Phi}\left(\frac{\mathfrak{r}+\mathfrak{s}}{2}\right) \leq\frac{1-\alpha}{2\alpha(1-e^{-\frac{\Phi_{c}}{2}})}\left[\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2}}^{\mathfrak{s}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{m})}\psi^{\prime}_{\Phi}\left( \mathfrak{m}\right)d\mathfrak{m} +\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{m}-\mathfrak{r})}\psi^{\prime}_{\Phi}\left( \mathfrak{m}\right)d\mathfrak{m} \right] \leq \frac{\psi^{\prime}_{\Phi}(\mathfrak{r})+\psi^{\prime}_{\Phi}(\mathfrak{s})}{2}. \end{array}

    Modified Bessel functions

    Example 4.3. Let the function \mathscr{J}_{\rho}:\mathcal{R}\to [1, \infty) be defined [52] as

    \mathscr{J}_{\rho}(\mathfrak{m}) = 2^{\rho}\Gamma(\rho+1)\mathfrak{m}^{-\rho}\mathrm{I}_{\rho}(\mathfrak{m}), \ \ \mathfrak{m}\in{\mathcal{R}}.

    Here, we consider the modified Bessel function of first kind given in

    \mathscr{J}_{\rho}(\mathfrak{m}) = \sum\limits_{n = 0}^{\infty}\frac{\left(\frac{\mathfrak{m}}{2}\right)^{\rho+2n}}{n!\Gamma(\rho+n+1)}.

    The first and second order derivative are given as

    \mathscr{J}^{\prime}_{\rho}(\mathfrak{m}) = \frac{\mathfrak{m}}{2(\rho+1)}\mathscr{J}_{\rho+1}(\mathfrak{m}).
    \mathscr{J}^{\prime\prime}_{\rho}(\mathfrak{m}) = \frac{1}{4(\rho+1)}\left[\frac{u^{2}}{(\rho+1)}\mathscr{J}_{\rho+2}(\mathfrak{m})+2\mathscr{J}_{\rho+1}(\mathfrak{m})\right].

    If we use, \mathscr{G}(\mathfrak{m}) = \mathscr{J}^{\prime}_{\rho}(\mathfrak{m}) and the above functions in Theorem 2.3, we have

    \begin{array}{l} \frac{\mathfrak{r}+\mathfrak{s}}{2}\mathscr{J}_{\rho+1}\left(\frac{\mathfrak{r}+\mathfrak{s}}{2}\right)\\ \leq \frac{1-\alpha}{2\alpha(1-e^{-\frac{\rho_{c}}{2}})} \left[\int_{\frac{\mathfrak{r}+\mathfrak{s}}{2}}^{\mathfrak{s}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{s}-\mathfrak{m})}\mathfrak{m}\mathscr{J}_{\rho+1}\left(\mathfrak{m}\right)d\mathfrak{m} +\int_{\mathfrak{r}}^{\frac{\mathfrak{r}+\mathfrak{s}}{2}}e^{-\frac{1-\alpha}{\alpha}(\mathfrak{m}-\mathfrak{r})}\mathfrak{m}\mathscr{J}_{\rho+1}\left(\mathfrak{m}\right)d\mathfrak{m}\right]\\ \leq \frac{\mathfrak{r}\mathscr{J}_{\rho+1}\left(\mathfrak{r}\right)+\mathfrak{s}\mathscr{J}_{\rho+1}\left(\mathfrak{s}\right)}{2} . \end{array}

    The use of fractional calculus for finding various integral inequalities via convex functions has skyrocketed in recent years. This paper addresses a novel sort of Fejér type integral inequalities. In order to generalize some H-H-F (Hermite-Hadamard-Fejér) type inequalities, a new fractional integral operator with exponential kernel is employed. New midpoint type inequalities for both convex and harmonically convex functions are studied. Applications related to matrices, q-digamma and modifed Bessel functions are presented as well.

    We will use our theories and methods to create new inequalities for future research by combining these new weighted generalized fractional integral operators with Chebyshev, Simpson, Jensen-Mercer Markov, Bullen, Newton, and Minkowski type inequalities. Quantum calculus, fuzzy interval-valued analysis, and interval-valued analysis can all be used to establish these kinds of inequalities. The idea of Digamma functions and other special functions will be integrated with this kind of inequality as the major focus. We also aim to find other novel inequalities using finite products of functions. In future, we will employ the concept of \mathit{cr} -order defined by Bhunia and Samanta [53] to present different inequalities for \mathit{cr} -convexity and \mathit{cr} -harmonically convexity [54].

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] S. Chen, How to generate all possible rational Wilf–Zeilberger pairs? Algorithms Complexity Math. Epistemology Sci., 82 (2019), 17–34. https://doi.org/10.1007/978-1-4939-9051-1_2 doi: 10.1007/978-1-4939-9051-1_2
    [2] J. Guillera, WZ pairs and q-analogues of Ramanujan series for 1/\pi, J. Differ. Equ. Appl., 24 (2018), 1871–1879. https://doi.org/10.1080/10236198.2018.1551380 doi: 10.1080/10236198.2018.1551380
    [3] V. J. W. Guo, A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl., 458 (2018), 590–600. https://doi.org/10.1016/j.jmaa.2017.09.022 doi: 10.1016/j.jmaa.2017.09.022
    [4] V. J. W. Guo, A q-analogue of the (L.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 749–761. https://doi.org/10.1016/j.jmaa.2018.06.023 doi: 10.1016/j.jmaa.2018.06.023
    [5] V. J. W. Guo, A q-analogue of the (J.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 776–788. https://doi.org/10.1016/j.jmaa.2018.06.021 doi: 10.1016/j.jmaa.2018.06.021
    [6] V. J. W. Guo, q-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., 52 (2020), 605–624. https://doi.org/10.1007/s11139-019-00161-0 doi: 10.1007/s11139-019-00161-0
    [7] V. J. W. Guo, q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math., 20 (2020), 102078. https://doi.org/10.1016/j.aam.2020.102078 doi: 10.1016/j.aam.2020.102078
    [8] V. J. W. Guo, Some variations of a "divergent" Ramanujan-type q-supercongruence, J. Differ. Equ. Appl., 27 (2021), 376–388. https://doi.org/10.1080/10236198.2021.1900140 doi: 10.1080/10236198.2021.1900140
    [9] V. J. W. Guo, J. C. Liu, q-Analogues of two Ramanujan-type formulas for 1/\pi, J. Differ. Equ. Appl., 24 (2018), 1368–1373. https://doi.org/10.1080/10236198.2018.1485669 doi: 10.1080/10236198.2018.1485669
    [10] V. J. W. Guo, M. J. Schlosser, A new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math., 75 (2020), 155. https://doi.org/10.1007/s00025-020-01272-7 doi: 10.1007/s00025-020-01272-7
    [11] V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. https://doi.org/10.1016/j.aim.2019.02.008 doi: 10.1016/j.aim.2019.02.008
    [12] V. J. W. Guo, S. D. Wang, Some congruences involving fourth powers of central q-binomial coefficients, P. Roy. Soc. Edinb. A, 150 (2020), 1127–1138. https://doi.org/10.1017/prm.2018.96 doi: 10.1017/prm.2018.96
    [13] B. He, On the divisibility properties of certain binomial sums, J. Number Theory, 147 (2015), 133–140. https://doi.org/10.1016/j.jnt.2014.07.008 doi: 10.1016/j.jnt.2014.07.008
    [14] B. He, On the divisibility properties concerning sums of binomial coefficients, Ramanujan J., 43 (2017), 313–326. https://doi.org/10.1007/s11139-016-9780-6 doi: 10.1007/s11139-016-9780-6
    [15] L. Li, S. D. Wang, Proof of a q-supercongruence conjectured by Guo and Schlosser, RACSAM Rev. R. Acad. A, 114 (2020), 190. https://doi.org/10.1007/s13398-020-00923-2 doi: 10.1007/s13398-020-00923-2
    [16] J. C. Liu, On a congruence involving q-Catalan numbers, C. R. Math., 358 (2020), 211–215. https://doi.org/10.5802/crmath.35 doi: 10.5802/crmath.35
    [17] J. C. Liu, Z. Y. Huang, A truncated identity of Euler and related q-congruences, Bull. Aust. Math. Soc., 102 (2020), 353–359. https://doi.org/10.1017/S0004972720000301 doi: 10.1017/S0004972720000301
    [18] J. C. Liu, F. Petrov, Congruences on sums of q-binomial coefficients, Adv. Appl. Math., 116 (2020), 102003. https://doi.org/10.1016/j.aam.2020.102003 doi: 10.1016/j.aam.2020.102003
    [19] E. Mortenson, A p-adic supercongruence conjecture of van Hamme, P. Am. Math. Soc., 136 (2008), 4321–4328. https://doi.org/10.1090/S0002-9939-08-09389-1 doi: 10.1090/S0002-9939-08-09389-1
    [20] H. X. Ni, H. Pan, Divisibility of some binomial sums, Acta Arith., 194 (2020), 367–381. https://doi.org/10.4064/aa181114-24-7 doi: 10.4064/aa181114-24-7
    [21] B. Y. Sun, Finding more divisibility properties of binomial sums via the WZ method, Ramanujan J., 48 (2019), 173–189. https://doi.org/10.1007/s11139-018-0001-3 doi: 10.1007/s11139-018-0001-3
    [22] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. https://doi.org/10.1007/s11425-011-4302-x doi: 10.1007/s11425-011-4302-x
    [23] Z. W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Comb., 20 (2013). https://doi.org/10.37236/3022 doi: 10.37236/3022
    [24] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic functional analysis (Nijmegen, 1996), Lecture Notes Pure Appl. Math. 192, Dekker, New York, 1997,223–236.
    [25] X. Wang, M. Yu, Some new q-congruences on double sums, RACSAM Rev. R. Acad. A, 115 (2021). https://doi.org/10.1007/s13398-020-00946-9 doi: 10.1007/s13398-020-00946-9
    [26] X. Wang, M. Yue, Some q-supercongruences from Watson's _8\phi_7 transformation formula, Results Math., 75 (2020), 71. https://doi.org/10.1007/s00025-020-01195-3 doi: 10.1007/s00025-020-01195-3
    [27] H. S. Wilf, D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities, Invent. Math., 108 (1992), 575–633. https://doi.org/10.1007/BF02100618 doi: 10.1007/BF02100618
    [28] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory, 129 (2009), 1848–1857. https://doi.org/10.1016/j.jnt.2009.01.013 doi: 10.1016/j.jnt.2009.01.013
    [29] W. Zudilin, Congruences for q-binomial coefficients, Ann. Combin., 23 (2019), 1123–1135. https://doi.org/10.1007/s00026-019-00461-8 doi: 10.1007/s00026-019-00461-8
  • This article has been cited by:

    1. Soubhagya Kumar Sahoo, Artion Kashuri, Munirah Aljuaid, Soumyarani Mishra, Manuel De La Sen, On Ostrowski–Mercer’s Type Fractional Inequalities for Convex Functions and Applications, 2023, 7, 2504-3110, 215, 10.3390/fractalfract7030215
    2. Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Y. S. Hamed, Some New Hermite-Hadamard Type Inequalities Pertaining to Fractional Integrals with an Exponential Kernel for Subadditive Functions, 2023, 15, 2073-8994, 748, 10.3390/sym15030748
    3. Artion Kashuri, Soubhagya Kumar Sahoo, Munirah Aljuaid, Muhammad Tariq, Manuel De La Sen, Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals, 2023, 15, 2073-8994, 868, 10.3390/sym15040868
    4. Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri, Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel, 2023, 8, 2473-6988, 13785, 10.3934/math.2023700
    5. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators, 2023, 12, 2075-1680, 719, 10.3390/axioms12070719
    6. Çetin Yıldız, Gauhar Rahman, Luminiţa-Ioana Cotîrlă, On Further Inequalities for Convex Functions via Generalized Weighted-Type Fractional Operators, 2023, 7, 2504-3110, 513, 10.3390/fractalfract7070513
    7. Yu Peng, Serap Özcan, Tingsong Du, Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals, 2024, 183, 09600779, 114960, 10.1016/j.chaos.2024.114960
    8. XIAOHUA ZHANG, YUNXIU ZHOU, TINGSONG DU, PROPERTIES AND 2α̃-FRACTAL WEIGHTED PARAMETRIC INEQUALITIES FOR THE FRACTAL (m,h)-PREINVEX MAPPINGS, 2023, 31, 0218-348X, 10.1142/S0218348X23501347
    9. Muhammad Bilal Khan, Ali Althobaiti, Cheng-Chi Lee, Mohamed S. Soliman, Chun-Ta Li, Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities, 2023, 11, 2227-7390, 2851, 10.3390/math11132851
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2050) PDF downloads(61) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog