Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Intertwining relations for composition operators and integral-type operators between the Bloch-type spaces

  • Received: 09 June 2022 Revised: 17 August 2022 Accepted: 18 August 2022 Published: 23 August 2022
  • MSC : 47B38, 47B33, 32H02

  • In this paper, the compact intertwining relations of integral-type operators and composition operators between the Bloch-type spaces are investigated.

    Citation: Hang Zhou. Intertwining relations for composition operators and integral-type operators between the Bloch-type spaces[J]. AIMS Mathematics, 2022, 7(10): 18729-18745. doi: 10.3934/math.20221030

    Related Papers:

    [1] Xiaoman Liu, Yongmin Liu . Boundedness of the product of some operators from the natural Bloch space into weighted-type space. AIMS Mathematics, 2024, 9(7): 19626-19644. doi: 10.3934/math.2024957
    [2] Fuya Hu, Chengshi Huang, Zhijie Jiang . Weighted composition operators on α-Bloch-Orlicz spaces over the unit polydisc. AIMS Mathematics, 2025, 10(2): 3672-3690. doi: 10.3934/math.2025170
    [3] Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293
    [4] Ruishen Qian, Xiangling Zhu . Invertible weighted composition operators preserve frames on Dirichlet type spaces. AIMS Mathematics, 2020, 5(5): 4285-4296. doi: 10.3934/math.2020273
    [5] Aydah Mohammed Ayed Al-Ahmadi . Differences weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space -I-. AIMS Mathematics, 2023, 8(7): 16240-16251. doi: 10.3934/math.2023831
    [6] Zhi-jie Jiang . A result about the atomic decomposition of Bloch-type space in the polydisk. AIMS Mathematics, 2023, 8(5): 10822-10834. doi: 10.3934/math.2023549
    [7] Stevo Stević . Norms of some operators between weighted-type spaces and weighted Lebesgue spaces. AIMS Mathematics, 2023, 8(2): 4022-4041. doi: 10.3934/math.2023201
    [8] Songxiao Li, Jizhen Zhou . Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space. AIMS Mathematics, 2021, 6(4): 3305-3318. doi: 10.3934/math.2021198
    [9] Zhi-jie Jiang . Complex symmetric difference of the weighted composition operators on weighted Bergman space of the half-plane. AIMS Mathematics, 2024, 9(3): 7253-7272. doi: 10.3934/math.2024352
    [10] Liu Yang, Ruishen Qian . Power bounded and power bounded below composition operators on Dirichlet Type spaces. AIMS Mathematics, 2021, 6(2): 2018-2030. doi: 10.3934/math.2021123
  • In this paper, the compact intertwining relations of integral-type operators and composition operators between the Bloch-type spaces are investigated.



    For two Banach spaces X and Y, B(X,Y) denotes the collection of all bounded linear operators from X to Y and K(X,Y) denotes the collection of all compact operators in B(X,Y). The Calkin algebra Z(X,Y) is the quotient Banach algebra B(X,Y)/K(X,Y).

    For bounded linear operators AB(X,X), BB(Y,Y) and TB(X,Y), we say "T intertwines A and B" if

    TA=BTwithT0.

    When it is convenient to deemphasize the intertwining operator TB(X,Y), we write AB (sometimes we also use AB(T)) as the intertwining relation above for simplicity. In [2] Bourdon and Shapiro showed that the intertwining relation is neither symmetric nor transitive. Furthermore, we say "T intertwines A and B in Z(X,Y)" (or "T intertwines A and B compactly") if

    TA=BTmodK(X,Y)withT0.

    For simplicity, the notation AKB(T) represents the compact intertwining relations above. The relation K turns to be symmetric when TB(X,Y) is invertible.

    As usual, S(D) denotes the collection of all analytic self-maps of the unit disk D of the complex plane C. The composition operator Cφ induced by φS(D) is defined as Cφf=fφ for each fH(D), where H(D) is the collection of all holomorphic functions on the unit disk.

    We next recall the spaces to work on, one of which is a classical Banach space of analytic functions, the Bloch space, which is defined as

    B={fH(D):f1=supzD(1|z|2)|f(z)|<}.

    The Bloch space B is maximal among all M¨obius-invariant Banach spaces of analytic functions on D, which implies that fφ1=f1 holds for all fB and φAut(D) with the seminorm 1. It is well-known that B is a Banach space endowed with the norm fB=|f(0)|+f1.

    For 0<α<, the α-Bloch space (or Bloch-type space) is defined as:

    Bα={fH(D):fα=supzD(1|z|2)α|f(z)|<}.

    The little α-Bloch space defined as:

    Bα0={fBα:lim|z|1(1|z|2)α|f(z)|=0}.

    Bα is a Banach space endowed with the norm fBα=|f(0)|+fα.

    For 0<α,β<, the weighted logarithmic Bloch space and the little weighted logarithmic Bloch space were introduced in [13,14]. It is defined as:

    Bαlogβ={fH(D):fαlogβ=supzD(1|z|2)α(log21|z|2)β|f(z)|<}.
    Bαlogβ,0={fBαlogβ:lim|z|1(1|z|2)α(log21|z|2)β|f(z)|=0}.

    Bαlogβ is a Banach space endowed with the norm fBαlogβ=|f(0)|+fαlogβ, which reduces to Bα if β=0.

    For 0<α<, the classical weighted space is defined as:

    Hα={fH(D):fα=supzD(1|z|2)α|f(z)|<}.

    The little weighted space is defined as:

    Hα,0={fHα:lim|z|1(1|z|2)α|f(z)|=0}.

    Hα is a Banach space endowed with the norm fHα=|f(0)|+fα.

    For gH(D), two integral-type operators are defined by

    Jgf(z)=z0f(t)g(t)dt

    and

    Igf(z)=z0f(t)g(t)dt,

    where fH(D) and zD. Obviously, integration by parts gives

    Mgf=f(0)g(0)+Jgf+Igf,

    which shows the close relation among the integral-type operators Jg, Ig and the multiplication operator Mg. Here, the miltiplication operator Mg is defined by

    Mgf(z)=g(z)f(z),fH(D),zD.

    Conveniently, the symbol Vg is used to represent Jg or Ig. Composition, integral type operators and their products from or to the weighted logarithmic Bloch space and the little weighted logarithmic Bloch space have been investigated a lot recently (see, for example, [9,15,16]). For more information on the logarithmic Bloch spaces, interested readers can refer to [3,8,11,12,17,18,19,20].

    Suppose that α,β>0, φS(D) and g,hH(D). For two composition operators CφB(Bα,Bα), CφB(Bβ,Bβ), we concentrate on the compact intertwining relations of Cφ whose intertwining operator is the integral-type operators VgB(Bα,Bβ). In other word, we will study the properties of the difference operator

    V[φ;g,h]:=CφVgVhCφ. (1.1)

    By V[φ,ψ;g,h] we denote the following expression

    (Cφ:BβBβ)(Vg:BαBβ)(Vh:BαBβ)(Cψ:BαBα). (1.2)

    We also say that Cφ and Vg are essentially commutative if

    Vg(Cφ:BαBα)=(Cφ:BβBβ)VgmodK(Bα,Bβ).

    Moreover, the notation Ωα,βco(Vg) is denotes the collection of gH(D) such that

    VgB(Bα,Bβ).

    Vg are essentially commutative with Cφ for all φ such that Cφ is bounded on both Bα and Bβ.

    Here, the lower symbol "co" represents "composition operator".

    Some authors in their papers such as [21,22,23,25] investigate the compact intertwining relations of the integral-type operators and the composition operators on various spaces of analytic functions on the unit disk.

    In this paper, we investigate the compact intertwining relations of integral-type operators Vg from Bα to Bβ and the relevant composition operators Cφ. In Section 2, we present some lemmata to be used later in this paper. In Section 3, we investigate the intertwining relations of integral-type operators and composition operators, in which the equivalent conditions of V[φ,ψ;g,h]=0 is given. In Section 4, boundedness and compactness of V[φ;g,h] are investigated. In Sections 5 and 6, two questions of the compact intertwining relations of Vg and Cφ are investigated respectively.

    For simplification, the hypotheses 0<α,β<,φS(D),g,hH(D) are available throughout this paper which will not be specified later.

    Specially, for two real numbers A and B, we say A if there exists a constant C\neq0 such that A\leq CB .

    In this section, we introduce some basic properties of the Bloch-type spaces and the integral-type operators to be used in this paper.

    The following folklore lemma is proved in a standard way (see, e.g., [10]), which also implies that the point evaluation functional is continuous on the Bloch-type space.

    Proposition 2.1. For each f\in\mathcal{B}^\alpha and z\in\mathbb{D} , we have

    |f(z)|\lesssim\left\{ \begin{aligned} &\log\frac{2}{1-|z|^2}\|f\|_{\mathcal{B}^\alpha},&\alpha = 1;\\ &(1-|z|^2)^{1-\alpha}\|f\|_{\mathcal{B}^\alpha},&\alpha > 1;\\ &\|f\|_{\mathcal{B}^\alpha},&0 < \alpha < 1. \end{aligned} \right.

    The following result can be also found in [10].

    Lemma 2.2. The composition operator C_\varphi is bounded from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if

    \begin{align} \sup\limits_{z\in\mathbb{D}}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)| < \infty. \end{align} (2.1)

    The following lemma was proved, e.g., in [6,7] even in much more general settings.

    Lemma 2.3. The integral-type operators J_g is bounded from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if

    \left\{ \begin{aligned} &g\in\mathcal{B}^\beta& when\quad0\leq\alpha < 1;\\ &g\in\mathcal{B}_{\log^1}^\beta& when\quad\alpha = 1;\\ &g\in\mathcal{B}^{\beta-\alpha+1}& when\quad\alpha > 1. \end{aligned} \right.

    Lemma 2.4. [5] The integral-type operators I_g is bounded from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if

    \begin{align} g\in H_{\beta-\alpha}^\infty. \end{align} (2.2)

    The proposition below is a crucial criterion for the compactness of V[\varphi; g, h] , which can be proved by a little modification of Proposition 3.11 in [4].

    Proposition 2.5. V[\varphi; g, h] is compact from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if whenever \{f_n\} is bounded in \mathcal{B}^\alpha and f_n\rightarrow0 uniformly on any compact subset of the unit disk, then

    \lim\limits_{n\rightarrow \infty}\|V[\varphi;g,h]f_n\|_{\mathcal{B}^\beta} = 0.

    Theorem 3.1. Assume that J[\varphi, \psi; g, h] is defined as (1.2), then

    J[\varphi, \psi; g, h] = 0 if and only if

    (a) either \varphi(0) = 0 or g is a constant;

    (b) \varphi = \psi ;

    (c) h = g\circ\varphi+C, where C is an arbitrary constant.

    Proof. The sufficiency is easily checked by calculation. To prove the necessity, we only show some different details from what Tong and Zhou did in [22] for the study of the intertwining relations for Volterra operators and composition operators on the Bergman space.

    J[\varphi, \psi; g, h] = 0 implies that

    \sup\limits_{f\in\mathcal{B}^\alpha,\|f\|\neq0}\frac{\|(C_\varphi J_g-J_h C_\psi)f\|_{\mathcal{B}^\beta}}{\|f\|_{\mathcal{B}^\alpha}} = 0,

    which further implies that, for each f\in\mathcal{B}^\alpha ,

    \begin{align*} 0& = \|(C_\varphi J_g-J_h C_\psi)f\|_{\mathcal{B}^\beta} = |\int_0^{\varphi(0)}f(t)g'(t)dt|\\ &+\sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta|f(\varphi(z))\varphi'(z)g'(\varphi(z))-f(\psi(z))h'(z)|. \end{align*}

    Hence, for each f\in\mathcal{B}^\alpha , |(C_\varphi J_g-J_h C_\psi)f(0)| = 0 and

    \sup\limits_{z\in\mathbb{D}}|f(\varphi(z))\varphi'(z)g'(\varphi(z))-f(\psi(z))h'(z)| = 0

    hold. And the latter one shows that for each z\in\mathbb{D} ,

    |f(\varphi(z))\varphi'(z)g'(\varphi(z))-f(\psi(z))h'(z)| = 0.

    To this end, the remaining part of the theorem is parallel with Proposition 3.1 in [22]. This completes the proof.

    Theorem 3.2. Assume that I[\varphi, \psi; g, h] is defined as (1.2), then

    I[\varphi, \psi; g, h] = 0 if and only if

    (a) either \varphi(0) = 0 or g\equiv0 ;

    (b) \varphi = \psi ;

    (c) h = g\circ\varphi.

    Proof. The sufficiency is easily verified by calculation. To prove the necessity, we only show some essential details. I[\varphi, \psi; g, h] = 0 implies that for each f\in\mathcal{B}^\alpha ,

    \begin{align*} 0& = \|(C_\varphi I_g-I_h C_\psi)f\|_{\mathcal{B}^\beta} = |\int_0^{\varphi(0)}f'(t)g(t)dt|\\ &+\sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta|f'(\varphi(z))\varphi'(z)g(\varphi(z))-f'(\psi(z))\psi'(z)h(z)|. \end{align*}

    Hence, for each f\in\mathcal{B}^\alpha , |(C_\varphi I_g-I_h C_\psi)f(0)| = 0 and

    \sup\limits_{z\in\mathbb{D}}|f'(\varphi(z))\varphi'(z)g(\varphi(z))-f'(\psi(z))\psi'(z)h(z)| = 0

    hold. If \varphi(0) = 0 , then the first of the conditions is automatically satisfied. If \varphi(0)\neq0 , then we can obtain that g\equiv0 by the same method used in Proposition 3.1 in [22]. Moreover, the second equality

    \sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta|f'(\varphi(z))\varphi'(z)g(\varphi(z))-f'(\psi(z))\psi'(z)h(z)| = 0

    implies that for each z\in\mathbb{D} ,

    |f'(\varphi(z))\varphi'(z)g(\varphi(z))-f'(\psi(z))\psi'(z)h(z)| = 0.

    By choosing f(z) = z\in\mathcal{B}^\alpha and f(z) = z^2\in\mathcal{B}^\alpha , we have that

    \varphi'(z)g(\varphi(z))-\psi'(z)h(z) = 0,
    2\varphi(z)\varphi'(z)g(\varphi(z))-2\psi(z)\psi'(z)h(z) = 0.

    Combining these two quantities, we have that

    2\psi'(z)h(z)(\varphi(z)-\psi(z)) = 0.

    Hence, \varphi = \psi and h = g\circ\varphi . This completes the proof.

    Specially, we consider the operators mapping a Bloch-type space into and onto itself, that is C_\varphi:\mathcal{B}^\alpha\rightarrow \mathcal{B}^\alpha, J_g, J_h, I_g, I_h:\mathcal{B}^{\alpha}\rightarrow \mathcal{B}^\alpha . Combining Theorems 3.1 and 3.2 and the equivalent conditions of the boundedness of J_g and I_g from Lemmas 2.3 and 2.4, we conclude the statements in the following.

    Corollary 3.3. (a) If \alpha > 1, g, h\in\mathcal{B}^{\beta-\alpha+1} , then J_g\propto J_h(C_\varphi) if and only if g is a constant or \varphi(0) = 0 , h = g\circ\varphi+C, where C is a constant.

    (b) If \alpha = 1, g, h\in\mathcal{B}_{\log^1}^\beta , then J_g\propto J_h(C_\varphi) if and only if g is a constant or \varphi(0) = 0 , h = g\circ\varphi+C, where C is a constant.

    (c) If 0\leq\alpha < 1, g, h\in\mathcal{B}^\beta , then J_g\propto J_h(C_\varphi) if and only if g is a constant or \varphi(0) = 0 , h = g\circ\varphi+C, where C is a constant.

    Corollary 3.4. If g, h\in H_{\beta-\alpha}^\infty , then I_g\propto I_h(C_\varphi) if and only if g\equiv0 or \varphi(0) = 0 , h = g\circ\varphi.

    In this section, we characterize the boundedness and the compactness of V[\varphi; g, h] defined as (1.1), in which the compactness is essential for our study in this paper. The method of the proof is basic, which is also parallel with Proposition 3.1 in [22] and Corollary 4.3 in [22].

    Theorem 4.1. J[\varphi; g, h] is bounded from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if

    (a)

    \sup\limits_{z\in\mathbb{D}}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z)| < \infty

    when \alpha > 1 ;

    (b)

    \sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta\log\frac{2}{1-|\varphi(z)|^2}|(g\circ\varphi-h)'(z)| < \infty

    when \alpha = 1 ;

    (c) g\circ\varphi-h\in\mathcal{B}^\beta when 0 < \alpha < 1 .

    Proof. The proof of the theorem is essentially given in [7], but since there are some technical differences, we will give some details. We firstly prove the sufficiency. By Proposition 2.1, we estimate the semi-norm \|J[\varphi; g, h]\|_\beta respectively.

    (a) when \alpha > 1 ,

    \begin{align*} \|J[\varphi;g,h]\|_\beta = &\sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta|f(\varphi(z))||(g\circ\varphi-h)'(z)|\\ &\lesssim\|f\|_{\mathcal{B}^\alpha}\sup\limits_{z\in\mathbb{D}}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z)| < \infty; \end{align*}

    (b) when \alpha = 1 ,

    \begin{align*} \|J[\varphi;g,h]\|_\beta\lesssim\|f\|_{\mathcal{B}^\alpha}\sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta\log\frac{2}{1-|\varphi(z)|^2}|(g\circ\varphi-h)'(z)| < \infty; \end{align*}

    (c) when 0 < \alpha < 1 ,

    \begin{align*} \|J[\varphi;g,h]\|_\beta\lesssim\|f\|_{\mathcal{B}^\alpha}\sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta|(g\circ\varphi-h)'(z)| < \infty. \end{align*}

    Therefore, we conclude that the difference operator J[\varphi; g, h] is bounded by the estimations above and the boundedness of the point evaluation functional at 0.

    To prove the necessity, we aim to find a contradiction if we suppose that the hypotheses do not hold. When \alpha > 1, there exists a sequence \{z_n\}\subset\mathbb{D} satisfying

    \lim\limits_{n\rightarrow \infty}\frac{(1-|z_n|^2)^\beta}{(1-|\varphi(z_n)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z_n)| = \infty.

    For n\in\mathbb{N} and z\in\mathbb{D} , assume that the test function is

    \begin{align} f_{n,1}(z) = (\frac{1-|\varphi(z_n)|^2}{(1-\overline{\varphi(z_n)}z)^2})^{\alpha-1}. \end{align} (4.1)

    An easy estimation shows that \|f_{n, 1}\|_\alpha\leq4^\alpha(\alpha-1) and thus f_{n, 1}\in\mathcal{B}^\alpha . By the boundedness of J[\varphi; g, h] , we have

    \begin{align*} \|J[\varphi;g,h]f_{n,1}\|_\beta& = \sup\limits_{z\in\mathbb{D}}(1-|z|^2)^\beta|f_{n,1}(\varphi(z))||(g\circ\varphi-h)'(z)|\\ &\geq\frac{(1-|z_n|^2)^\beta}{(1-|\varphi(z_n)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z_n)|\rightarrow \infty \end{align*}

    as n\rightarrow \infty , which contradicts to our hypothesis. Assume that the test function is f_{n, 2}(z) = \log\frac{2(1-|\varphi(z_n)|^2)}{(1-\overline{\varphi(z_n)}z)^2} when \alpha = 1 and is f_{n, 3}(z) = 1 when 0 < \alpha < 1 respectively. Further observe the fact that \|f_{n, 2}\|_\alpha\leq4 and \|f_{n, 3}\|_\alpha\leq2^{\alpha+2} . To this end, we conclude the results in a similar way shown above. This completes the proof.

    Theorem 4.2. J[\varphi; g, h] is compact from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if J[\varphi; g, h] is bounded and

    (a)

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z)| = 0

    when \alpha > 1 ;

    (b)

    \lim\limits_{|\varphi(z)|\rightarrow1}(1-|z|^2)^\beta\log\frac{2}{1-|\varphi(z)|^2}|(g\circ\varphi-h)'(z)| = 0

    when \alpha = 1 ;

    (c)

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{1-\alpha}}|(g\circ\varphi-h)'(z)| = 0

    when 0 < \alpha < 1 .

    Proof. The proof of the theorem is also essentially given in [7], but since there are some technical differences, we will give some details. To the sufficiency of the theorem, we present the proof of the hypothesis \alpha > 1 . Assume that \{f_n\} is bounded in \mathcal{B}^\alpha and f_n\rightarrow0 uniformly on any compact subset of \mathbb{D} , by Proposition 2.5 we are only supposed to check that

    \lim\limits_{n\rightarrow \infty}\|J[\varphi;g,h]f_n\|_{\mathcal{B}^\beta} = 0.

    For convenience, suppose that there exists a positive number M_1 such that \sup_{n\in\mathbb{Z}}\|f_n\|_{\mathcal{B}^\alpha}\leq M_1. For any \epsilon > 0 , there exists a \delta > 0 such that

    \sup\limits_{|\varphi(z)| > 1-\delta}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z)| < \frac{\epsilon}{2M_1}

    and

    \sup\limits_{|\varphi(z)|\leq1-\delta}|f_n(\varphi(z))| < \frac{\epsilon}{2M_1}.

    Furthermore, there exists another positive number M_2 such that

    \sup\limits_{|\varphi(z)|\leq1-\delta}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z)| < M_2.

    Hence,

    \begin{align*} &\|J[\varphi;g,h]f_n\|_\beta\\ &\leq\sup\limits_{|\varphi(z)|\leq1-\delta}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z)|\cdot(1-|\varphi(z)|^2)^{\alpha-1}|f_n(\varphi(z))|\\ &+\sup\limits_{|\varphi(z)| > 1-\delta}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z)|\cdot(1-|\varphi(z)|^2)^{\alpha-1}|f_n(\varphi(z))|\\ &\lesssim M_2\frac{\epsilon}{2M_1}+\frac{\epsilon}{2M_1}M_1\lesssim\epsilon. \end{align*}

    Thus J[\varphi; g, h] is compact from \mathcal{B}^\alpha to \mathcal{B}^\beta when \alpha > 1 . Similarly, the compactness of J[\varphi; g, h] can be obtained when \alpha = 1 and 0 < \alpha < 1 respectively if the hypotheses hold.

    To the necessity of the theorem, we firstly consider the situation when \alpha > 1 . Like what we do in Theorem 4.1, we aim to find a contradiction if we suppose that the hypotheses do not hold. Thus there exists a sequence \{z_n\}\subset\mathbb{D} such that for any \epsilon > 0 ,

    \frac{(1-|z_n|^2)^\beta}{(1-|\varphi(z_n)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z_n)| > \epsilon

    whenever |\varphi(z_n)|\rightarrow1. For n\in\mathbb{Z} and z\in\mathbb{D} , assume that the same test function f_{n, 1} defined as (4.1) and it is easy to check that \{f_{n, 1}\}\rightarrow0 as n\rightarrow \infty on any compact subset of \mathbb{D} . Then for the given \epsilon > 0 above, we have

    \begin{align*} \|J[\varphi;g,h]f_{n,1}\|_\beta\geq\frac{(1-|z_n|^2)^\beta}{(1-|\varphi(z_n)|^2)^{\alpha-1}}|(g\circ\varphi-h)'(z_n)| > \epsilon \end{align*}

    as |\varphi(z_n)|\rightarrow1 , which contradicts to our hypothesis.

    When 0 < \alpha < 1 , we still aim to find a contradiction if we suppose that the hypotheses do not hold. Thus there exists a sequence \{u_n\}\subset\mathbb{D} such that for any \epsilon > 0 ,

    (1-|u_n|^2)^\beta|(g\circ\varphi-h)'(u_n)| > \epsilon

    whenever |\varphi(u_n)|\rightarrow1. For n\in\mathbb{Z} , let \varphi(u_n) = r_ne^{i\theta_n} . Assume that the test function

    \tilde{f}_{n,3}(z) = r_n(1-e^{-i\theta_n}r_nz)^{1-\alpha}-r_n^2(1-e^{-i\theta_n}r_n^2z)^{1-\alpha}.

    Observe that \|\tilde{f}_{n, 3}\|_{\mathcal{B}^\alpha}\leq4(1-\alpha) and

    \begin{align*} &\|J[\varphi;g,h]\tilde{f}_{n,3}\|_\beta\geq(1-|u_n|^2)^\beta|\tilde{f}_{n,3}(u_n)||(g\circ\varphi-h)'(u_n)|\\ &\geq|\tilde{f}_{n,3}(0)|(1-|u_n|^2)^\beta|(g\circ\varphi-h)'(u_n)| > r_n\epsilon, \end{align*}

    as |\varphi(z_n)|\rightarrow1 , which contradicts to our hypothesis.

    Moreover, The result of \alpha = 1 can be obtained in a similar way by choosing the testing function which is different from f_{n, 2} in Theorem 4.1

    \tilde{f}_{n,2}(z) = \frac{3(\log\frac{2}{1-\overline{\varphi(w_n)}z})^2}{\log\frac{2}{1-|\varphi(w_n)|^2}}-\frac{2(\log\frac{2}{1-\overline{\varphi(w_n)}z})^3}{(\log\frac{2}{1-|\varphi(w_n)|^2})^2}

    where \{w_n\}\subset\mathbb{D} is the sequence such that for any \epsilon > 0 ,

    (1-|w_n|^2)^\beta\log\frac{2}{1-|\varphi(w_n)|^2}|(g\circ\varphi-h)'(w_n)| > \epsilon

    whenever |\varphi(w_n)|\rightarrow1. This completes the proof.

    Theorem 4.3. Suppose that \beta-\alpha\geq0 , then I[\varphi; g, h] is bounded from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if

    \sup\limits_{z\in\mathbb{D}}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)(g\circ\varphi-h)(z)| < \infty.

    Proof. This theorem essentially follows from the proofs of some known results such as [5,7], but since there are some technical differences, we will give some details. The sufficiency is obvious. To prove the necessity, we aim to find a contradiction if we suppose that the hypotheses do not hold. Thus there exists a sequence \{z_n\}\subset\mathbb{D} satisfying

    \lim\limits_{n\rightarrow \infty}\frac{(1-|z_n|^2)^\beta}{(1-|\varphi(z_n)|^2)^\alpha}|\varphi'(z_n)(g\circ\varphi-h)(z_n)| = \infty.

    For n\in\mathbb{Z} and z\in\mathbb{D} , assume that the test function is

    \begin{align} g_n(z) = \frac{1}{(2\alpha-1)\overline{\varphi(z_n)}}\frac{(1-|\varphi(z_n)|^2)^\alpha}{(1-\overline{\varphi(z_n)}z)^{2\alpha-1}}. \end{align} (4.2)

    An easy estimation shows that \|g_n\|_\alpha\leq2^{2\alpha} and thus g_n\in\mathcal{B}^\alpha . By the boundedness of I[\varphi; g, h] , we have

    \begin{align*} \|I[\varphi;g,h]g_n\|_\beta\geq\frac{(1-|z_n|^2)^\beta}{(1-|\varphi(z_n)|^2)^\alpha}|\varphi'(z_n)(g\circ\varphi-h)(z_n)|\rightarrow \infty \end{align*}

    as n\rightarrow \infty , which contradicts to our hypothesis. This completes the proof.

    Remark 4.4. We can observe that Theorem 4.3 holds for each \alpha > 0 and \beta > 0 . However, if \beta-\alpha < 0 , then g\equiv0 by the maximal modulus principal, which can be simplified in the following.

    Corollary 4.5. Suppose that \beta-\alpha < 0 , then I[\varphi; g, h] is bounded from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if

    \sup\limits_{z\in\mathbb{D}}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)h(z)| < \infty.

    We just present the compactness of I[\varphi; g, h] and omit the proof, which can be similarly proved by the method used in Theorem 4.2 with the same test function used in Theorem 4.3.

    Theorem 4.6. Suppose that \beta-\alpha\geq0 , then I[\varphi; g, h] is compact from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if I[\varphi; g, h] is bounded and

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)(g\circ\varphi-h)(z)| = 0.

    Corollary 4.7. Suppose that \beta-\alpha < 0 , then I[\varphi; g, h] is compact from \mathcal{B}^\alpha to \mathcal{B}^\beta if and only if I[\varphi; g, h] is bounded and

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)h(z)| = 0.

    In this section, we concentrate on two questions of the compactly intertwining relations of J_g and C_\varphi .

    Problem 5.1. What properties does a non-constant g\in H(\mathbb{D}) have if V_g essentially commutes with C_\varphi for all C_\varphi that are bounded on both \mathcal{B}^\alpha and \mathcal{B}^\beta ?

    Problem 5.2. What properties does \varphi\in S(\mathbb{D}) have if the bounded V_g essentially commutes with C_\varphi for all C_\varphi that are bounded on both \mathcal{B}^\alpha and \mathcal{B}^\beta ?

    We firstly answer the first problem. Recall that the notation \Omega_{co}^{\alpha, \beta}(V_g) is denotes the collection of g\in H(\mathbb{D}) such that

    V_g\in\mathcal{B}(\mathcal{B}^\alpha, \mathcal{B}^\beta) .

    V_g are essentially commutative with C_\varphi for all \varphi such that C_\varphi is bounded on both \mathcal{B}^\alpha and \mathcal{B}^\beta .

    Theorem 5.3. \Omega_{co}^{\alpha, \beta}(J_g) = \mathcal{B}^0_{\beta-\alpha+1} if \alpha > 1 and \beta-\alpha+1\geq0 .

    Proof. In the proof we use the ideas in Theorem 5.1 in [22]. We firstly prove that \mathcal{B}^0_{\beta-\alpha+1}\subset\Omega_{co}^{\alpha, \beta}(J_g). For any g\in\mathcal{B}^0_{\beta-\alpha+1} , obviously, J_g is bounded by Lemma 2.3. Furthermore, by the boundedness of C_\varphi on \mathcal{B}^\beta (see Lemma 2.2),

    \begin{align*} &\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-g)'(z)|\\ &\leq\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\beta}|\varphi'(z)|\cdot(1-|\varphi(z)|^2)^{\beta-\alpha+1}|g'(\varphi(z))|\\ &+\frac{(1-|z|^2)^{\alpha-1}}{(1-|\varphi(z)|^2)^{\alpha-1}}\cdot(1-|z|^2)^{\beta-\alpha+1}|g'(z)|\\ &\leq\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\beta}|\varphi'(z)|\cdot(1-|\varphi(z)|^2)^{\beta-\alpha+1}|g'(\varphi(z))|\\ &+2^{\alpha-1}(\frac{1+|\varphi(0)|}{1-|\varphi(0)|})^{\alpha-1}\cdot(1-|z|^2)^{\beta-\alpha+1}|g'(z)|\\ &\leq C_1\cdot(1-|\varphi(z)|^2)^{\beta-\alpha+1}|g'(\varphi(z))|\\ &+C_2\cdot(1-|z|^2)^{\beta-\alpha+1}|g'(z)|\rightarrow0 \end{align*}

    as |\varphi(z)|\rightarrow1 . Here, we use the following inequality (see, for example, Corollary 2.40 in [4])

    \frac{1-|z|}{1-|\varphi(z)|}\leq\frac{1+|\varphi(0)|}{1-|\varphi(0)|},z\in\mathbb{D}.

    This implies that \mathcal{B}^0_{\beta-\alpha+1}\subset\Omega_{co}^{\alpha, \beta}(J_g) by Theorem 4.2.

    Next we prove that \Omega_{co}^{\alpha, \beta}(J_g)\subset\mathcal{B}^0_{\beta-\alpha+1} . For any g\in\Omega_{co}^{\alpha, \beta}(J_g) , by Theorem 4.2, we have that

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-g)'(z)| = 0.

    Choose specifically \varphi(z) = e^{i\theta}z\in S(\mathbb{D}) , it follows that,

    \begin{align} \lim\limits_{|\varphi(z)|\rightarrow1}(1-|z|^2)^{\beta-\alpha+1}|e^{i\theta}g'(e^{i\theta}z)-g'(z)| = 0. \end{align} (5.1)

    Note that

    \begin{align*} &(1-|z|^2)^{\beta-\alpha+1}|e^{i\theta}g'(e^{i\theta}z)-g'(z)|\\ &\leq(1-|e^{i\theta}z|^2)^{\beta-\alpha+1}|g'(e^{i\theta}z)|+(1-|z|^2)^{\beta-\alpha+1}|g'(z)|\leq2\|g\|_{\mathcal{B}^{\beta-\alpha+1}}. \end{align*}

    If we assume that g(z) = \sum_{n = 0}^\infty a_nz^n , then by integrating the left side of (5.2) with respect to \theta from 0 to 2\pi , we obtain that

    \begin{align*} 0& = \int_0^{2\pi}\lim\limits_{|\varphi(z)|\rightarrow1}(1-|z|^2)^{\beta-\alpha+1}|e^{i\theta}g'(e^{i\theta}z)-g'(z)|d\theta\\ & = \lim\limits_{|\varphi(z)|\rightarrow1}\int_0^{2\pi}(1-|z|^2)^{\beta-\alpha+1}|\sum\limits_{n = 1}^\infty na_nz^{n-1}(e^{in\theta}-1)|d\theta\\ &\geq2\pi\lim\limits_{|z|\rightarrow1}(1-|z|^2)^{\beta-\alpha+1}|g'(z)|, \end{align*}

    where the Dominant Convergent Theorem is applied in the second line. This implies that g\in\mathcal{B}^{\beta-\alpha+1}_0 . This completes the proof.

    Corollary 5.4. \Omega_{co}^{\alpha, \beta}(J_g) = \mathbb{C} if \alpha > 1 and \beta-\alpha+1 < 0 .

    Proof. Obviously by the maximal modulus principle.

    Theorem 5.5. \Omega_{co}^{\alpha, \beta}(J_g) = \mathcal{B}^\beta_{\log^1, 0} if \alpha = 1 .

    Proof. For any g\in\mathcal{B}^\beta_{\log^1, 0} , obviously, J_g is bounded. Furthermore, by the boundedness of C_\varphi on \mathcal{B}^\beta and observing that g\in\mathcal{B}^0_\beta ,

    \begin{align*} &(1-|z|^2)^\beta\log\frac{2}{1-|\varphi(z)|^2}|(g\circ\varphi-g)'(z)|\\ &\leq\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\beta}|\varphi'(z)|\cdot(1-|\varphi(z)|^2)^\beta\log\frac{2}{1-|\varphi(z)|^2}|g'(\varphi(z))|\\ &+\log\frac{2(1+|\varphi(0)|)}{1-|\varphi(0)|}(1-|z|^2)^\beta|g'(z)|+(1-|z|^2)^\beta\log\frac{2}{1-|z|^2}|g'(z)|\rightarrow0 \end{align*}

    as |\varphi(z)|\rightarrow1 . This implies that \mathcal{B}^\beta_{\log^1, 0}\subset\Omega_{co}^{\alpha, \beta}(J_g) by Theorem 4.2.

    Next we prove that \Omega_{co}^{\alpha, \beta}(J_g)\subset\mathcal{B}^\beta_{\log^1, 0} . For any g\in\Omega_{co}^{\alpha, \beta}(J_g) , by Theorem 4.2, we have that

    \lim\limits_{|\varphi(z)|\rightarrow1}(1-|z|^2)^\beta\log\frac{2}{1-|\varphi(z)|^2}|(g\circ\varphi-g)'(z)| = 0.

    Choose specifically \varphi(z) = e^{i\theta}z\in S(\mathbb{D}) , it follows that,

    \begin{align} \lim\limits_{|\varphi(z)|\rightarrow1}(1-|z|^2)^{\beta}\log\frac{2}{1-|z|^2}|e^{i\theta}g'(e^{i\theta}z)-g'(z)| = 0. \end{align} (5.2)

    Note that

    \begin{align*} &(1-|z|^2)^{\beta}\log\frac{2}{1-|z|^2}|e^{i\theta}g'(e^{i\theta}z)-g'(z)|\\ &\leq(1-|e^{i\theta}z|^2)^{\beta}\log\frac{2}{1-|e^{i\theta}z|^2}|g'(e^{i\theta}z)| +(1-|z|^2)^{\beta}\log\frac{2}{1-|z|^2}|g'(z)|\leq2\|g\|_{\mathcal{B}^\beta_{\log^1}}. \end{align*}

    If we assume that g(z) = \sum_{n = 0}^\infty a_nz^n , then by integrating the left side of (5.2) with respect to \theta from 0 to 2\pi , we obtain that

    \begin{align*} 0& = \int_0^{2\pi}\lim\limits_{|\varphi(z)|\rightarrow1}(1-|z|^2)^{\beta}\log\frac{2}{1-|z|^2}|e^{i\theta}g'(e^{i\theta}z)-g'(z)|d\theta\\ & = \lim\limits_{|\varphi(z)|\rightarrow1} \int_0^{2\pi}(1-|z|^2)^{\beta}\log\frac{2}{1-|z|^2}|\sum\limits_{n = 1}^\infty na_nz^{n-1}(e^{in\theta}-1)|d\theta\\ &\geq2\pi\lim\limits_{|z|\rightarrow1}(1-|z|^2)^{\beta}\log\frac{2}{1-|z|^2}|g'(z)|, \end{align*}

    where the Dominant Convergent Theorem is applied in the second line. This implies that \mathcal{B}^\beta_{\log^1, 0} . This completes the proof.

    Theorem 5.6. \Omega_{co}^{\alpha, \beta}(J_g) = \mathcal{B}^0_{\beta+\alpha-1} when 0 < \alpha < 1 .

    Proof. We firstly prove that \mathcal{B}^0_{\beta+\alpha-1}\subset\Omega_{co}^{\alpha, \beta}(J_g). For any g\in\mathcal{B}^0_{\beta+\alpha-1} , obviously, g\in\mathcal{B}^0_{\beta} and hence J_g is bounded by Lemma 2.3. Furthermore, by the boundedness of C_\varphi on \mathcal{B}^\beta (see Lemma 2.2), observe that

    \begin{align*} &\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{1-\alpha}}|(g\circ\varphi-g)'(z)|\\ &\leq\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\beta}|\varphi'(z)|\cdot(1-|\varphi(z)|^2)^{\beta+\alpha-1}|g'(\varphi(z))|\\ &+\frac{(1-|z|^2)^{1-\alpha}}{(1-|\varphi(z)|^2)^{1-\alpha}}\cdot(1-|z|^2)^{\beta+\alpha-1}|g'(z)|\rightarrow0 \end{align*}

    as |\varphi(z)|\rightarrow1 . The left part remains to be proved in a similar way from Theorem 5.3. This completes the proof.

    Proof. The proof is similar with Theorem 5.3.

    In the following, we partly answer the second problem. We only prove the first result and the other two results can be proved similarly.

    Proposition 5.7. If \alpha > 1 , g\in\mathcal{B}^{\beta-\alpha+1} ,

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}\frac{1}{(1-\max\{|\varphi(z)|^2,|z|^2\})^{\beta-\alpha+1}} = 0

    and \varphi has finite angular derivative at any point of the unit circle, then C_\varphi\propto_K C_\varphi(J_g).

    Proof. By Theorem 4.2, we only ought to check that

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-g)'(z)| = 0.

    Since \varphi has finite angular derivative at any point of the unit circle, it follows that

    \begin{align*} &\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|(g\circ\varphi-g)'(z)|\\ &\leq\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}|\varphi'(z)|\frac{\|g\|_{\beta-\alpha+1}}{(1-|\varphi(z)|^2)^{\beta-\alpha+1}}\\ &+\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}\frac{\|g\|_{\beta-\alpha+1}}{(1-|z|^2)^{\beta-\alpha+1}}\\ &\lesssim\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}}\frac{1}{(1-\max\{|\varphi(z)|^2,|z|^2\})^{\beta-\alpha+1}}\rightarrow0 \end{align*}

    as |\varphi(z)|\rightarrow1 .

    Proposition 5.8. If \alpha = 1 , g\in\mathcal{B}^\beta_{\log^1} ,

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta\log\frac{1}{1-|\varphi(z)|^2}}{\max\{(1-|\varphi(z)|^2)^\beta\log\frac{2}{1-|\varphi(z)|^2},(1-|z|^2)^\beta\frac{2}{1-|z|^2}\}} = 0

    and \varphi has finite angular derivative at any point of the unit circle, then C_\varphi\propto_K C_\varphi(J_g).

    Proposition 5.9. If 0 < \alpha < 1 , g\in\mathcal{B}^0_\beta ,

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{1-|z|^2}{1-|\varphi(z)|^2} = 0

    and \varphi has finite angular derivative at any point of the unit circle, then C_\varphi\propto_K C_\varphi(J_g).

    In this section, we answer the two questions of the compactly intertwining relations of I_g and C_\varphi respectively.

    Theorem 6.1. \Omega_{co}^{\alpha, \beta}(I_g) = H^\infty_{\beta-\alpha, 0} if \beta-\alpha\geq0 .

    Proof. We only prove that H^\infty_{\beta-\alpha, 0}\subset\Omega_{co}^{\alpha, \beta}(I_g). For any f\in H^\infty_{\beta-\alpha, 0} , obviously, I_g is bounded. Furthermore, by the boundedness of C_\varphi ,

    \begin{align*} &\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|(g\circ\varphi-g)(z)||\varphi'(z)|\\ &\leq\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\beta}|\varphi'(z)|\cdot(1-|\varphi(z)|^2)^{\beta-\alpha}|g(\varphi(z))|\\ &+\frac{(1-|z|^2)^\alpha}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)|\cdot(1-|z|^2)^{\beta-\alpha}|g(z)|\rightarrow0 \end{align*}

    as |\varphi(z)|\rightarrow1 , which implies that H^\infty_{\beta-\alpha, 0}\subset\Omega_{co}^{\alpha, \beta}(J_g). The left part remains to be proved in a similar way from Theorem 5.3. This completes the proof.

    Corollary 6.2. \Omega_{co}^{\alpha, \beta}(I_g) = \{0\} if \beta-\alpha < 0 .

    Proposition 6.3. If \beta-\alpha\geq0 , g\in H^\infty_{\beta-\alpha} and

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)|\frac{1}{(1-\max\{|\varphi(z)|^2,|z|^2\})^{\beta-\alpha}} = 0,

    then C_\varphi\propto_K C_\varphi(I_g) .

    Proof. The proof can be completed in a similar way from Proposition 5.7.

    Remark 6.4. Obviously, under the hypothesis of Proposition 6.3, we can further conclude that C_\varphi\in\mathcal{B}(\mathcal{B}^\alpha, \mathcal{B}^\alpha) and C_\varphi\in\mathcal{B}(\mathcal{B}^\beta, \mathcal{B}^\beta) are both compact linear operators.

    Theorem 6.5. If \beta-\alpha\geq0 , g\in A(\mathbb{D}) , then C_\varphi\propto_K C_\varphi(I_g) if and only if

    \lim\limits_{|\varphi(z)|\rightarrow1}\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)(\varphi(z)-z)| = 0,

    where A(\mathbb{D}) denotes the disk algebra.

    Proof. The necessity is obvious by setting g = Id in Theorem 4.6, where Id denoted the identity function. Next we prove the sufficiency. Suppose that h_n(z) = z^n , it follows that

    \begin{align*} &\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)(h_n\circ\varphi-h_n)(z)| = \frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)||\varphi(z)^n-z^n|\\ &\leq n\frac{(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^\alpha}|\varphi'(z)(\varphi(z)-z)|\rightarrow0 \end{align*}

    as |\varphi(z)|\rightarrow1 . For each g\in A(\mathbb{D}) , there exists a subsequence of \{h_n\} , denoted by \{h_n^{[g]}\} such that \lim_{n\rightarrow \infty}h_n^{[g]} = g. Thus,

    \begin{align*} &\|C_\varphi I_g-I_g C_\varphi\|_{e,\mathcal{B}^\alpha\rightarrow \mathcal{B}^\beta} \leq\|(C_\varphi I_g-I_g C_\varphi)-(C_\varphi I_{h_n^{[g]}}-I_{h_n^{[g]}}C_\varphi)\|_{\mathcal{B}^\alpha\rightarrow \mathcal{B}^\beta}\\ &\leq(\|C_\varphi\|_{\mathcal{B}^\alpha\rightarrow \mathcal{B}^\alpha}+\|C_\varphi\|_{\mathcal{B}^\beta\rightarrow \mathcal{B}^\beta}) \|I_g-I_{h_n^{[g]}}\|_{\mathcal{B}^\alpha\rightarrow \mathcal{B}^\beta}\\ &\leq(\|C_\varphi\|_{\mathcal{B}^\alpha\rightarrow \mathcal{B}^\alpha}+\|C_\varphi\|_{\mathcal{B}^\beta\rightarrow \mathcal{B}^\beta})\sup\limits_{\|f\|_{\mathcal{B}^\alpha}\leq1}||\int_0^z f'(t)(g(t)-h_n^{[g]}(t))dt||_{\mathcal{B}^\beta}\\ &\leq(\|C_\varphi\|_{\mathcal{B}^\alpha\rightarrow \mathcal{B}^\alpha}+\|C_\varphi\|_{\mathcal{B}^\beta\rightarrow \mathcal{B}^\beta})\|g-h_n^{[g]}\|_\infty\rightarrow0 \end{align*}

    as n\rightarrow \infty. This completes the proof.

    Main conclusions are given in the following.

    Theorem \quad \Omega_{co}^{\alpha, \beta}(J_g) = \mathcal{B}^0_{\beta-\alpha+1} if \alpha > 1 and \beta-\alpha+1\geq0 .

    Theorem \quad \Omega_{co}^{\alpha, \beta}(J_g) = \mathcal{B}^\beta_{\log^1, 0} if \alpha = 1 .

    Theorem \quad \Omega_{co}^{\alpha, \beta}(J_g) = \mathcal{B}^0_{\beta+\alpha-1} if 0 < \alpha < 1 .

    Theorem \quad \Omega_{co}^{\alpha, \beta}(I_g) = H^\infty_{\beta-\alpha, 0} if \beta-\alpha\geq0 .

    The author declares no conflicts of interest in this paper.



    [1] A. Biswas, A. Lambert, S. Petrovic, Extended eigenvalues and the Volterra operator, Glasg. Math. J., 44 (2002), 521–534. https://doi.org/10.1017/S001708950203015X doi: 10.1017/S001708950203015X
    [2] P. S. Bourdon, J. H. Shapiro, Intertwining relations and extended eigenvalues for analytic Toeplitz operators, Illinois J. Math., 52 (2008), 1007–1030. https://doi.org/10.1215/ijm/1254403728 doi: 10.1215/ijm/1254403728
    [3] R. E. Castillo, D. D. Clahane, J. F. Farías-López, J. C. Ramos-Fern\acute{a}ndez, Composition operators from logarithmic Bloch spaces to weighted Bloch spaces, Appl. Math. Comput., 219 (2013), 6692–6706. https://doi.org/10.1016/j.amc.2012.11.091 doi: 10.1016/j.amc.2012.11.091
    [4] C. C. Cowen, B. D. Maccluer, Composition operators on spaces of analytic functions, CRC Press, 1995.
    [5] S. Li, S. Stevi\acute{c}, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338 (2008), 1282–1295. https://doi.org/10.1016/j.jmaa.2007.06.013 doi: 10.1016/j.jmaa.2007.06.013
    [6] S. Li, S. Stevi\acute{c}, Riemann-Stieltjes type integral operators on the unit ball in {\mathbb C}^n, Complex Var. Elliptic Equ., 52 (2007), 495–517. https://doi.org/10.1080/17476930701235225 doi: 10.1080/17476930701235225
    [7] X. S. Li, S. Stević, Products of integral-type operators and composition operators between Bloch-type spaces, J. Math. Anal. Appl., 349 (2009), 596–610. https://doi.org/10.1016/j.jmaa.2008.09.014 doi: 10.1016/j.jmaa.2008.09.014
    [8] Y. Liu, Y. Yu, On a Li-Stević integral-type operator from Bloch-type spaces into logarithmic Bloch spaces, Integr. Transf. Spec. F., 21 (2010), 93–103. https://doi.org/10.1080/10652460903047468 doi: 10.1080/10652460903047468
    [9] Y. X. Liang, Z. H. Zhou, The Products of differentiation and composition operators from logarithmic Bloch spaces to mu-Bloch Spaces, B. Iran. Math. Soc., 46 (2020), 159–176. https://doi.org/10.1007/s41980-019-00248-w doi: 10.1007/s41980-019-00248-w
    [10] S. Ohno, K. Stroethoff, R. H. Zhao, Weighted composition operators between Bloch type spaces, Rocky MT J. Math., 33 (2003), 191–215. https://doi.org/10.1216/rmjm/1181069993 doi: 10.1216/rmjm/1181069993
    [11] J. C. Ramos-Fernández, Logarithmic Bloch spaces and their weighted composition operators, Rend. Circ. Mat. Palerm., 65 (2016), 159–174. https://doi.org/10.1007/s12215-015-0226-6 doi: 10.1007/s12215-015-0226-6
    [12] S. Stević, R. P. Agarwal, Weighted composition operators from logarithmic Bloch-type spaces to Bloch-type spaces, J. Inequal. Appl., 2009, 964814. https://doi.org/10.1155/2009/964814 doi: 10.1155/2009/964814
    [13] S. Stević, On new Bloch-type spaces, Appl. Math. Comput., 215 (2009), 841–849. https://doi.org/10.1016/j.amc.2009.06.009 doi: 10.1016/j.amc.2009.06.009
    [14] S. Stević, On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces, Nonlinear Anal.-Theor., 71 (2009), 6323–6342. https://doi.org/10.1016/j.na.2009.06.087 doi: 10.1016/j.na.2009.06.087
    [15] S. Stević, Norm and essential norm of an integral-type operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Math. Method. Appl. Sci., 2022, 1–11. https://doi.org/10.1002/mma.8487 doi: 10.1002/mma.8487
    [16] S. Stević, Z. J. Jiang, Weighted iterated radial composition operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, Math. Method. Appl. Sci., 45 (2022), 3083–3097. https://doi.org/10.1002/mma.7978 doi: 10.1002/mma.7978
    [17] S. Stević, On an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces on the unit ball, Appl. Math. Comput., 215 (2010), 3817–3823. https://doi.org/10.1016/j.amc.2009.11.022 doi: 10.1016/j.amc.2009.11.022
    [18] S. Stević, On operator P_\varphi^g from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput., 215 (2010), 4248–4255. https://doi.org/10.1016/j.amc.2009.12.048 doi: 10.1016/j.amc.2009.12.048
    [19] S. Stević, Weighted composition operators from the logarithmic weighted-type space to the weighted Bergman space in \mathbb{C}^n, Appl. Math. Comput., 216 (2010), 924–928.
    [20] S. Stević, Norm of some operators from logarithmic Bloch-type spaces to weighted-type spaces, Appl. Math. Comput., 218 (2012), 11163–11170. https://doi.org/10.1016/j.amc.2012.04.073 doi: 10.1016/j.amc.2012.04.073
    [21] C. Z. Tong, Z. H. Zhou, Compact intertwining relations for composition operators between the weighted Bergman spaces and the weighted Bloch spaces, J. Korean Math. Soc., 51 (2014), 125–135. https://doi.org/10.4134/JKMS.2014.51.1.125 doi: 10.4134/JKMS.2014.51.1.125
    [22] C. Z. Tong, Z. H. Zhou, Intertwining relations for Volterra operators on the Bergman space, Illinois J. Math., 57 (2013), 195–211. https://doi.org/10.1215/ijm/1403534492 doi: 10.1215/ijm/1403534492
    [23] C. Z. Tong, C. Yuan, Z. H. Zhou, Compact intertwining relations for composition operators on H^\infty and the Bloch spaces, New York J. Math., 24 (2018), 611–629.
    [24] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics 226, Springer, New York, 2005.
    [25] Z. H. Zhou, L. Zhang, H. G. Zeng, Essential commutativity of some integral and composition operators, Bull. Aust. Math. Soc., 85 (2012), 143–153. https://doi.org/10.1017/S0004972711002723 doi: 10.1017/S0004972711002723
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1514) PDF downloads(54) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog