Let $ {\mathbb{U}}^{n} $ be the unit polydisc in the complex vector space $ {\mathbb C}^n $. We defined the $ \alpha $-Bloch-Orlicz space on $ {\mathbb{U}}^n $ by using Young's function and showed that its norm is equivalent with a special $ \mu $-Bloch space. We also characterized the boundedness and compactness of the weighted composition operator on $ \alpha $-Bloch-Orlicz space. Our results generalized the corresponding results on the unit disk.
Citation: Fuya Hu, Chengshi Huang, Zhijie Jiang. Weighted composition operators on $ \alpha $-Bloch-Orlicz spaces over the unit polydisc[J]. AIMS Mathematics, 2025, 10(2): 3672-3690. doi: 10.3934/math.2025170
Let $ {\mathbb{U}}^{n} $ be the unit polydisc in the complex vector space $ {\mathbb C}^n $. We defined the $ \alpha $-Bloch-Orlicz space on $ {\mathbb{U}}^n $ by using Young's function and showed that its norm is equivalent with a special $ \mu $-Bloch space. We also characterized the boundedness and compactness of the weighted composition operator on $ \alpha $-Bloch-Orlicz space. Our results generalized the corresponding results on the unit disk.
| [1] |
F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math., 136 (2002), 203–236. https://doi.org/10.1007/s00605-002-0470-7 doi: 10.1007/s00605-002-0470-7
|
| [2] |
F. Bayart, Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math., 47 (2003), 725–743. https://doi.org/10.1215/ijm/1258138190 doi: 10.1215/ijm/1258138190
|
| [3] |
O. Brevig, K. Perfekt, A mean counting function for Dirichlet series and compact composition operators, Adv. Math., 385 (2021), 107775. https://doi.org/10.1016/j.aim.2021.107775 doi: 10.1016/j.aim.2021.107775
|
| [4] |
D. Chang, S. Li, S. Stević, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math., 11 (2007), 1251–1285. https://doi.org/10.11650/twjm/1500404862 doi: 10.11650/twjm/1500404862
|
| [5] | C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, New York: Routledge, 1995. https://doi.org/10.1201/9781315139920 |
| [6] |
A. García Ortiz, J. Ramos Fernández, Carleson condition in Bergman-Orlicz spaces, Complex Anal. Oper. Theory, 4 (2010), 257–269. https://doi.org/10.1007/s11785-009-0010-8 doi: 10.1007/s11785-009-0010-8
|
| [7] | Z. Hu, Composition operators between Bloch-type spaces in the polydisc, Sci. China Ser. A, 48A (2005), 268–282. |
| [8] |
Z. Jiang, S. Stević, Compact differences of weighted composition operators from weighted Bergman spaces to weighted-type spaces, Appl. Math. Comput., 217 (2010), 3522–3530. https://doi.org/10.1016/j.amc.2010.09.027 doi: 10.1016/j.amc.2010.09.027
|
| [9] | Z. Jiang, Weighted composition operators from weighted Bergman spaces to some spaces of analytic functions on the upper half plane, Util. Math., 93 (2014), 205–212. |
| [10] |
S. Li, S. Stević, Integral type operators from mixed-norm spaces to $\alpha$-Bloch spaces, Integr. Transf. Spec. F., 18 (2007), 485–493. https://doi.org/10.1080/10652460701320703 doi: 10.1080/10652460701320703
|
| [11] |
S. Li, S. Stević, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Math. Sci., 3 (2007), 371–385. https://doi.org/10.1007/s12044-007-0032-y doi: 10.1007/s12044-007-0032-y
|
| [12] |
S. Li, S. Stević, Weighted composition operators from ${\alpha}$-Bloch space to $H^\infty$ on the polydisk, Numer. Func. Anal. Opt., 28 (2007), 911–925. https://doi.org/10.1080/01630560701493222 doi: 10.1080/01630560701493222
|
| [13] |
S. Li, S. Stević, Compactness of Riemann-Stieltjes operators between $F(p, q, s)$ and ${\alpha}$-Bloch spaces, Publ. Math. Debrecen, 72 (2008), 111–128. https://doi.org/10.5486/PMD.2008.3803 doi: 10.5486/PMD.2008.3803
|
| [14] |
S. Li, S. Stević, Weighted composition operators between $H^\infty$ and ${\alpha}$-Bloch spaces in the unit ball, Taiwan. J. Math., 12 (2008), 1625–1639. https://doi.org/10.11650/twjm/1500405075 doi: 10.11650/twjm/1500405075
|
| [15] |
Y. Liang, Volterra-type operators from weighted Bergman-Orlicz spaces to $\beta$-Zygmund-Orlicz and $\gamma$-Bloch-Orlicz spaces, Monatsh. Math., 182 (2017), 877–897. https://doi.org/10.1007/s00605-016-0986-x doi: 10.1007/s00605-016-0986-x
|
| [16] |
M. Lindström, D. Norrbo, S. Stević, On compactness of operators from Banach spaces of holomorphic functions to Banach spaces, J. Math. Inequal., 18 (2024), 1153–1158. https://doi.org/10.7153/jmi-2024-18-64 doi: 10.7153/jmi-2024-18-64
|
| [17] |
Y. Liu, Y. Yu, Weighted composition operators between the Bloch type space and $H^{\infty}(\mathbb{B}_{X})$ of infinite dimensional bounded symmetric domains, Complex Anal. Oper. Theory, 13 (2019), 1595–1608. https://doi.org/10.1007/s11785-018-00884-w doi: 10.1007/s11785-018-00884-w
|
| [18] |
J. Ramos Fernández, Composition operatora on Bloch-Orlicz type spaces, Appl. Math. Comput., 217 (2010), 3392–3402. https://doi.org/10.1016/j.amc.2010.09.004 doi: 10.1016/j.amc.2010.09.004
|
| [19] | S. Stević, Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. Pure Appl. Math., 37 (2006), 343–355. |
| [20] |
S. Stević, Composition operators between $H^\infty$ and the $\alpha$-Bloch spaces on the polydisc, Z. Anal. Anwend., 25 (2006), 457–466. https://doi.org/10.4171/ZAA/1301 doi: 10.4171/ZAA/1301
|
| [21] | S. Stević, Boundedness and compactness of an integral operator in a mixed norm space on the polydisk, Sib. Math. J., 48 (2007), 559–569. https://doi.org/10.1007/s11202-007-0058-5 |
| [22] |
S. Stević, Integral-type operators from a mixed norm space to a Bloch-type space on the unit ball, Sib. Math. J., 50 (2009), 1098–1105. https://doi.org/10.1007/s11202-009-0121-5 doi: 10.1007/s11202-009-0121-5
|
| [23] |
S. Stević, Products of integral-type operators and composition operators from the mixed norm space to Bloch-type spaces, Sib. Math. J., 50 (2009), 726–736. https://doi.org/10.1007/s11202-009-0083-7 doi: 10.1007/s11202-009-0083-7
|
| [24] |
S. Stević, Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball, Appl. Math. Comput., 212 (2009), 499–504. https://doi.org/10.1016/j.amc.2009.02.057 doi: 10.1016/j.amc.2009.02.057
|
| [25] |
S. Stević, On operator $P_{\varphi}^g$ from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput., 215 (2010), 4248–4255. https://doi.org/10.1016/j.amc.2009.12.048 doi: 10.1016/j.amc.2009.12.048
|
| [26] |
S. Stević, R. Chen, Z. Zhou, Weighted composition operators between Bloch-type spaces in the polydisk, Mat. Sb., 201 (2010), 289. https://doi.org/10.1070/SM2010v201n02ABEH004073 doi: 10.1070/SM2010v201n02ABEH004073
|
| [27] |
S. Stević, A. Sharma, R. Krishan, Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces, J. Inequal. Appl., 2016 (2016), 219. https://doi.org/10.1186/s13660-016-1159-0 doi: 10.1186/s13660-016-1159-0
|
| [28] |
S. Stević, S. Ueki, Weighted composition operators and integral-type operators between weighted Hardy spaces on the unit ball, Discrete Dyn. Nat. Soc., 2009 (2009), 952831. https://doi.org/10.1155/2009/952831 doi: 10.1155/2009/952831
|
| [29] |
H. Zhou, Boundedness and compactness of specific weighted composition operators on the Zygmund-Orlicz space, J. Funct. Space., 2022 (2022), 5042795. https://doi.org/10.1155/2022/5042795 doi: 10.1155/2022/5042795
|
| [30] |
H. Zhou, Weighted composition operators on the logarithmic Bloch-Orlicz space, PLoS One, 19 (2024), e0303336. https://doi.org/10.1371/journal.pone.0303336 doi: 10.1371/journal.pone.0303336
|