The comprehension of inequalities in preinvexity is very important for studying fractional calculus and its effectiveness in many applied sciences. In this article, we develop and study of fractional integral inequalities whose second derivatives are preinvex functions. We investigate and prove new lemma for twice differentiable functions involving Riemann-Liouville(R-L) fractional integral operator. On the basis of this newly developed lemma, we make some new results regarding of this identity. These new results yield us some generalizations of the prior results. This study builds upon on a novel new auxiliary result which enables us to develop new variants of Ostrowski type inequalities for twice differentiable preinvex mappings. As an application, several estimates concerning Bessel functions of real numbers are also illustrated.
Citation: Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Ather Qayyum. Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator[J]. AIMS Mathematics, 2022, 7(3): 3303-3320. doi: 10.3934/math.2022184
[1] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[2] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[3] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[4] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[5] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[6] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for $ s $-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[7] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[8] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[9] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[10] | Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505 |
The comprehension of inequalities in preinvexity is very important for studying fractional calculus and its effectiveness in many applied sciences. In this article, we develop and study of fractional integral inequalities whose second derivatives are preinvex functions. We investigate and prove new lemma for twice differentiable functions involving Riemann-Liouville(R-L) fractional integral operator. On the basis of this newly developed lemma, we make some new results regarding of this identity. These new results yield us some generalizations of the prior results. This study builds upon on a novel new auxiliary result which enables us to develop new variants of Ostrowski type inequalities for twice differentiable preinvex mappings. As an application, several estimates concerning Bessel functions of real numbers are also illustrated.
The study of integral inequality is an interesting area for research in mathematical analysis [1,2]. The fundamental integral inequalities can be instrumental in cultivating the subjective properties of convexity. The existence of massive literature surrounding integral inequalities for convex functions [3-7] depicts the importance of this topic. The most beautiful fact about convex function is that, it has a very elegant representation based on an inequality presented when the functional value of a linear combination of two points in its domain does not exceed the linear combination of the functional values at those two points. Fractional calculus owes its starting point to whether or not the importance of a derivative to an integer order could be generalized to a fractional order which is not an integer. Following this unique conversation between L'Hopital and Leibniz, the concept of fractional calculus grabbed the eye of some extraordinary researchers like Euler, Laplace, Fourier, Lacroix, Abel, Riemann, and Liouville. Over time, fractional operators have been differentiated with their singularity, locality and having general forms with the improvements made in their kernel structures. In this sense, based on the basic concepts of fractional analysis, Riemann-Liouville(R-L) and Caputo operators, various new trends have been successful. Fractional integral inequalities are marvelous tools for building up the qualitative and quantitative properties of preinvex functions. There has been a ceaseless development of intrigue in such a region of research so as to address the issues of different utilizations of these variants. In 1938, Ostrowski inequality established the following useful and interesting integral inequality, (see [12] and [13]). This review assumed a vital part in growing and getting varieties of well-known integral inequalities with the assistance of fractional integral operators. Then again, by characterizing various forms of Riemann-Liouville(R-L) fractional operator somewhat recently, new forms and refinements of integral inequalities involving differentiable functions have been presented. Studies in the field of fractional calculus have carried another point of view and direction in different fields of applied sciences. It has revealed insight into numerous real-life issues with the utilizations of recently characterized fractional operators.
For recent result and their related some generalizations, variants and extensions concerning Ostrowski inequality (see [9,10,14-17]).
The aim of this paper is to establish some integral inequalities for functions whose derivatives in absolute value are preinvex. Now we recall some notions in invexity analysis which will be used through the paper (see [20,21,24,26,28]) and references therein.
Let g:K→ℜ and η:K×K→ℜ, where K is a nonempty set in ℜn, be continuous functions.
Definition [19] A function g:K⊆ℜ=(−∞,∞)→ℜ is said to be convex, if we have
g(vc+(1−v)e)≤vg(c)+(1−v)g(e). |
for all c,e∈K and v∈[0,1].
Definition [25] The set K⊂ℜn is said to be invex with respect to η(.,.), if for every c,e∈K and v∈[0,1]
c+vη(e,c)∈K. |
The above set K is also called η-connected set.
It is obvious that every convex set is invex with respect to η(e,c)=e−c but there exist invex sets which are not convex [20].
Definition The function g on the invex set K is said to be preinvex with respect to η if
g(c+vη(e,c)) ≤ (1−v) g(c) + v g(e) , ∀c , e∈K , v∈[0,1]. |
The function −g is said to be preconcave if and only if g is preinvex .
The important note that every convex function is a preinvex function but the converse is not true [21]. For example g(v)=−|v|, ∀ v∈ℜ, is not convex function but it is preinvex function with respect to
η(e,c)={e−c if ce≥0,c−e if ce<0. |
We also want the following hypothesis regarding the function η which is due to Mohan et al. [22]. Condition-C: Let K⊂ℜn be an open invex subset with respect to η:K×K→ℜ. For any c,e∈K and v∈[0,1]
η(e,e+v η(c,e))= −vη(c,e),η(c,e+v η(c,e))= (1−v)η(c,e). | (1.1) |
For any c,e∈K and v1,v2∈[0,1] from condition C, we have
η(e+v2 η(c,e) , e+v1 η(c,e))= (v2−v1)η(c,e). |
If g is a preinvex function on [c,c+η(e,c)] and the mapping η satisfies condition C, then for every v∈[0,1], from Eq (1.1), it yields that
|g(c+vη(e,c))|= |g(c+η(e,c))+(1−v)η(c,c+η(e,c))| ≤ v |g(c+η(e,c))|+(1−v)|g(c)|, |
and
|g(c+(1−v)η(e,c))|= |g(c+η(e,c))+vη(c,c+η(e,c))| ≤ (1−v) |g(c+η(e,c))|+v|g(c)|. |
There are many vector functions that satisfy the condition C in [25], which trivial case η(c,e)=c−e. For example suppose K=ℜ∖{0} and
η(e,c)={e−c if c>0,e>0e−c if c<0,e<0−e, otherwise |
The set K is invex set and η satisfies the condition C.
Noor et al. [23], proved the following Hermite-Hadamard type inequalities.
Theorem 1.1. Let g:K=[c,c+η(e,c)]→(0,∞) be a preinvex function on the interval of real numbers K0 with η(e,c)>0, then the following inequalities hold:
g(2c+η(e,c)2)≤1η(e,c)∫c+η(e,c)cg(x) dx≤g(c) + g(e)2. |
Then Riemann-Liouville(R-L) fractional integrals of order ε>0 with c≥0 are defined as follows:
Jεc+g(z)= 1Γ(ε)∫zc(z−v)ε−1 g(v) dv , z>c, |
and
Jεe−g(z)= 1Γ(ε)∫ez(v−z)ε−1 g(v) dv , z<e. |
In [30], Sarikaya et al. also described the inequality in fractional integral version. In this study, considering the above mentioned theoretical framework, firstly, an integral identity which is candidate to produce Ostrowski type inequalities has been proved. With the help of such identity like Hölder, Power mean, Young's inequalities, Hölder-İşcan, Improved power means inequality and convexity, a new type of inequality, Ostrowski type inequalities, has been obtained.
In this section, we give Ostrowski inequalities for Riemann-Liouville(R-L) fractional integrals operator are obtained for a differentiable functions on (c,c+η(e,c)). For this purpose, we give a new identity that involve Riemann-Liouville(R-L) fractional integrals operator whose second derivatives are preinvex functions.
Lemma 2.1. Suppose that a mapping g:[c,c+η(e,c)]→ℜ istwice differentiable with c<c+η(e,c). If g′′∈L1[c,c+η(e,c)], then for all z∈[c,c+η(e,c)] and ε>0, the following equality
ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}=ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1g′′(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1g′′(e+vη(z,e))dv, | (2.1) |
satisfies for v∈[0,1] .
Proof. Let us assume that
ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1g′′(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1g′′(e+vη(z,e))dv,I=ηε+2(z,c)(ε+1)η(e,c) I1+ηε+2(e,z)(ε+1)η(e,c) I2, | (2.2) |
where
I1=∫10vε+1g′′(c+vη(z,c))dv =vε+1g′(c+vη(z,c))η(z,c)g|10−∫10(ε+1)vε g′(c+vη(z,c))η(z,c)dv=g′(z)η(z,c)−ε+1η(z,c)∫10vε g′(c+vη(z,c))dv=g′(z)η(z,c)−ε+1η2(z,c)g(z)+ε(ε+1)η2(z,c)∫10vε−1 g(c+vη(z,c))dv=g′(z)η(z,c)−ε+1η2(z,c)g(z) +Γ(ε+2)ηε+2(z,c) Jε[c+η(z,c)]−g(c), |
and similarly
I2= ∫10vε+1g′′(e+vη(z,e))dv=vε+1g′(e+vη(z,e))η(z,e)g|10−∫10(ε+1)vε g′(e+vη(z,e))η(z,e)dv=g′(z)η(z,e)−ε+1η(z,c)∫10vε g′(c+vη(z,c))dv=−g′(z)η(e,z)−ε+1η2(z,e)g(z)+ε(ε+1)η2(z,e)∫10vε−1 g(e+vη(z,e))dv=−g′(z)η(e,z)−ε+1η2(e,z)g(z) +Γ(ε+2)ηε+2(e,z) Jε[e+η(z,e)]+g(e), |
Combining I1 and I2 with (2.2), we get (2.3).
Remark 2.1. If we set ε=1 and η(c,e)=c−e in Lemma 2.1, we get (Lemma 1 in [11]).
Theorem 2.1. Assume that all the assumptions as defined in Lemma 2.1 and |g′′| is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(e)|1ε+2g}. | (2.3) |
satisfies for v∈[0,1].
Proof. From Lemma 2.1 and since |g′′| is preinvex function on [c,c+η(e,c)], we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1g{v|g′′(z)|+(1−v)|g′′(c)|g}dv+ηε+2(e,z)(ε+1)η(e,c)∫10vε+1g{v|g′′(z)|+(1−v)|g′′(e)|g}dv≤ηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(e)|1ε+2g}. |
This completes the proof.
Remark 2.2. If we set ε=1 and η(c,e)=c−e, then from Theorem 2.1, we get (Theorem 4 in [11]) with s=1.
Corollary 2.1. By using Theorem 2.1 with |g′′|≤M, we get the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M(1(ε+1)(ε+2)η(e,c)) g[ηε+2(z,c)+ ηε+2(e,z)g]. |
Remark 2.3. If we set ε=1 and η(c,e)=c−e, then from Corollary 2.1, we recapture (Theorem 2.1, [32]).
Corollary 2.2. If we set η(c,e)=c−e and z=c+e2, in Corollary 2.1, we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤M(e−c)ε+12ε+1g(1(ε+1)(ε+2)g). |
Theorem 2.2. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|q+|g′′(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|q+|g′′(e)|q2)1qg], | (2.4) |
satisfies for v∈[0,1], where q−1+p−1=1.
Proof. Suppose that p>1. From Lemma 2.1, by using the well-known Hölder integral inequality and the preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g| | (2.5) |
≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv | (2.6) |
≤ ηε+2(z,c)(ε+1)η(e,c) (∫10v(ε+1)pdv)1p(∫10|g′′(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(∫10v(ε+1)pdv)1p(∫10|g′′(e+vη(z,e))|qdv)1q. | (2.7) |
Since |g′′|q is preinvexity on [c,c+η(e,c)], we obtain
∫10|g′′(c+vη(z,c))|qdv≤∫10g{v|g′′(z)|q+(1−v)|g′′(c)|qg}dv= |g′′(z)|q+|g′′(c)|q2, | (2.8) |
and
∫10|g′′(e+vη(z,e))|qdv≤∫10g{v|g′′(z)|q+(1−v)|g′′(e)|qg}dv= |g′′(z)|q+|g′′(e)|q2. | (2.9) |
By using (2.8) and (2.9) with (2.7), we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|q+|g′′(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|q+|g′′(e)|q2)1qg]. |
This completes the proof.
Remark 2.4. If we set ε=1 and η(c,e)=c−e, then from Theorem 2.2, we get ( Theorem 5, [11]) with s=1.
Corollary 2.3. Using Theorem 2.2 with |g′′|≤M, we get
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M(1(ε+1)p+1)1p g[ ηε+2(z,c)(ε+1)η(e,c)+ ηε+2(e,z)(ε+1)η(e,c)g]. |
Corollary 2.4. If in Corollary 2.3, we set η(c,e)=c−e and z=c+e2, then we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤M(e−c)ε+1(ε+1)2ε+1 (1(ε+1)p+1)1p. |
Theorem 2.3. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q≥1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1ε+2)1−1qg[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(e)|q(ε+2)(ε+3))1qg], | (2.10) |
satisfies for v∈[0,1].
Proof. Suppose that q≥1. From Lemma 2.1, by using the power-mean integral inequality and preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv |
≤ ηε+2(z,c)(ε+1)η(e,c) (∫10vε+1dv)1−1q(∫10|g′′(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(∫10vε+1dv)1−1q(∫10|g′′(e+vη(z,e))|qdv)1q. | (2.11) |
Since |g′′|q is preinvexity on [c,c+η(e,c)], we obtain
∫10vε+1|g′′(c+vη(z,c))|qdv≤∫10vε+1g{v|g′′(z)|q+(1−v)|g′′(c)|qg}dv= |g′′(z)|qε+3+|g′′(c)|q(ε+2)(ε+3) | (2.12) |
and
∫10vε+1|g′′(e+vη(z,e))|qdv≤∫10vε+1g{v|g′′(z)|q+(1−v)|g′′(e)|qg}dv= |g′′(z)|qε+3+|g′′(e)|q(ε+2)(ε+3). | (2.13) |
By using (2.12) and (2.13) with (2.11), we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1ε+2)1−1qg[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(e)|q(ε+2)(ε+3))1qg]. |
This completes the proof.
Remark 2.5. If we set ε=1 and η(c,e)=c−e, then from Theorem 2.3, we get (Theorem 6, [11])with s=1.
Corollary 2.5. Under the same assumptions in Theorem 2.3 with |g′′|≤M, we get the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M(1(ε+1)(ε+2)η(e,c)) g[ ηε+2(z,c)+ ηε+2(e,z)g]. |
Corollary 2.6. If in Corollary 2.5, we set η(c,e)=c−e and z=c+e2, then we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤M(e−c)ε+1(ε+1)(ε+2)2ε+1. |
Theorem 2.4. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(e)|q2qg}, | (2.14) |
satisfies for v∈[0,1].
Proof. From Lemma 2.1, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv. |
By using the Young's inequality as
xy < 1pxp+1qyq. |
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c)g{1p∫10v(ε+1)pdv+1q∫10|g′′(c+vη(z,c))|qdvg}+ ηε+2(e,z)(ε+1)η(e,c)g{1p∫10v(ε+1)pdv+1q∫10|g′′(e+vη(z,e))|qdvg}≤ ηε+2(z,c)(ε+1)η(e,c)g{1p∫10v(ε+1)pdv+1q∫10g{v|g′′(z)|q+(1−v)|g′′(c)|qg}g}+ ηε+2(e,z)(ε+1)η(e,c) g{1p∫10v(ε+1)pdv+1q∫10g{v|g′′(z)|q+(1−v)|g′′(e)|qg}g}≤ ηε+2(z,c)(α+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(e)|q2qg}. |
This completes the proof.
Corollary 2.7. If we set η(c,e)=c−e and ε=1 in Theorem 2.4, we get
|1 e−c∫ecg(u)du−g(z)+(z−c+e2)g′(z)|≤(z−c)32(e−c)g[1(2p+1)p+|g′′(z)|q+|g′′(c)|q2qg]+(e−z)32(e−c)g[1(2p+1)p+|g′′(z)|q+|g′′(e)|q2qg]. |
Corollary 2.8. If in Theorem 2.4, we set η(c,e)=c−e and z=c+e2, then we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤(e−c)ε+12ε+2(ε+1)g{2((ε+1)p+1)p+|g′′(c+e2)|q+|g′′(c)|q2q+|g′′(c+e2)|q+|g′′(e)|q2qg}. |
Theorem 2.5. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g| | (2.15) |
≤ ηε+2(z,c)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g′′(z)|q+13|g′′(c)|q)1q+(1(ε+1)p+2)1p(13|g′′(z)|q+16|g′′(c)|q)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g′′(z)|q+13|g′′(e)|q)1q+(1(ε+1)p+2)1p(13|g′′(z)|q+16|g′′(e)|q)1qg], |
satisfies for v∈[0,1], where q−1+p−1=1.
Proof. From Lemma 2.1, by using the Hölder-İşcan integral inequality (see in [33]) and the preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv |
≤ ηε+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v)|g′′(c+vη(z,c))|qdv)1q+(∫10v(ε+1)p+1dv)1p(∫10v|g′′(c+vη(z,c))|qdv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v)|g′′(e+vη(z,e))|qdv)1q |
+(∫10v(ε+1)p+1dv)1p(∫10v|g′′(e+vη(z,e))|qdv)1qg]≤ ηα+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v){v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1q |
+(∫10v(ε+1)p+1dv)1p(∫10v{v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v){v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1q+(∫10v(ε+1)p+1dv)1p(∫10v{v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1qg]. |
After simplification, we get (2.15). This completes the proof.
Corollary 2.9. Using the same assumptions in Theorem 2.5 with |g′′|≤M, we get
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M 21q(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p+(1(ε+1)p+2)1pg]×g[ηε+2(z,c)+ηε+2(e,z)g]. |
Theorem 2.6. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q≥1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(c)|q(ε+2)(ε+3)(ε+4))1q | (2.16) |
+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(e)|q(ε+3)(ε+4))1qg], |
satisfies for v∈[0,1], where q−1+p−1=1.
Proof. From Lemma 2.1, improved power-mean integral inequality(see in [33]) and the preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv≤ ηε+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q(∫10(1−v)vε+1|g′′(c+vη(z,c))|qdv)1q+ (∫10vε+2dv)1−1q(∫10vε+2|g′′(c+vη(z,c))|qdv)1qg] |
+ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q(∫10(1−v)vε+1|g′′(e+vη(z,e))|qdv)1q+ (∫10vε+2dv)1−1q(∫10vε+2|g′′(e+vη(z,e))|qdv)1qg]≤ ηε+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q×(∫10(1−v)vε+1{v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1q+ (∫10vε+2dv)1−1q(∫10vε+2{v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1qg]+ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q(∫10(1−v)vε+1{v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1q+ (∫10vε+2dv)1−1q(∫10vε+2{v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1qg] |
≤ ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(a)|q(ε+2)(ε+3)(ε+4))1q |
+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(e)|q(ε+3)(ε+4))1qg]. |
This completes the proof.
Corollary 2.10. Using the same assumption of Theorem 2.6 with |g′′|≤M, we get
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M (ε+1)(ε+2)η(e,c)g[ηε+2(z,c)+ηε+2(e,z)g]. |
We recall the first kind modified Bessel function ℑm, which has the series representation (see [42], p.77)
ℑm(ζ)=Σn≥0(ζ2)m+2nn!Γ(m+n+1). |
where ζ∈ℜ and m>−1, while the second kind modified Bessel function gm (see [42], p.78) is usually defined as
gm(ζ)=π2 ℑ−m(ζ)−ℑm(ζ)sinmπ. |
Consider the function Ωm(ζ):ℜ→[1,∞) defined by
Ωm(ζ)=2mΓ(m+1)ζ−mℏm(ζ), |
where Γ is the gamma function.
The first order derivative formula of Ωm(ζ) is given by [42]:
Ω′m(ζ)=ζ2(m+1)Ωm+1(ζ) | (3.1) |
and the second derivative can be easily calculated from (3.1) as
Ω′′m(ζ)=ζ24(m+1)(m+2) Ωm+2(ζ) + 12(m+1)Ωm+1(ζ). | (3.2) |
and the third derivative can be easily calculated from (3.2) as
Ω′′′m(ζ)=ζ34(m+1)(m+2)(m+3)Ωm+3(ζ)+3ζ4(m+1)(m+2)Ωm+2(ζ). | (3.3) |
Proposition 3.1. Suppose that m>−1 and 0<c<e. Then we get the inequality
g|Ωm(e)−Ωm(c)e−c−z2(m+1)Ωm+1(z)+(z−c+e2)×g{z24(m+1)(m+2)Ωm+2(z)+12(m+1)Ωm+1(z)g}g|≤(z−c)32(e−c)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(c38(m+1)(m+2)(m+3)Ωm+3(z)+3c4(m+1)(m+2)Ωm+2(c))qg}g]+(e−z)32(e−c)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(e38(m+1)(m+2)(m+3)Ωm+3(z)+3e4(m+1)(m+2)Ωm+2(e))qg}g]. |
Proof. The assertion follows immediately from Corollary 2.7 using g(ζ)=Ω′m(ζ), ζ>0 and the identities (3.2) and (3.3).
In this paper, we have defined an idea of fractional integral inequalities whose second derivatives are preinvex functions. We also investigated and proved a new lemma for the second derivatives of Riemann-Liouville fractional integral operator. Some new special cases are discovered in the form of corollaries. We hope that the strategies of this paper will motivate the researchers working in functional analysis, information theory and statistical theory. It is quite open to think about Ostrowski variants for generalized integral operators having Atangana-Baleanu operator etc. by applying generalized preinvexity. The results, which we have presented in this article, will potentially motivate researchers to study analogous and more general integral inequalities for various other kinds of fractional integral operators.
All authors have no conflict of interest.
[1] | Y. Qin, Integral and discrete inequalities and their applications, Springer International Publishing Switzerland, Birkhauser Basel, (2016). |
[2] | P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, (2018). doi: 10.1007/978-981-13-3013-1. |
[3] | T. Du, S. Wu, S. Zhao, M. U. Awan, Riemann-Liouville fractional Hermite-Hadamard inequalities for h-preinvex functions, J. Comput. Anal. Appl., 25 (2018). |
[4] |
T. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. doi: 10.1142/S0218348X19501172. doi: 10.1142/S0218348X19501172
![]() |
[5] |
S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of Hermite-Hadamard type through convexity, Symmetry, 11 (2019), 137. doi: 10.3390/sym11020137. doi: 10.3390/sym11020137
![]() |
[6] |
S. I. Butt, J. Pečarić, A. Vukelić, Generalization of Popoviciu type inequalities Via Fink's identity, Mediterr. J. Math., 13 (2016), 1495–1511. doi: 10.1007/s00009-015-0573-8. doi: 10.1007/s00009-015-0573-8
![]() |
[7] |
N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in Information Theory, J. Math. Inequal., 14 (2019), 249–271. doi: 10.7153/jmi-2020-14-17. doi: 10.7153/jmi-2020-14-17
![]() |
[8] | D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Sci. Bus. Media, 53 (1991). doi: 10.1007/978-94-011-3562-7-15. |
[9] | M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. |
[10] | M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll, 13 (2010). |
[11] |
E. Set, M. Z. Sarikaya, M. E. Özdemir, Some Ostrowski' s type inequalities for functions whose second derivatives are s-convex in the second sense, Demonstr. Math., 47 (2014), 37–47. doi: 10.2478/dema-2014-0003. doi: 10.2478/dema-2014-0003
![]() |
[12] | D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Sci. Bus. Media, 53 (1991). doi: 10.1007/978-94-011-3562-7-15. |
[13] | A. Qayyum, I. Faye, M. Shoaib, On New Generalized Inequalities via Riemann-Liouville Fractional Integration, J. Fractional Calculus Appl., 6 (2015). |
[14] |
P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. doi: 10.1515/dema-2004-0208. doi: 10.1515/dema-2004-0208
![]() |
[15] | S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl., 1 (1998). |
[16] |
B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591. doi: 10.1006/jmaa.2000.6913. doi: 10.1006/jmaa.2000.6913
![]() |
[17] |
E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. doi: 10.1016/j.camwa.2011.12.023. doi: 10.1016/j.camwa.2011.12.023
![]() |
[18] | E. Set, M. E. Ozdemir, M. Z. Sarikaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, Mathematics, (2012). doi: 10.1016/j.amc.2010.11.047. |
[19] |
İ. İşcan, Some new Hermite Hadamard type inequalities for geometrically convex functions, Math. Stat., 1 (2013), 86–91. doi: 10.13189/ms.2013.010211. doi: 10.13189/ms.2013.010211
![]() |
[20] |
T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473–1484. doi: 10.1016/j.na.2004.11.005. doi: 10.1016/j.na.2004.11.005
![]() |
[21] | S. K. Mishra, G. Giorgi, Invexity and Optimization, Springer-Verlag, Berlin, (2008). doi: 10.1007/978-3-540-78562-0. |
[22] |
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057. doi: 10.1006/jmaa.1995.1057
![]() |
[23] | M. A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonl. Anal. Forum, 14 (2009), 167–173. |
[24] |
X. M. Yang, D. Li, On properties of preinvex functions, J. Math. Anal. Appl., 256 (2001), 229–241. doi: 10.1006/jmaa.2000.7310. doi: 10.1006/jmaa.2000.7310
![]() |
[25] |
A. Barani, G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 1 (2012), 247. doi: 10.1006/jmaa.2000.7310. doi: 10.1006/jmaa.2000.7310
![]() |
[26] |
R. Pini, Invexity and generalized convexity, Optimization, 22 (1991), 513–525. doi: 10.1080/02331939108843693. doi: 10.1080/02331939108843693
![]() |
[27] |
U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. doi: 10.1080/02331939108843693. doi: 10.1080/02331939108843693
![]() |
[28] | M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[29] |
L. Chun, F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, J. Inequal. Appl., 1 (2013), 1–10. doi: 10.1186/1029-242X-2013-451. doi: 10.1186/1029-242X-2013-451
![]() |
[30] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite Hadamard 's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048
![]() |
[31] | I. Podlubni, Fractional differential equations, Academic press, San Diego (1999). |
[32] | P. Cerone, S. S. Dragomir, J. Roumeliotis, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, East Asian Math. J., 15 (1999), 1–9. |
[33] |
H. Kadakal, On refinements of some integral inequalities using improved power-mean integral inequalities, Numer. Meth. Part. D. E., 36 (2020), 1555–1565. doi: 10.1002/num.22491. doi: 10.1002/num.22491
![]() |
[34] |
İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 1 (2019), 1–11. doi: 10.1186/s13660-019-2258-5. doi: 10.1186/s13660-019-2258-5
![]() |
[35] | H. Budak, M. Z. Sarikaya, A. Qayyum, New refinements and applications of Ostrowski type inequalities for mappings whose nth derivatives are of bounded variation, TWMS J. App. Eng. Math., 11 (2021), 424–435 . |
[36] |
H. Budak, E. Pehlivan, Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals, AIMS Math., 5 (2020), 1960–1984. doi: 10.3934/math.2020131. doi: 10.3934/math.2020131
![]() |
[37] |
S. Erden, H. Budak, M. Z. Sarikaya, Fractional Ostrowski type inequalities for functions of bounded variaton with two variables, Miskolc Math. Notes, 21 (2020), 171–188. doi: 10.18514/MMN.2020.3076. doi: 10.18514/MMN.2020.3076
![]() |
[38] |
S. Erden, H. Budak, M. Z. Sarikaya, S. Iftikhar, P. Kumam, Fractional Ostrowski type inequalities for bounded functions, Inequal. Appl., 1 (2020), 1–11. doi: 10.1186/s13660-020-02381-1. doi: 10.1186/s13660-020-02381-1
![]() |
[39] |
M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. doi: 10.1515/math-2021-0020. doi: 10.1515/math-2021-0020
![]() |
[40] |
T. Sitthiwirattham, M. A. Ali, H. Budak, M. Abbas, S. Chasreechai, Montgomery identity and Ostrowski-type inequalities via quantum calculus, Open Math., 19 (2021), 1098–1109. doi: 10.1515/math-2021-0088. doi: 10.1515/math-2021-0088
![]() |
[41] |
T. Sitthiwirattham, H. Budak, H. Kara, M. A. Ali, J. Reunsumrit, On Some New Fractional Ostrowski and Trapezoid-type inequalities for functions of bounded variations with two variables, Symmetry, 13 (2021), 1724. doi: 10.3390/sym13091724. doi: 10.3390/sym13091724
![]() |
[42] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press (1995). |
1. | Daniel Breaz, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Gauhar Rahman, Büşra Yergöz, New Hadamard Type Inequalities for Modified h-Convex Functions, 2023, 7, 2504-3110, 216, 10.3390/fractalfract7030216 | |
2. | Maimoona Karim, Aliya Fahmi, Zafar Ullah, Muhammad Awais Tariq Bhatti, Ather Qayyum, On certain Ostrowski type integral inequalities for convex function via AB-fractional integral operator, 2023, 8, 2473-6988, 9166, 10.3934/math.2023459 | |
3. | Hüseyin Budak, Pınar Kösem, Hasan Kara, On new Milne-type inequalities for fractional integrals, 2023, 2023, 1029-242X, 10.1186/s13660-023-02921-5 | |
4. | Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6 | |
5. | Henok Desalegn Desta, Hüseyin Budak, Hasan Kara, New Perspectives on Fractional Milne-Type Inequalities: Insights from Twice-Differentiable Functions, 2024, 7, 2619-9653, 30, 10.32323/ujma.1397051 | |
6. | Abdullah Ali H. Ahmadini, Waqar Afzal, Mujahid Abbas, Elkhateeb S. Aly, Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1,h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems, 2024, 12, 2227-7390, 382, 10.3390/math12030382 | |
7. | Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat, Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions, 2024, 9, 2473-6988, 11228, 10.3934/math.2024551 | |
8. | Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040 | |
9. | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum, New developments in fractional integral inequalities via convexity with applications, 2023, 8, 2473-6988, 15950, 10.3934/math.2023814 | |
10. | Muhammad ARSLAN, Muhammad Amir MUSTAFA, Shah FAHAD, Irfan WAHEED, Ather QAYYUM, Weighted Ostrowski's Type Integral Inequalities for Mapping Whose Second Derivative is Bounded, 2022, 5, 2619-9653, 122, 10.32323/ujma.1151207 | |
11. | Barış Çelik, Hüseyin Budak, Erhan Set, On generalized Milne type inequalities for new conformable fractional integrals, 2024, 38, 0354-5180, 1807, 10.2298/FIL2405807C | |
12. | Arslan Munir, Li Shumin, Hüseyin Budak, Fatih Hezenci, Hasan Kara, A Study on Fractional Integral Inequalities for Trigonometric and Exponential Trigonometric-convex Functions, 2025, 21, 1927-5129, 66, 10.29169/1927-5129.2025.21.08 | |
13. | Hüseyin Budak, Hasan Kara, Hasan Öğünmez, On the Fractional Inequalities of the Milne Type, 2025, 0170-4214, 10.1002/mma.10923 | |
14. | Arslan Munir, Ather Qayyum, Siti Supadi, Hüseyin Budak, Irza Faiz, A study of improved error bounds for Simpson type inequality via fractional integral operator, 2024, 38, 0354-5180, 3415, 10.2298/FIL2410415M |