The aim of this paper is to establish some sufficient conditions for the boundedness of commutators of Hardy-Cesàro operators with symbols in central BMO spaces with variable exponent on some function spaces such as the local central Morrey, Herz, and Morrey-Herz spaces with variable exponents.
Citation: Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy. Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents[J]. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
[1] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[2] | Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan . Innovative approach for developing solitary wave solutions for the fractional modified partial differential equations. AIMS Mathematics, 2023, 8(11): 27775-27819. doi: 10.3934/math.20231422 |
[3] | Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan . Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039 |
[4] | Khalid K. Ali, Mohamed S. Mohamed, M. Maneea . Optimal homotopy analysis method for (2+1) time-fractional nonlinear biological population model using J-transform. AIMS Mathematics, 2024, 9(11): 32757-32781. doi: 10.3934/math.20241567 |
[5] | Baojian Hong, Jinghan Wang, Chen Li . Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique. AIMS Mathematics, 2023, 8(7): 15670-15688. doi: 10.3934/math.2023800 |
[6] | Zhao Li, Shan Zhao . Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation. AIMS Mathematics, 2024, 9(8): 22590-22601. doi: 10.3934/math.20241100 |
[7] | Obaid Algahtani, Sayed Saifullah, Amir Ali . Semi-analytical and numerical study of fractal fractional nonlinear system under Caputo fractional derivative. AIMS Mathematics, 2022, 7(9): 16760-16774. doi: 10.3934/math.2022920 |
[8] | Ikram Ullah, Muhammad Bilal, Javed Iqbal, Hasan Bulut, Funda Turk . Single wave solutions of the fractional Landau-Ginzburg-Higgs equation in space-time with accuracy via the beta derivative and mEDAM approach. AIMS Mathematics, 2025, 10(1): 672-693. doi: 10.3934/math.2025030 |
[9] | Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447 |
[10] | Faeza Lafta Hasan, Mohamed A. Abdoon, Rania Saadeh, Ahmad Qazza, Dalal Khalid Almutairi . Exploring analytical results for (2+1) dimensional breaking soliton equation and stochastic fractional Broer-Kaup system. AIMS Mathematics, 2024, 9(5): 11622-11643. doi: 10.3934/math.2024570 |
The aim of this paper is to establish some sufficient conditions for the boundedness of commutators of Hardy-Cesàro operators with symbols in central BMO spaces with variable exponent on some function spaces such as the local central Morrey, Herz, and Morrey-Herz spaces with variable exponents.
In this paper, we consider the following Cauchy problem of Navier-Stokes equations with the damping term:
ut+(u⋅∇)u+∇π+Λ2αu+|u|β−1u=0, (t,x)∈R+×R3, | (1.1) |
divu=0, (t,x)∈R+×R3, | (1.2) |
u(x,0)=u0, x∈R3, | (1.3) |
where u=u(x,t)∈R3, π=π(x,t)∈R represent the unknown velocity field and the pressure respectively. α≥0, β≥1 are real parameters. Λ:=(−Δ)12 is defined in terms of Fourier transform by
^Λf(ξ)=|ξ|ˆf(ξ). |
Damping originates from the dissipation of energy by resistance, which describes many physical phenomena such as porous media flow, resistance or frictional effects, and some dissipation mechanisms (see [1] and references cited therein). When α=1, Cai and Jiu first proved that there exists a weak solution of (1.1)–(1.3) if β>1. Furthermore, if β≥72, the global existence of the strong solution was established. Later, this result was improved by Zhang, Wu and Lu in [2], where the lower bound of β decreased to 3. Zhou[3] proved the lower bound 3 is critical in some sense. For the general case, it is proved that when 34≤α<1, β≥2α+54α−2 or 1≤α<54, β≥1+104α+1, the global existence of the solution was established in [4]. For the asymptotic behavior, one can refer to [5,6,7] for details.
For the generalized Navier-Stokes equations (our system without damping term) when α=1, there are many regularity criteria to the system (1.1)–(1.3). The classical Prodi-Serrin's-type criteria was given in [8,9,10], where it was proved that if a weak solution u∈Lp(0,T;Lq(R3)) with 2p+3q=1, q≥3, then the solution is regular and unique. Beirão da Veiga [11] established the analogous result: ∇u∈Lp(0,T;Lq(R3)) with 2p+3q=2, q≥32. For the general case, in [12], Jiang and Zhu proved that if Λθu∈Lp(0,T;Lq(R3)) with 2αp+3q≤2α−1+θ, θ∈[1−α,1], q>32α−1+θ, then the solution remains smooth on [0, T]. One can refer to [11,13,14] for more classical regularity criteria. For the large time behavior, Jiu and Yu proved the algebraic decay of the solution under specific conditions (see [15]).
Our paper devotes to considering the role of damping terms in regularity criteria for the system (1.1)–(1.3). We will explain the role of damping term in the following two questions:
(1) When does the dissipative term work better than the damping term?
(2) How does the damping term work?
For the first question, if α≥54, the generalized Navier-Stokes equations (our system without damping term) exists a global strong solution u∈L∞(0,T;H1(R3))∩L2(0,T;H1+α(R3)). Consequently, we only consider the case when 12<α<54.
For the second question, we utilize two structures brought by the damping term: ‖|u|β−12∇u‖2L2 (Theorems 1.1 and 1.2, when 1<α<54) and 1β+1ddt‖u‖β+1Lβ+1 (Theorems 1.3 and 1.4, when 12<α<1). Actually, ‖|u|β−12∇u‖2L2 works better than 1β+1ddt‖u‖β+1Lβ+1, because ‖|u|β−12∇u‖2L2 is a first-order estimate resulting from the damping term while 1β+1ddt‖u‖β+1Lβ+1 is a zero-order estimate resulting from the damping term. However, because of the technical limitation, we still use 1β+1ddt‖u‖β+1Lβ+1 when 12<α<1. Consequently, when 12<α<1, how to utilize ‖|u|β−12∇u‖2L2 may be an insteresting question.
We give our main theorems as follows.
Theorem 1.1. When 1<α<54, β<1+104α+1, assume that the initial data u0(x)∈H1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If u(x,t)∈Lp(0,T;Lq(R3)) with
2αp+3q≤max{2(α−1)3−β,2α−1},min{9−3β2(α−1),32α−1}<q≤∞, | (1.4) |
then, for any T>0, the system (1.1)–(1.3) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;H1+α(R3))∩Lβ+1(0,T;Lβ+1(R3)). |
Remark 1.1. In Theorem 1.1, we roughly combine the regularity criteria brought by the dissipative term and the damping term. In fact, we can verify that if 1<α<54, 2+12α−1<β<1+104α+1, then 2(α−1)3−β>2α−1. Consequently, (1.4) becomes
2αp+3q≤2(α−1)3−β,9−3β2(α−1)<q≤∞, | (1.5) |
which means that damping the term works better than the dissipative term.
Theorem 1.2. When 1<α<54, 5−2α<β<1+104α+1, assume that the initial data u0(x)∈H1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If Λαu(x,t)∈Lp(0,T;Lq(R3)) with
(3−β)αp(2α−5+β)+3q≤α+32,31+α≤q<∞, |
then, for any T>0, the system (1.1)–(1.3) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;H1+α(R3))∩Lβ+1(0,T;Lβ+1(R3)). |
Remark 1.2. In Theorems 1.1 and 1.2, we consider the regularity criteria when β<1+104α+1, because the global existence was established in [4] when β≥1+104α+1. If β≥1+104α+1, the regularity criteria in Theorem 1.1 is satisfied naturally, so we recover the result in [4] when 1<α<54.
Theorem 1.3. When 12<α<1, β<min{2α+54α−2,3α+2α}, assume that the initial data u0(x)∈H1(R3)∩Lβ+1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If u(x,t)∈Lp(0,T;Lq(R3)) with
6α−(2α−1)(β+1)p+3q≤2α−1,32α−1<q≤6α2α−1, | (1.6) |
then, for any T>0, the system (1.1)–(1.3) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;Hα+1(R3))∩L∞(0,T;Lβ+1(R3)),ut∈L2(0,T;L2(R3)). |
Remark 1.3. If β≥2α+54α−2, the regularity criteria in Theorem 1.3 is satisfied naturally, so we recover the result in [4] when 34≤α<1.
Theorem 1.4. When 12<α<1, β<min{2α+54α−2,3α+2α}, assume that the initial data u0(x)∈H1(R3)∩Lβ+1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If Λαu(x,t)∈Lp(0,T;Lq(R3)) with
6α−(2α−1)(β+1)p+3q≤3α−1,33α−1<q≤6α3α−1, |
then, for any T>0, the system (1.1) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;Hα+1(R3))∩L∞(0,T;Lβ+1(R3)),ut∈L2(0,T;L2(R3)). |
Proof of the Theorem 1.1. Multiplying (1.1) by −△u, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx. |
For ∫R3(u⋅∇)u⋅Δudx, we have
∫R3(u⋅∇)u⋅Δudx≤C‖|u|β−12∇u‖L2‖|u|3−β2Δu‖L2≤12‖|u|β−12∇u‖2L2+C‖u‖3−βLq‖Δu‖2L2qq−3+β≤12‖|u|β−12∇u‖2L2+‖u‖3−βLq‖∇u‖2(1−θ1)L2‖Λ1+αu‖2θ1L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖u‖3−β1−θ1Lq‖∇u‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖u‖2qα(3−β)2(α−1)−9+3βLq‖∇u‖2L2, |
where
12−3−β2q=13+(12−α3)θ1+1−θ12, |
with θ1=2q+9−3β2αq. The conditions in Theorem 1.1 imply θ1∈[1α,1). By direct calculation, we have
3−β1−θ1=2qα(3−β)2(α−1)q−9+3β. |
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖u‖3−β1−θ1Lq‖∇u‖2L2. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+∫t0(‖Λα+1u‖2L2+‖|u|β−12∇u‖2L2+‖∇|u|β+12‖2L2)(s)ds≤C( t,‖u0‖H1). |
This completes the proof of the Theorem 1.1.
Proof of the Theorem 1.2. Multiplying (1.1) by −△u, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx. |
For ∫R3(u⋅∇)u⋅Δudx, we have
∫R3(u⋅∇)u⋅Δu≤C‖|u|β−12∇u‖L2‖|u|3−β2Δu‖L2≤12‖|u|β−12∇u‖2L2+C‖u‖3−βL3‖Δu‖2L6β≤12‖|u|β−12∇u‖2L2+C‖u‖(3−β)(1−θ2)L2‖Λαu‖(3−β)θ2Lq‖∇u‖2(1−θ3)L2‖Λ1+αu‖2θ3L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖Λαu‖(3−β)θ21−θ3Lq‖∇u‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖Λαu‖2(3−β)αq[(2α+3)q−6][2α−5+β]Lq‖∇u‖2L2, |
where
{13=θ2(1q−α3)+1−θ22,β6=13+θ3(12−α3)+1−θ32, |
with θ2=q(2α+3)q−6, θ3=5−β2α. The conditions in Theorem 1.2 imply θ2∈(0,1], θ3∈(1α,1). By direct calculation, we have
(3−β)θ21−θ3=2(3−β)αq[(2α+3)q−6][2α−5+β]. |
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖Λαu‖2(3−β)αq[(2α+3)q−6][2α−5+β]Lq‖∇u‖2L2. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+∫t0(‖Λα+1u‖2L2+‖|u|β−12∇u‖2L2+‖∇|u|β+12‖2L2)(s)ds≤C( t,‖u0‖H1). |
This completes the proof of the Theorem 1.2.
Proof of the Theorem 1.3. Multiplying (1.1) by −△u, ut and adding the two equations, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx−∫R3(u⋅∇)u⋅utdx≤C‖∇u‖3L3+C‖u⋅∇u‖2L2+12‖ut‖2L2. |
For ‖∇u‖3L3, we have
C‖∇u‖3L3≤C‖u‖δ1(1−θ4)Lq‖Λ1+αu‖δ1θ4L2‖u‖(3−δ1)(1−θ5)Lβ+1‖Λ1+αu‖(3−δ1)θ5L2≤14‖Λ1+αu‖2L2+C‖u‖2δ1(1−θ4)2−δ1θ4−(3−δ1)θ5Lq‖u‖2(3−δ1)(1−θ5)2−δ1θ4−(3−δ1)θ5Lβ+1≤14‖Λ1+αu‖2L2+C‖u‖2δ1(1−θ4)2−δ1θ4−(3−δ1)θ5Lq‖u‖β+1Lβ+1≤14‖Λ1+αu‖2L2+C‖u‖[6α−(2α−1)(β+1)]q(2α−1)q−3Lq‖u‖β+1Lβ+1, |
where
{13=13+θ4(12−1+α3)+1−θ4q,13=13+θ5(12−1+α3)+1−θ5β+1,2(3−δ1)(1−θ5)2−δ1θ4−(3−δ1)θ5=β+1. |
By directly calculating, we have
{θ4=6(2α−1)q+6,θ5=6(2α−1)(β+1)+6,δ1=[(2α−1)q+6][6α−(2α−1)(β+1)]2(α+1)[(2α−1)q+6]−3[(2α−1)(β+1)+6],2δ1(1−θ4)2−δ1θ4−(3−δ1)θ5=[6α−(2α−1)(β+1)]q(2α−1)q−3. |
The conditions in Theorem 1.3 imply θ4∈[11+α,1), θ5∈[11+α,1), δ1∈(0,3).
For ‖u⋅∇u‖2L2, we have
C‖u⋅∇u‖2L2≤C‖u‖δ2Lq‖u‖2−δ2Lβ+1‖∇u‖L21−δ2q−2−δ2β+1≤C‖u‖δ2Lq‖u‖2−δ2Lβ+1‖u‖2(1−θ6)Lβ+1‖Λ1+αu‖2θ6L2≤14‖Λ1+αu‖2L2+C‖u‖δ21−θ6Lq‖u‖2−δ21−θ6Lβ+1‖u‖2Lβ+1≤14‖Λ1+αu‖2L2+C‖u‖δ21−θ6Lq‖u‖β+1Lβ+1=14‖Λ1+αu‖2L2+C‖u‖(3α+2−αβ)qαq−3Lq‖u‖β+1Lβ+1≤14‖Λ1+αu‖2L2+C(‖u‖[6α−(2α−1)(β+1)]q(2α−1)q−3Lq+1)‖u‖β+1Lβ+1, |
where
{12−δ22q−2−δ22(β+1)=13+θ6(12−1+α3)+1−θ6β+1,2−δ21−θ6=β−1. |
By direct calculation, we have
{θ6=2q+9−3β2(α+1)q+3−3β,δ21−θ6=21−θ6+1−β=(3α+2−αβ)qαq−3. |
The conditions in Theorem 1.3 imply θ6∈[11+α,1).
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖Λ1+αu‖2L2+C(‖u‖[6α−(2α−1)(β+1)]q(2α−1)q−3Lq+1)‖u‖β+1Lβ+1. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+‖u‖β+1Lβ+1+‖Λαu‖2L2+∫t0(‖∇|u|β+12‖2L2+‖|u|β−12∇u‖2L2+‖Λ1+αu‖2L2+‖ut‖2L2)(τ)dτ≤C( t,‖u0‖H1,‖u0‖Lβ+1). |
This completes the proof of the Theorem 1.3.
Proof of the Theorem 1.4. Multiplying (1.1) by −△u, ut and adding the two equations, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx−∫R3(u⋅∇)u⋅utdx≤C‖∇u‖3L3+C‖u⋅∇u‖2L2+12‖ut‖2L2. |
For ‖∇u‖3L3, we have
C‖∇u‖3L3≤C‖Λαu‖δ3(1−θ7)Lq‖Λ1+αu‖δ3θ7L2‖u‖(3−δ3)(1−θ5)Lβ+1‖Λ1+αu‖(3−δ3)θ5L2≤12‖Λ1+αu‖2L2+C‖Λαu‖2δ3(1−θ7)2−δ3θ7−(3−δ3)θ5Lq‖u‖2(3−δ3)(1−θ5)2−δ3θ7−(3−δ3)θ5Lβ+1≤12‖Λ1+αu‖2L2+C‖Λαu‖2δ3(1−θ7)2−δ3θ7−(3−δ3)θ5Lq‖u‖β+1Lβ+1≤12‖Λ1+αu‖2L2+C‖Λαu‖[6α−(2α−1)(β+1)]q(3α−1)q−3Lq‖u‖β+1Lβ+1, |
where
{13=1−α3+θ7(12−13)+1−θ7q,13=13+θ5(12−1+α3)+1−θ5β+1,2(3−δ3)(1−θ5)2−δ3θ7−(3−δ3)θ5=β+1. |
By direct calculation, we have
{θ7=6−2αq6−q,θ5=6(2α−1)(β+1)+6,δ3=(6−q)[6α−(2α−1)(β+1)]2(α+1)(6−q)−(3−αq)[(2α−1)(β+1)+6]. |
The conditions in Theorem 1.3 imply θ7∈[1−α,1), θ5∈[11+α,1), δ3∈(0,3).
We can estimate ‖u⋅∇u‖2L2 similarily.
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖Λ1+αu‖2L2+C‖Λαu‖[6α−(2α−1)(β+1)]q(3α−1)q−3Lq‖u‖β+1Lβ+1. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+‖u‖β+1Lβ+1+‖Λαu‖2L2+∫t0(‖∇|u|β+12‖2L2+‖|u|β−12∇u‖2L2+‖Λ1+αu‖2L2+‖ut‖2L2)(τ)dτ≤C( t,‖u0‖H1,‖u0‖Lβ+1). |
This completes the proof of the Theorem 1.4.
In this paper, we have established some regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. First, we consider the case where the dissipative term is superior to the damping term, which corresponds to when the damping term works. Second, in Remark 1.1, we show that the damping term works better than the dissipative term. Furthermore, we have presented that the damping term has different effects in different cases, which shows the balance and the interaction between the dissipative term and the damping term as well as the role of the damping term in regularity criteria. In fact, considering how the damping term works and the interaction between the dissipative term and the damping term is the main idea of this paper.
The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.
This work was partially supported by the National Natural Science Foundation of China (Grant No.12071439) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A010016).
The author declares no conflict of interest.
[1] |
A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
![]() |
[2] |
C. Capone, D. Cruz-Uribe, A. Fiorenza, The fractional maximal operator and fractional integrals on variable Lp spaces, Rev. Mat. Iberoam., 23 (2007), 743–770. https://doi.org/10.4171/RMI/511 doi: 10.4171/RMI/511
![]() |
[3] | C. Carton-Lebrun, M. Fosset, Moyennes et quotients de Taylor dans BMO, Bull. Soc. Roy. Sci. Liége, 53 (1984), 85–87. |
[4] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Basel: Springer, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[5] |
N. M. Chuong, D. V. Duong, K. H. Dung, Multilinear Hausdorff operator on variable exponent Morrey-Herz type spaces, Integr. Transf. Spec. F., 31 (2020), 62–86. https://doi.org/10.1080/10652469.2019.1666375 doi: 10.1080/10652469.2019.1666375
![]() |
[6] |
N. M. Chuong, D. V. Duong, K. H. Dung, Some estimates for p-adic rough multilinear Hausdorff operators and commutators on weighted Morrey-Herz type spaces, Russ. J. Math. Phys., 26 (2019), 9–31. https://doi.org/10.1134/S1061920819010023 doi: 10.1134/S1061920819010023
![]() |
[7] |
N. M. Chuong, D. V. Duong, H. D. Hung, Bounds for the weighted Hardy-Cesàro operator and its commutator on weighted Morrey-Herz type spaces, Z. Anal. Anwend., 35 (2016), 489–504. https://doi.org/10.4171/ZAA/1575 doi: 10.4171/ZAA/1575
![]() |
[8] |
N. M. Chuong, H. D. Hung, Bounds of weighted Hardy-Cesàro operators on weighted Lebesgue and BMO spaces, Integr. Transf. Spec. F., 25 (2014), 697–710. https://doi.org/10.1080/10652469.2014.898635 doi: 10.1080/10652469.2014.898635
![]() |
[9] |
D. V. Duong, K. H. Dung, N. M. Chuong, Weighted estimates for commutators of multilinear Hausdorff operators on variable exponent Morrey-Herz type spaces, Czech. Math. J., 70 (2020), 833–865. https://doi.org/10.21136/CMJ.2020.0566-18 doi: 10.21136/CMJ.2020.0566-18
![]() |
[10] |
K. H. Dung, D. V. Duong, T. N. Luan, Weighted central BMO type space estimates for commutators of p-adic Hardy-Cesàro operators, P-Adic Num. Ultrametr. Anal. Appl., 13 (2021), 266–279. https://doi.org/10.1134/S2070046621040026 doi: 10.1134/S2070046621040026
![]() |
[11] |
K. H. Dung, P. T. K. Thuy, Commutators of Hausdorff operators on Herz-type Hardy spaces, Adv. Oper. Theory, 7 (2022), 37. https://doi.org/10.1007/s43036-022-00202-4 doi: 10.1007/s43036-022-00202-4
![]() |
[12] |
L. Diening, M. Ružička, Calderón-Zygmund operators on generalized Lebesgue spaces Lp(x) and problems related to fluid dynamics, J. Reine Angew. Math., 2003 (2003), 197–220. https://doi.org/10.1515/crll.2003.081 doi: 10.1515/crll.2003.081
![]() |
[13] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[14] | P. Federbush, Navier and Stokes meet the wavelet, Commun. Math. Phys., 155 (1993), 219–248. |
[15] | Z. W. Fu, Z. G. Liu, S. Z. Lu, Commutators of weighted Hardy operators on Rn, Proc. Amer. Math. Soc., 137 (2009), 3319–3328. |
[16] |
Z. W. Fu, S. L. Gong, S. Z. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2851. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
![]() |
[17] | L. Grafakos, Modern Fourier analysis, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-09434-2 |
[18] |
H. D. Hung, L. D. Ky, New weighted multilinear operators and commutators of Hardy-Cesàro type, Acta Math. Sci., 35 (2015), 1411–1425. https://doi.org/10.1016/S0252-9602(15)30063-1 doi: 10.1016/S0252-9602(15)30063-1
![]() |
[19] |
K. P. Ho, Fractional geometrical maximal functions on Morrey spaces with variable exponents, Results Math., 77 (2022), 32. https://doi.org/10.1007/s00025-021-01570-8 doi: 10.1007/s00025-021-01570-8
![]() |
[20] |
M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
![]() |
[21] |
M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
![]() |
[22] |
S. Lu, L. Xu, Boundedness of rough singular integral operators on the homogeneous Morrey–Herz spaces, Hokkaido Math. J., 34 (2005), 299–313. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
![]() |
[23] | S. Lu, D. Yang, Some new Hardy spaces associated with Herz spaces and their wavelet characterization, J. Beijing Normal Univ. (Nat. Sci.), 29 (1993), 10–19. |
[24] | S. Lu, D. Yang, G. Hu, Herz type spaces and their applications, Beijing: Science Press, 2008. |
[25] |
Y. Lu, Y. P. Zhu, Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents, Acta Math. Sin., 30 (2014), 1180–1194. https://doi.org/10.1007/s10114-014-3410-2 doi: 10.1007/s10114-014-3410-2
![]() |
[26] |
F. I. Mamedov, A. Harman, On a Hardy type general weighted inequality in spaces Lp(⋅), Integr. Equ. Oper. Theory, 66 (2010), 565–592. https://doi.org/10.1007/s00020-010-1765-z doi: 10.1007/s00020-010-1765-z
![]() |
[27] |
J. Ruan, D. Fan, Q. Wu, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl., 22 (2019), 307–329. https://doi.org/10.7153/mia-2019-22-24 doi: 10.7153/mia-2019-22-24
![]() |
[28] |
C. Tang, F. Xue, Y. Zhou, Commutators of weighted Hardy operators on Herz-type spaces, Ann. Pol. Math., 101 (2011), 267–273. https://doi.org/10.4064/ap101-3-6 doi: 10.4064/ap101-3-6
![]() |
[29] |
M. E. Taylor, Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations, Commun. Part. Diff. Eq., 17 (1992), 1407–1456. https://doi.org/10.1080/03605309208820892 doi: 10.1080/03605309208820892
![]() |
[30] | D. H. Wang, Z. G. Liu, J. Zhou, Z. D. Teng, Central BMO spaces with variable exponent, 2018, arXiv: 1708.00285. |
[31] | H. Wang, Anisotropic Herz spaces with variable exponents, Commun. Math. Anal., 18 (2015), 1–14. |
[32] |
J. L. Wu, W. J. Zhao, Boundedness for fractional Hardy-type operator on variable-exponent Herz–Morrey spaces, Kyoto J. Math., 56 (2016), 831–845. https://doi.org/10.1215/21562261-3664932 doi: 10.1215/21562261-3664932
![]() |
[33] |
L. W. Wang, L. S. Shu, Higher order commutators of fractional integrals on Morrey type spaces with variable exponents, Math. Nachr., 291 (2018), 1437–1449. https://doi.org/10.1002/mana.201600438 doi: 10.1002/mana.201600438
![]() |
[34] |
B. Xu, Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces, AIMS Math., 7 (2022), 12123–12143. https://doi.org/10.3934/math.2022674 doi: 10.3934/math.2022674
![]() |
[35] |
J. Xiao, Lp and BMO bounds of weighted Hardy-Littlewood averages, J. Math. Anal. Appl., 262 (2001), 660–666. https://doi.org/10.1006/jmaa.2001.7594 doi: 10.1006/jmaa.2001.7594
![]() |
[36] |
Y. Zhu, Y. Tang, L. Jiang, Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents, AIMS Math., 6 (2021), 11246–11262. https://doi.org/10.3934/math.2021652 doi: 10.3934/math.2021652
![]() |