This article shows how to solve the time-fractional Fisher's equation through the use of two well-known analytical methods. The techniques we propose are a modified form of the Adomian decomposition method and homotopy perturbation method with a Yang transform. To show the accuracy of the suggested techniques, illustrative examples are considered. It is confirmed that the solution we get by implementing the suggested techniques has the desired rate of convergence towards the accurate solution. The main benefit of the proposed techniques is the small number of calculations. To show the reliability of the suggested techniques, we present some graphical behaviors of the accurate and analytical results, absolute error graphs and tables that strongly agree with each other. Furthermore, it can be used for solving fractional-order physical problems in various fields of applied sciences.
Citation: Ahmed M. Zidan, Adnan Khan, Rasool Shah, Mohammed Kbiri Alaoui, Wajaree Weera. Evaluation of time-fractional Fisher's equations with the help of analytical methods[J]. AIMS Mathematics, 2022, 7(10): 18746-18766. doi: 10.3934/math.20221031
[1] | Dayang Dai, Dabuxilatu Wang . A generalized Liu-type estimator for logistic partial linear regression model with multicollinearity. AIMS Mathematics, 2023, 8(5): 11851-11874. doi: 10.3934/math.2023600 |
[2] | Muhammad Nauman Akram, Muhammad Amin, Ahmed Elhassanein, Muhammad Aman Ullah . A new modified ridge-type estimator for the beta regression model: simulation and application. AIMS Mathematics, 2022, 7(1): 1035-1057. doi: 10.3934/math.2022062 |
[3] | Sihem Semmar, Omar Fetitah, Mohammed Kadi Attouch, Salah Khardani, Ibrahim M. Almanjahie . A Bernstein polynomial approach of the robust regression. AIMS Mathematics, 2024, 9(11): 32409-32441. doi: 10.3934/math.20241554 |
[4] | Yanting Xiao, Wanying Dong . Robust estimation for varying-coefficient partially linear measurement error model with auxiliary instrumental variables. AIMS Mathematics, 2023, 8(8): 18373-18391. doi: 10.3934/math.2023934 |
[5] | Gaosheng Liu, Yang Bai . Statistical inference in functional semiparametric spatial autoregressive model. AIMS Mathematics, 2021, 6(10): 10890-10906. doi: 10.3934/math.2021633 |
[6] | Juxia Xiao, Ping Yu, Zhongzhan Zhang . Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430 |
[7] | Xin Liang, Xingfa Zhang, Yuan Li, Chunliang Deng . Daily nonparametric ARCH(1) model estimation using intraday high frequency data. AIMS Mathematics, 2021, 6(4): 3455-3464. doi: 10.3934/math.2021206 |
[8] | Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa . The extended gamma distribution with regression model and applications. AIMS Mathematics, 2021, 6(3): 2418-2439. doi: 10.3934/math.2021147 |
[9] | Muhammad Amin, Saima Afzal, Muhammad Nauman Akram, Abdisalam Hassan Muse, Ahlam H. Tolba, Tahani A. Abushal . Outlier detection in gamma regression using Pearson residuals: Simulation and an application. AIMS Mathematics, 2022, 7(8): 15331-15347. doi: 10.3934/math.2022840 |
[10] | Zawar Hussain, Atif Akbar, Mohammed M. A. Almazah, A. Y. Al-Rezami, Fuad S. Al-Duais . Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data. AIMS Mathematics, 2024, 9(2): 4057-4075. doi: 10.3934/math.2024198 |
This article shows how to solve the time-fractional Fisher's equation through the use of two well-known analytical methods. The techniques we propose are a modified form of the Adomian decomposition method and homotopy perturbation method with a Yang transform. To show the accuracy of the suggested techniques, illustrative examples are considered. It is confirmed that the solution we get by implementing the suggested techniques has the desired rate of convergence towards the accurate solution. The main benefit of the proposed techniques is the small number of calculations. To show the reliability of the suggested techniques, we present some graphical behaviors of the accurate and analytical results, absolute error graphs and tables that strongly agree with each other. Furthermore, it can be used for solving fractional-order physical problems in various fields of applied sciences.
The field of mathematical analysis that deals with the study of arbitrary order integrals and derivatives is known as fractional calculus. Because of its numerous applications across a wide range of fields, this field has increased in importance and recognition over the past few years. According to researchers, this field is the most effective at identifying anomalous kinetics and has numerous uses in a variety of fields. Ordinary differential equations with fractional derivatives can be used to simulate a variety of issues, including statistical, mathematical, engineering, chemical, and biological issues. Several distinct forms of fractional integrals and derivative operators (see e.g., [1,2,3,4]), including Riemann-Liouville, Caputo, Riesz, Hilfer, Hadamard, Erdélyi-Kober, Saigo, Marichev-Saigo-Maeda and others, have been thoroughly investigated by researchers. From an application perspective, we suggest the readers to see the work related to the fractional differential equations presented by [5,6,7,8]. In [9], the authors studied symmetric and antisymmetric solitons in the defocused saturable nonlinearity and the PT-symmetric potential of the fractional nonlinear Schrödinger equation. In [10], the fractional exponential function approach is used to study a time-fractional Ablowitz-Ladik model, and bright and dark discrete soliton solutions, discrete exponential solutions, and discrete peculiar wave solutions are discovered. In [11], the authors presented the rich vector exact solutions for the coupled discrete conformable fractional nonlinear Schrödinger equations by taking into account the conformable fractional derivative.
On the other hand, special functions like Gamma, Beta, Mittag-Leffler, et al. play a vital part in the foundation of fractional calculus. Moreover, the Mittag-Leffler function is regarded as the fundamental function in fractional calculus. The Prabhakar fractional operator containing a three-parameter version of the aforementioned function in the kernel. The M-L function has been extensively studied to construct solutions of fractional PDEs, such as dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation and Abundant fractional soliton solutions of a space-time fractional perturbed Gerdjikov-Ivanov equation by a fractional mapping method, see [12,13,14]. Strong generalizations of the univariate and bivariate Mittag-Leffler functions, which are known to be important in fractional calculus, are the multivariate Mittag-Leffler functions.
The well-known one-parameter Mittag-Leffler (M-L) function is defined by [15,16] as follows
εa(z1)=∞∑l=0zl1Γ(al+1)(a∈C;ℜ(a)>0,z1∈C), | (1.1) |
where C represents the set of complex numbers and ℜ(a) denotes the real part of the complex number.
The generalization of (1.1) with two parameters is defined by [17,18] as
εa,b(z1)=∞∑l=0zl1Γ(al+b)(a,b∈C;ℜ(a)>0,ℜ(b)>0), | (1.2) |
Later on, Agarwal [19], Humbert [20] and Humbert and Agarwal [21] studied the properties and applications of M-L functions. In [22], the generalization of (1.1) and (1.2) is defined by
εca,b(z1)=∞∑l=0(c)lΓ(al+b)zl1l!(a,b,c∈C;ℜ(a)>0,ℜ(b)>0). | (1.3) |
In [23], the following generalization of the M-L function is defined by
εc,qa,b(z1)=∞∑l=0(c)lqΓ(al+b)zl1l!(a,b,c∈C;ℜ(a)>0,ℜ(b)>0,q>0). | (1.4) |
In [24], Rahman et al. proposed the following generalized of M-L function by
εc,q,da,b,p(z1)=∞∑l=0Bp(c+lq;d−c)(d)lqB(c,d−c)Γ(al+b)zl1l!, | (1.5) |
where a,b,c,d∈C;ℜ(c)>0,ℜ(a)>0,ℜ(b)>0,q>0 and Bp(x,y)=∫10tx−1(1−t)y−1e−t−ptdt is the extension of beta function (see [25]).
Gorenflo et al. [26] and Haubold et al. [27]) studied the various properties of generalized M-L function. In [28], a new generalization of M-L function (1.3) is presented by
εca,b,p(z1)=∞∑l=0(c;p)lΓ(al+b)zl1l!(p≥0,a,b,c∈C;,ℜ(a)>0,ℜ(b)>0,), | (1.6) |
where (λ;p)l is the Pochhammer symbol defined by Srivastava et al. [29,30] as
(λ;p)μ={Γp(λ+μ)Γ(λ);(p>0,λ,μ∈C)(λ)μ;(p=0, λ,μ∈C∖{0}. | (1.7) |
The researchers examined the developments of these extension, (1.6) and (1.7) and studied their related features and applications. In [30], Srivastava et al. proposed the following generalized hypergeometric function
sFt[(δ1;p),⋯,(δs);(ζ1),⋯,(ζt);z1]=∞∑l=0(δ1;p)l⋯(δs)l(ζ1)l⋯(ζt)l zl1l!, | (1.8) |
where δj∈C for j = 1, 2, ⋯, s, ζk∈C for k=1,2,⋯,t, and ζk≠ 0, -1, -2, ⋯.
The integral representation of (μ;p)η is explained by
(μ;p)η=1Γ(μ) ∫∞0 sμ+η−1 e−s−psds, | (1.9) |
where ℜ(ρ)>0 and ℜ(μ+η)>0. In particular, the related confluent hypergeometric function 1F1 and the Gauss hypergeometric function 2F1 are given by
2F1[(δ1;p),b;λ;z1]=∞∑l=0(δ1;p)l(b)l(λ)l zl1l!, | (1.10) |
and
1F1[(δ1;p);λ;z1]=Φ[(δ1;p);λ;z1]=∞∑l=0(δ1;p)l(λ)l zl1l!. | (1.11) |
The expansion of the generalised hypergeometric function rFs, which was studied by [30], has r numerator and s denominator parameters. Researchers recently developed several extensions of special functions, together with their corresponding characteristics and applications. Using extended beta functions as its foundation, Nisar et al. [31], Bohner et al. [32] and Rahman et al. [33] developed an enlargement of fractional derivative operators.
The multivariate M-L function is defined by [34] as follows:
E(cj)(aj),b(z1,z2,…,zj)=E(c1,c2,…,cj)(a1,a2,…,aj),b(z1,z2,…zj)=∞∑m1,m2,…,mj=0(c1)m1(c2)m2…(cj)mj(z1)m1…(zj)mjΓ(a1m1+a2m2+…ajmj+b)m1!…mj!, | (1.12) |
where zi,ai,b,ci∈C; i=1,2,…,j, ℜ(ai)>0, ℜ(b)>0 and ℜ(ci)>0.
In [35,36,37,38,39], the authors have studied various properties and applications of different type of generalized M-L functions. For real (complex) valued functions, the Lebesgue measurable space is defined by
L(r,s)={h:‖h‖1=∫sr|h(x)|dx<∞}. | (1.13) |
The left and right sides fractional integral operators of the Riemann-Liouville type are defined by [3,4] as follows:
(Iλr+h)(x)=1Γ(λ)x∫rh(ϱ)(x−ϱ)1−λdϱ,(x>r), | (1.14) |
and
(Iλs−h)(x)=1Γ(λ)s∫xh(ϱ)(ϱ−x)1−λdϱ,(x<s), |
where h∈L(r,s), λ∈C and ℜ(λ)>0.
The left and right sides Riemann-Liouville fractional derivatives for the function h(x)∈L(r,s), λ∈C, ℜ(λ)>0 and n=[ℜ(λ)]+1 are defined in [3,4] by
(Dλr+h)(x)=(ddx)n(In−λr+h)(x) | (1.15) |
and
(Dλs−h)(x)=(−ddx)n(In−λs−h)(x), |
respectively. The generalized differential operator Dλ,vr+ of order 0<λ<1 and type 0<v<1 with respect to x can be found in [2,4] as
(Dλ,vr+h)=(Iv(1−λ)r+ddx(I(1−v)(1−λ)r+h))(x). | (1.16) |
In particular, if v=0, then (1.16) will lead to the operator Dλr+ defined in (1.15).
We also take into account the aforementioned well-known results.
Theorem 1.1. In [40], the following result for the fractional integral is presented by
Iλr+(ϱ−r)η−1=Γ(η)Γ(λ+η)(x−r)λ+η−1, | (1.17) |
where λ, η∈C, ℜ(λ)>0, ℜ(η)>0,
Theorem 1.2. [41] Suppose that the function h(z) has a power series expansion h(z)=∞∑k=0knzk and it is analytic in the disc |z|<R, then we have the following result
Dλz{zη−1h(z)}=Γ(η)Γ(λ+η)∞∑n=0an(η)n(λ+η)nzn. |
Lemma 1.1. (Srivastava and Tomovski [42]) Suppose that x>r, λ∈(0,1), v∈[0,1], ℜ(η)>0 and ℜ(λ)>0, then we have
Dλr+[(ϱ−r)η−1](x)=Γ(η)Γ(η−λ)(x−r)η−λ−1. | (1.18) |
The generalized multivariate M-L function (1.12) is then defined in terms of the modified Pochhammer symbol (1.7) and its different features as well as the accompanying integral operators are examined. This is driven by the aforementioned modifications of special functions.
Motivated by the above results and literature, the paper has the following structure: First, we describe and investigate a novel generalization of the multivariate M-L function using a generalized Pochhammer symbol. Secondly, we offer a few differential and fractional integral formulas for the explored multivariate M-L function. By using the new form of the multivariate M-L function, a new generalization of the fractional integral operator is introduced, and some fundamental characteristics of the operator are discussed.
We are in a position to present the generalized multivariate M-L function by utilizing the extended Pochhammer symbol in (1.7) as follows:
ε(cj)(aj),b;p(z1,z2,⋯,zj)=∞∑l1,⋯,lj=0(c1;p)l1(c2)l2⋯(cj)ljΓ(a1l1+a2l2+⋯+cjlj+b)zl11zl22⋯zljjl1!⋯lj!, | (2.1) |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j. The special case for a1=1 and l2=⋯=lj=0 in (2.1) can be reduced to extended confluent hypergeometric function (1.11) as follows:
εc11,b;p(z1)=1Γ(b)1F1[(c1;p);b;z1]=1Γ(b)Φ[(c1;p);b;z1]. | (2.2) |
In coming results, we demonstrate some fundamental characteristics and integral representations of the generalized multivariate M-L function.
Theorem 2.1. For the multivariate M-L function defined in (2.1), the following relation holds true:
ε(cj)(aj),b;p(z1,z2,⋯,zj)=bε(cj)(aj),b+1;p(z1,z2,⋯,zj) | (2.3) |
+[a1z1ddz1+⋯+ajzjddzj]ε(cj)(aj),b+1;p(z1,⋯,zj), |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j.
Proof. From (2.1), we have
bε(cj)(aj),b+1,p(z1,⋯,zj)+[a1z1ddz1+⋯+ajzjddzj]ε(cj)(aj),b+1;p(z1,⋯,zj)=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+[a1z1ddz1+⋯+ajzjddzj]∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+[a1z1ddz1+⋯+ajzjddzj]∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zjljl1!⋯lj!=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!(a1l1+⋯+ajlj)=∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!(a1l1+⋯+ajlj+b) (using Γ(z1+1)=z1Γ(z1))=∞∑l=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zl11⋯zljjl1!⋯lj!=ε(cj)(aj),b,p(z1,z2,⋯,zj), |
which is the desired result (2.3).
Theorem 2.2. For the generalized multivariate M-L function defined in (1.12), the following relations hold true:
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,z2,⋯,zj)=(c1)m⋯(cj)mε(cj)+m(aj),b+(aj)m;p(z1,⋯,zj), | (2.4) |
and
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯,ϖjzaj1))]=zb−m−11ε(cj)(aj),b−m;p(ϖ1za11,⋯,ϖjzaj1), | (2.5) |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j, and ℜ(b−m)>0 with m∈N.
Proof. Differentiating (1.12) m times with respect to z1,z2,⋯,zj respectively, we get
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,⋯,zj)=(ddz1)m⋯(ddzj)m∞∑l1=l2=⋯=lj=0(c1;p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zl11⋯zljjl1!⋯lj!=∞∑l1=⋯=lj=m(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)l1!⋯lj! zl1−m1⋯zlj−mj(l1−m)!⋯(lj−m)! l1!⋯lj!=∞∑l1=⋯=lj=0(c1;p)l1+m⋯(cj)lj+mΓ(a1(l1+m)+⋯aj(lj+m)+b)zl11⋯zljjl1!⋯lj! (Replacing li by li+m)=∞∑l1=⋯=lj=0(c1)m⋯(cj)m (c1+m;p)l1⋯(cj+m)ljΓ(a1l1+⋯ajlj+b+(a1+⋯+aj)m)zl11⋯zljjl1!⋯lj!. |
Now using (λ;σ)μ+p=(λ)μ(λ+μ;σ)p and (λ)μ+p=(λ)μ(λ+μ)p, we get
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,⋯,cj)=(c1)m⋯(cj)m∞∑l1=⋯=lj=0(c1+m;p)l1⋯(cj)ljΓ(a1l1+⋯ajlj+b+(a1+⋯+aj)m)zl1⋯zljjl1!⋯lj!=(c1)m⋯(cj)m ε(cj)+m(aj),b+(aj)m;p(z1,z2,⋯,zj), |
which is the desired result (2.4). Similarly, to prove (2.5), we have
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯ϖjzajj)]=(ddz1)mzb−11∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)(ϖ1za11)l1⋯(ϖjzaj1)ljl1!⋯lj!=(ddz1)m∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zb−1+a1l1+⋯+ajlj1l1!⋯lj!ϖl11⋯ϖljj=∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl11⋯ϖljjl1!⋯lj!(a1l1+⋯+ajlj+b−1)!(a1l1+⋯+ajlj+b−m−1)! za1l1+⋯+ajlj+b−m−11. |
Differentiating m times and using the relation l(l−1)!=l!, we get
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯ϖjzajj)]=∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b−m)ϖl11⋯ϖljjza1l1+⋯+ajlj+b−1−m1l1!⋯lj!=zb−m−11∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b−m)(ϖ1za11)l1⋯(ϖ1zaj1)ljl1!⋯lj!=zb−m−11ε(cj)(aj),b−m;p(ϖ1za11,⋯,ϖjzaj1). |
The proof is completed.
Corollary 2.1. The generalized multivariate M-L function has the following integral representations:
∫z10tb−1ε(cj)(aj),b;p(ϖ1ta1,⋯,ϖjtaj)dt=zb1ε(cj)(aj),b+1;p(ϖ1za11,⋯,ϖjzaj1), |
where ai,b,ci,ϖi∈C;ℜ(ai)>0,ℜ(b)>0,p≥0 for i=1,2,⋯,j.
In this section, we present some fractional integration and differentiation formulas of generalized M-L function given in (2.1).
Theorem 3.1. Suppose x>r(r∈R+=[0,∞)), ai, b, ci, ϖ∈C, ℜ(ai)>0 and ℜ(ci)>0, ℜ(b)>0 and ℜ(λ)>0, then the following relations hold true:
Iλr+[(ϱ−r)b−1ε(cj)(aj),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)](x)=(x−r)λ+b−1ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), | (3.1) |
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)](x)=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj) | (3.2) |
and
Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). | (3.3) |
Proof. Consider
Iλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=1Γ(λ)∫xr(x−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖ1(ϱ−r)aj)(x−ϱ)1−λdϱ=1Γ(λ)∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!∫xr(ϱ−r)b+a1l1+⋯+ajlj−1(x−ϱ)λ−1dϱ=∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!(Iλr+[(ϱ−r)b+a1l1+⋯+ajlj−1]). |
By the use of (1.17), we have
Iλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!(x−r)b+λ+a1l1+⋯+ajlj−1.Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b+λ)=(x−r)b+λ−1∞∑n=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+λ)[ϖl11(x−r)a1l1⋯ϖljj(x−r)ajlj]l1!⋯lj!=(x−r)b+λ−1ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the proof of (3.1).
Next, we have
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]=(ddx)n{In−λr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]}, |
which on using (3.1) takes the following form:
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]=(ddx)n{(x−r)b−λ+n−1ε(ci)(ai),b−λ+n;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)}. |
Applying (2.5), we get
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)={(x−r)η−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)}, |
which gives the proof of (3.2).
To obtain (3.3), we have
(Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)])(x)=(Dλ,vr+[∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!(ϱ−r)a1l1+⋯+ajlj+b−1])(x)=∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!×(Dλ,vr+[(ϱ−r)a1l1+⋯+ajlj+b−1])(x). |
By applying (1.18), we get
(Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)])(x)=∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!×Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b−λ)(x−r)a1l1+⋯+ajlj+b−λ−1=(x−r)b−λ−1∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b−λ)ϖl1(x−r)a1⋯ϖlj(x−r)ajl1!⋯lj!=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖl1(x−r)a1,⋯,ϖlj(x−r)aj), |
which completes the required proof.
Remark 3.1. Applying Theorem 3.1 for p=0, then we obtain the result presented in [34].
In this section, we define a fractional integral involving newly defined multivariate M-L function and discuss its properties.
Definition 4.1. Let b,ai,ci,ϖi∈C, ℜ(ci)>0, ℜ(ai)>0 and ℜ(b)>0 and h∈L(r,s). Then the generalized left and right sided fractional integrals are defined by
(R(ϖi);(ci)r+;(ai),b;ph)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ,(x>r) | (4.1) |
and
(R(ϖi);(ci)s−;(ai),b;ph)(x)=∫sx(ϱ−x)b−1ε(ci)(ai),b;p(ϖ1(ϱ−x)a1,⋯,ϖj(ϱ−x)aj)h(ϱ)dϱ,(x<s), | (4.2) |
respectively.
Remark 4.1. If we consider p=0, then the operators defined in (4.1) and (4.2) will take the form defined earlier by [34]. Similarly, if we consider p=0 and j=1, then the operators defined in (4.1) and (4.2) will take the form defined by [22]. If we take j=1, then the work done in this paper will lead to the work presented by [28]. Also, if we consider one of ϖi=0, for i=1,2,⋯,j, then the operators defined in (4.1) and (4.2) will take the form of the classical operators.
Next, we prove the following properties of integral operator defined in (4.1).
Theorem 4.1. Suppose that b,ai,λ,ci,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, ℜ(λ)>0, p≥0 and ℜ(ci)>0 for i=1,2,⋯,j, then the following result holds true:
(R(ϖi);(ci)r+;(ai),b;p[(ϱ−r)λ−1])(x)=(x−r)λ+b−1Γ(λ)ε(ci);p(ai),b+λ(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). |
Proof. By the use of definition (4.1), we have
(R(ϖi);(ci)r+;(ai),b;ph)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ. |
Therefore, we get
(R(ϖi);(ci)r+;(ai),b;p[(ϱ−r)λ−1])(x)=∫xr(x−ϱ)b−1(ϱ−r)λ−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)dϱ=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))ϖl11⋯ϖljjl1!⋯lj!(∫xr(ϱ−r)λ−1(x−ϱ)λ+a1l1+⋯+ajlj−1dϱ)=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))ϖl11⋯ϖljjl1!⋯lj!Ia1l1+⋯+ajlj+br+[(ϱ−r)λ−1]=(x−r)b+λ−1∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))[ϖ1(x−r)a1l1⋯ϖj(x−r)ajlj]l1!⋯lj!×Γ(λ)Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b+λ)=(x−r)b+λ−1Γ(λ)ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the desired proof.
Theorem 4.2. Suppose that ci,ai,b,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, p≥0 for i=1,2,⋯,j, then the following result holds true:
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤K‖Φ‖1. |
Where
K:=(s−r)Re(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!. |
Proof. By the use of (1.13) and (4.1) and by interchanging integration and summation order, we have
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1=s∫r|∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)Φ(ϱ)dϱ|dx≤∫sr[∫xϱ(x−ϱ)ℜ(b)−1|ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)|dx]|Φ(ϱ)|dϱ=∫sr[∫x−ϱ0uℜ(b)−1|ε(ci)(ai),b;p(ϖ1ua1,⋯,ϖjuaj)|du]|Φ(ϱ)|dϱ, |
by setting u=x−ϱ. After simplification, we obtain
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤∫sr[∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)|ϖa11⋯ϖljj|l1!⋯lj!×((u)ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj))s−r0]|Φ(ϱ)|dϱ. |
It follows that
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤{(s−r)ℜ(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!}s∫r|Φ(ϱ)|dϱ=K||Φ||1, |
where
K=(s−r)Re(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!, |
which gives the desired result.
Corollary 4.1. If we take ai,b,ci,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0 with i=1,2,⋯,j, then the following result holds true:
(R(ϖi);(ci)r+;(ai),b;p1)(x)=(x−r)bε(ci)(ai),b+1;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). |
Proof. Consider
(R(ϖi);(ci)r+;(ai),b1)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−r)aj)dϱ=∫xr(x−ϱ)b−1(∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11(x−ϱ)a1l1⋯ϖljj(x−ϱ)ajljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!)dϱ. |
It follows that
(R(ϖi);(ci)r+;(ai),b;p1)(x)=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11⋯ϖljjΓ(a1l1+⋯+ajlj+b)l1!⋯lj!∫xr(x−ϱ)b+a1l1+⋯+ajlj−1dϱ=(x−r)b∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11(x−r)a1l1⋯ϖljj(x−r)ajljΓ(a1l1+⋯+ajlj+b)(a1l1+⋯+ajlj+b)l1!⋯lj!=(x−r)bε(ci)(ai),b+1;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the desired proof.
Theorem 4.3. The generalized fractional operator can be represented in term of Riemann–Liouville fractional integrals for ci, ai, b, ϖi∈C with ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0 for i=1,2,⋯,j, p≥0 and x>r as follows:
(R(ϖi);(ci)r+;(ai),bh)(x)=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa11⋯ϖajjΓ(c1)l1!⋯lj!Ia1l1+⋯+ajlj+br+h(x). |
Proof. By utilizing (2.1) in (4.1) and then interchanging the order of summation and integration, we have
(R(ϖi);(ci)r+;(ai),bh)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ=∫xr(x−ϱ)b−1∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖl11(x−ϱ)a1l1⋯ϖljj(x−ϱ)ajljΓ(c1)Γ(a1l1+⋯+ajlj+b)l1!⋯lj!h(ϱ)dϱ=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa1l11⋯ϖajljjΓ(c1)l1!⋯lj!1Γ(a1l1+⋯+ajlj+b)×∫xr(x−ϱ)a1l1+⋯+ajlj+b−1h(ϱ)dϱ=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa1l11⋯ϖajljjΓ(c1)l1!⋯lj!Ia1l1+⋯+ajlj+br+h(x), |
which gives the desired proof.
Theorem 4.4. For λ, ci, ai, b, ϖi∈C with ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0, ℜ(λ)>0, for i=1,2,⋯,j, p≥0 and x>r, then the following result holds true:
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x)=(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x), | (4.3) |
where h∈L(r,s).
Proof. By employing (1.14) and (4.1), we have
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=1Γ(λ)∫xr[(R(ϖi);(ci)r+;(ai),b;ph)(ϱ)](x−ϱ)1−λdϱ=1Γ(λ)∫xr(x−ϱ)λ−1[∫ϱr(ϱ−u)b−1ε(ci)(ai),b;p(ϖ1(ϱ−u)a1,⋯,ϖj(ϱ−u)aj)h(u)du]dϱ. |
It follows that
(Iλr+[R(ϖi);(ci)r+;(ai),bh])(x)=∫xr[1Γ(λ)∫xu(x−ϱ)λ−1(ϱ−u)b−1ε(ci)(ai),b;p(ϖ1(ϱ−u)a1,⋯,ϖj(ϱ−u)aj)dϱ]h(u)du. |
By considering ϱ−u=θ, we get
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=∫xr[1Γ(λ)∫x−u0(x−u−θ)λ−1θb−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)dθ]h(u)du=∫xr[1Γ(λ)∫x−u0θb−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)(x−u−θ)1−λdθ]h(u)du. |
Hence, from (1.14) and applying (3.1), we obtain
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=∫xr[θλ+b−1ε(ci)(ai),b+λ;p(ϖ1θa1,⋯,ϖjθaj)]h(u)du=∫xr(x−u)λ+b−1ε(ci)(ai),b+λ(ϖ1(x−u)a1,⋯,ϖj(x−u)aj)h(u)du. |
Thus, we have
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x). | (4.4) |
Next, consider the right hand side of (4.3) and employing (4.1) to derive the second part, we have
(R(ϖi);(ci)r+;(ai),b;p[Iλr+h])(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)[Iλr+h](ϱ)dϱ=∫xrε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)(1Γ(λ)ϱ∫rh(u)(ϱ−u)1−λdu)dϱ. |
It follows that
(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x)=x∫r1Γ(λ)[∫xu(x−ϱ)b−1(ϱ−u)λ−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)dϱ]h(u)du. |
By setting x−ϱ=θ, we get
(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x)=∫xr1Γ(λ)[∫0x−uθb−1(x−θ−u)λ−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)(−dθ)]h(u)du=x∫r1Γ(λ)[∫x−u0θb−1(x−θ−u)λ−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)dθ]h(u)du. |
Further, by using (1.14) and applying (3.1), we obtain
(R(ϖi);(ci)r+;(ai),b;p[Iλr+h])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x). | (4.5) |
Thus, (4.4) and (4.5) gives the desired proof.
Nowadays, the theories are developed very rapidly. The scientists are introducing more advanced and generalized forms of the classical ones. In this present study, we introduced a generalized form of the multivariate M-L function (2.1) by employing the generalized Pochhammer symbol and its properties. By using this more extended form of M-L, we introduced a fractional integral operator and studied some of the basic properties of this operator. The special cases of the main results are if we take p=0, then the operators defined in (4.1) and (4.2) will reduce to the work done by [34]. Similarly, if we take j=1 and p=0, then the operators defined in (4.1) and (4.2) will lead to the work done by [22]. If we take j=1, then the work done in this paper will lead to the work presented by [28]. Moreover, if we consider one of ϖi=0, for i=1,2,⋯,j, then the operators defined in (4.1) and (4.2) will reduce to the classical R-L operators. We believe that our proposed operator will be more applicable in the fields of fractional integral inequalities and operator theory.
The author T. Abdeljawad would like to thank Prince Sultan University for supporting through TAS research lab. Manar A. Alqudah: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R14), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors declare no conflict of interest.
[1] | A. Loverro, Fractional calculus: History, definitions and applications for the engineer. Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, 2004, 1–28. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Book review: Theory and Applications of Fractional Differential Equations, 13 (2006), 101–102. https://doi.org/10.1142/s0218348x07003447 |
[3] | I. Podlubny, Fractional Differential Equations, 198 Academic Press, 1999, San Diego, California, USA. |
[4] |
M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
![]() |
[5] |
Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Appl. Math. Comput., 178 (2006), 527–533. https://doi.org/10.1016/j.amc.2005.11.072 doi: 10.1016/j.amc.2005.11.072
![]() |
[6] |
S. Murtaza, F. Ali, A. Aamina, N. A. Sheikh, I. Khan, K. S. Nisar, Exact analysis of non-linear fractionalized Jeffrey fluid, a novel approach of Atangana-Baleanu fractional model, Comput. Mater. Con., 65 (2020), 2033–2047. https://doi.org/10.32604/cmc.2020.011817 doi: 10.32604/cmc.2020.011817
![]() |
[7] |
F. Ali, S. Murtaza, N. Sheikh, I. Khan, Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana-Balaenu and Caputo-Fabrizio fractional models, Chaos Soliton. Fract., 129 (2019), 1–15. https://doi.org/10.1016/j.chaos.2019.08.013 doi: 10.1016/j.chaos.2019.08.013
![]() |
[8] |
N. Iqbal, T. Botmart, W. Mohammed, A. Ali, Numerical investigation of fractional-order Kersten-Krasil shchik coupled KdV-mKdV system with Atangana-Baleanu derivative, Adv. Contin. Discrete Models, 2022 (2022), 37. https://doi.org/10.1186/s13662-022-03709-5 doi: 10.1186/s13662-022-03709-5
![]() |
[9] |
H. Yasmin, N. Iqbal, A comparative study of the fractional coupled Burgers and Hirota-Satsuma KdV equations via analytical techniques, Symmetry, 14 (2022), 1364. https://doi.org/10.3390/sym14071364 doi: 10.3390/sym14071364
![]() |
[10] |
A. Goswami, J. Singh, D. Kumar, S. Gupta, Sushila, An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85–99. https://doi.org/10.1016/j.joes.2019.01.003 doi: 10.1016/j.joes.2019.01.003
![]() |
[11] |
N. Iqbal, A. Albalahi, M. Abdo, W. Mohammed, Analytical analysis of fractional-order Newell-Whitehead-Segel equation: A modified homotopy perturbation transform method, J. Funct. Space., 2022. https://doi.org/10.1155/2022/3298472 doi: 10.1155/2022/3298472
![]() |
[12] |
V. Martynyuk, M. Ortigueira, Fractional model of an electrochemical capacitor, Signal Proc., 107 (2015), 355–360. https://doi.org/10.1016/j.sigpro.2014.02.021 doi: 10.1016/j.sigpro.2014.02.021
![]() |
[13] |
C. Lorenzo, T. Hartley, Initialization, conceptualization, and application in the generalized (fractional) calculus, Crit. Rev. Biomed. Eng., 35 (2007), 447–553. https://doi.org/10.1615/critrevbiomedeng.v35.i6.10 doi: 10.1615/critrevbiomedeng.v35.i6.10
![]() |
[14] |
M. Kbiri Alaoui, K. Nonlaopon, A. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order Cahn-Hilliard and Gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
![]() |
[15] |
M. Alshammari, N. Iqbal, D. Ntwiga, A comparative study of fractional-order diffusion model within Atangana-Baleanu-Caputo operator, J. Funct. Space., 2022 (2022), 1–12. https://doi.org/10.1155/2022/9226707 doi: 10.1155/2022/9226707
![]() |
[16] |
Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
![]() |
[17] |
K. Nonlaopon, A. Alsharif, A. Zidan, A. Khan, Y. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
![]() |
[18] |
M. Rawashdeh, Approximate solutions for coupled systems of nonlinear PDEs using the reduced differential transform method, Math. Comput. Appl., 19 (2014), 161–171. https://doi.org/10.3390/mca19020161 doi: 10.3390/mca19020161
![]() |
[19] |
S. El-Wakil, A. Elhanbaly, M. Abdou, Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput., 182 (2006), 313–324. https://doi.org/10.1016/j.amc.2006.02.055 doi: 10.1016/j.amc.2006.02.055
![]() |
[20] |
H. Khan, A. Khan, M. Al-Qurashi, R. Shah, D. Baleanu, Modified modelling for heat like equations within Caputo operator, Energies, 13 (2020), 2002. https://doi.org/10.3390/en13082002 doi: 10.3390/en13082002
![]() |
[21] |
A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 1–24. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
![]() |
[22] |
G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145–154. https://doi.org/10.1016/0898-1221(94)90132-5 doi: 10.1016/0898-1221(94)90132-5
![]() |
[23] |
G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247x(88)90170-9 doi: 10.1016/0022-247x(88)90170-9
![]() |
[24] |
J. He, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/s0045-7825(99)00018-3 doi: 10.1016/s0045-7825(99)00018-3
![]() |
[25] |
J. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-Linear Mech., 35 (2000), 37–43. https://doi.org/10.1016/s0020-7462(98)00085-7 doi: 10.1016/s0020-7462(98)00085-7
![]() |
[26] | J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Soliton. Fract., 26 (2005). |
[27] |
N. Iqbal, A. Akgul, A. Bariq, M. Mossa Al-Sawalha, A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Space., 2022 (2022), 1–14. https://doi.org/10.1155/2022/3341754 doi: 10.1016/j.physleta.2005.10.005
![]() |
[28] |
J. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005
![]() |
[29] |
W. He, N. Chen, I. Dassios, N. Shah, J. Chung, Fractional system of Korteweg-De Vries equations via Elzaki transform, Mathematics, 9 (2021), 673. https://doi.org/10.3390/math9060673 doi: 10.3390/math9060673
![]() |
[30] |
N. Shah, P. Agarwal, J. Chung, E. El-Zahar, Y. Hamed, Analysis of optical solitons for nonlinear Schrodinger Equation with detuning term by iterative transform method, Symmetry, 12 (2020), 1850. https://doi.org/10.3390/sym12111850 doi: 10.3390/sym12111850
![]() |
[31] |
A. N. Kolmogorov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, 1 (1937), 1–25. https://doi.org/10.1007/bf01190613 doi: 10.1007/bf01190613
![]() |
[32] |
A. Mironer, D. Dosanjh, Coupled diffusion of heat and vorticity in a gaseous vortex, Int. J. Heat Mass Tran., 12 (1969), 1231–1248. https://doi.org/10.1016/0017-9310(69)90168-9 doi: 10.1016/0017-9310(69)90168-9
![]() |
[33] |
A. Ammerman, L. Cavalli-Sforza, Measuring the rate of spread of early farming in europe, Man, 6 (1971), 674. https://doi.org/10.2307/2799190 doi: 10.2307/2799190
![]() |
[34] |
M. Bramson, Maximal displacement of branching brownian motion, Commun. Pure Appl. Math., 31 (1978), 531–581. https://doi.org/10.1002/cpa.3160310502 doi: 10.1002/cpa.3160310502
![]() |
[35] |
J. Canosa, Diffusion in nonlinear multiplicative media, J. Math. Phys., 10 (1969), 1862–1868. https://doi.org/10.1063/1.1664771 doi: 10.1063/1.1664771
![]() |
[36] | X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A, 131 (1988), 277–279. |
[37] | J. R. Branco, J. A. Ferreira, P. De Oliveira, Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, Appl. Numer. Math., 57 (2007), 89–102. |
[38] | J. E. Macías-Díaz, I. E. Medina-Ramírez, A. Puri, Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Comput. Appl. Math., 231 (2009), 851–868. |
[39] | X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A, 131 (1988), 277–279. |
[40] | A. M. Wazwaz, A. Gorguis, An analytic study of Fisher's equation by using Adomian decomposition method, Appl. Math. Comput., 154 (2004), 609–620. |
[41] |
M. Rostamian, A. Shahrezaee, A meshless method to the numerical solution of an inverse reaction-diffusion-convection problem, Int. J. Comput. Math., 94 (2016), 597–619. https://doi.org/10.1080/00207160.2015.1119816 doi: 10.1080/00207160.2015.1119816
![]() |
[42] |
H. Gu, B.Lou, M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714–1768. https://doi.org/10.1016/j.jfa.2015.07.002 doi: 10.1016/j.jfa.2015.07.002
![]() |
[43] |
P. Sunthrayuth, R. Ullah, A. Khan, R. Shah, J. Kafle, I. Mahariq, et al., Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations, J. Funct. Space., 2021 (2021), 1–10. https://doi.org/10.1155/2021/1537958 doi: 10.1155/2021/1537958
![]() |
[44] |
M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
![]() |
[45] |
Y. Zhao, D. Baleanu, M. Baleanu, D. Cheng, X. Yang, Mappings for special functions on Cantor sets and special integral transforms via local fractional operators, Abstr. Appl. Anal., 2013 (2013), 1–6. https://doi.org/10.1155/2013/316978 doi: 10.1155/2013/316978
![]() |
[46] |
P. Sunthrayuth, H. Alyousef, S. El-Tantawy, A. Khan, N. Wyal, Solving fractional-order diffusion equations in a plasma and fluids via a novel transform, J. Funct. Space., 2022 (2022), 1–19. https://doi.org/10.1155/2022/1899130 doi: 10.1155/2022/1899130
![]() |
[47] |
M. Alaoui, R. Fayyaz, A. Khan, M. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
![]() |