The paper investigates mainly the asymptotic behavior of the non-autonomous random dynamical systems generated by the plate equations with memory driven by colored noise defined on Rn. Firstly, we prove the well-posedness of the equation in the natural energy space. Secondly, we define a continuous cocycle associated with the solution operator. Finally, we establish the existence and uniqueness of random attractors of the equation by the uniform tail-ends estimates methods and the splitting technique.
Citation: Xiao Bin Yao, Chan Yue. Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains[J]. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017
[1] | Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793 |
[2] | Ruonan Liu, Tomás Caraballo . Random dynamics for a stochastic nonlocal reaction-diffusion equation with an energy functional. AIMS Mathematics, 2024, 9(4): 8020-8042. doi: 10.3934/math.2024390 |
[3] | Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169 |
[4] | Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233 |
[5] | Jiangwei Zhang, Yongqin Xie . Asymptotic behavior for a class of viscoelastic equations with memory lacking instantaneous damping. AIMS Mathematics, 2021, 6(9): 9491-9509. doi: 10.3934/math.2021552 |
[6] | Tingting Liu, Tasneem Mustafa Hussain Sharfi, Qiaozhen Ma . Time-dependent asymptotic behavior of the solution for evolution equation with linear memory. AIMS Mathematics, 2023, 8(7): 16208-16227. doi: 10.3934/math.2023829 |
[7] | Xin Liu . Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339 |
[8] | Siru Li, Tian Xu, Ailong Wu . Existence and asymptotic properties of global solution for hybrid neutral stochastic differential delay equations with colored noise. AIMS Mathematics, 2025, 10(3): 6379-6405. doi: 10.3934/math.2025291 |
[9] | Peipei Wang, Yanting Wang, Fei Wang . Indirect stability of a 2D wave-plate coupling system with memory viscoelastic damping. AIMS Mathematics, 2024, 9(7): 19718-19736. doi: 10.3934/math.2024962 |
[10] | Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083 |
The paper investigates mainly the asymptotic behavior of the non-autonomous random dynamical systems generated by the plate equations with memory driven by colored noise defined on Rn. Firstly, we prove the well-posedness of the equation in the natural energy space. Secondly, we define a continuous cocycle associated with the solution operator. Finally, we establish the existence and uniqueness of random attractors of the equation by the uniform tail-ends estimates methods and the splitting technique.
The colored noise was first introduced in [23,24] in order to obtain the information of velocity of randomly moving particles, which cannot be obtained from the white noise since the the Wiener process is nowhere differentiable. Moreover, for many physical systems, the stochastic fluctuations are correlated and should be modeled by the colored noise rather than the white noise, see [20].
This paper is concerned the asymptotic behavior of the plate equation driven by nonlinear colored noise in unbounded domains:
{utt+αut+Δ2u+∫∞0μ(s)Δ2(u(t)−u(t−s))ds+νu+f(x,u) =g(x,t)+h(t,x,u)ζδ(θtω), t>τ, x∈Rn,u(x,τ)=u0(x),ut(x,τ)=u1,0(x), x∈Rn, t≤τ, | (1.1) |
where τ∈R, α,ν are positive constants, μ is the memory kernel, f and h are given nonlinearity, g∈L2loc(R,H1(Rn)), and ζδ is a colored noise with correlation time δ>0.
It is clear that (1.1) becomes a deterministic plate equation as μ≡0 and h≡0. In this case, we can characterize the long-time behavior of solutions by virtue of the concept of global attractors under the framework of semigroup. Some authors have extensively studied the existence of global attractors for the autonomous plate equation. For instance, the attractors of deterministic plate equations have been investigated in [2,8,12,14,30,32,33,34,35,44] in bounded domains. In [2,30,34,35], the authors considered global attractor for the plate equation with thermal memory; Khanmamedov investigated a global attractor for the plate equation with displacement-dependent damping in [8]; Liu and Ma obtained the existence of time-dependent strong pullback attractors for non-autonomous plate equations in [12,14]; Yang and Zhong studied the uniform attractor and global attractor for non-autonomous plate equations with nonlinear damping in [32,33], respectively; In [44], the author obtained global existence and blow-up of solutions for a Kirchhoff type plate equation with damping. For the case of unbounded domains, see refereces [9,10,13,31,42].
The existence and uniqueness of pathwise random attractors of stochastic plate equations have been studied in [15,16,21,22] in the case of bounded domains; and in [36,37,38,39,40,41] in the case of unbounded domains. In all these publications ([36,37,38,39,40,41]), only the additive white noise and linear multiplicative white noise were considered. Notice that the random equation (1.1) is driven by the colored noise rather than the white noise. In general, it is very hard to study the asymptotic dynamics of differential equations driven by nonlinear white noise, including the random attractors. Indeed, only when the white noise is linear, the stochastic equations can be transformed into a deterministic equations, then one can obtain the existence of random attractors of the plate equation (1.1). However, this transformation does not apply to stochastic equations driven by nonlinear white noise, and that is why we are currently unable to prove the existence of random attractors for systems with nonlinear white noise.
For the colored noise, even it is nonlinear, we are able to show system (1.1) has a random attractor in H2(Rn)×L2(Rn)×Rμ,2 (the definition of Rμ,2 see Section 3), which is quite different from the nonlinear white noise. The reader is referred to [6,7,26,27] for more details on random attractors of differential equations driven by colored noise. However, for the random plate equations driven by colored noise (1.1), we find that there is no results available to the existence of random attractors. In the present paper, we will prove that (1.1) is pathwise well-posed and generate a continuous cocycle, and the cocycle possesses a unique tempered random attractor. This is different from the corresponding stochastic system driven by white noise
utt+αut+Δ2u+∫∞0μ(s)Δ2(u(t)−u(t−s))ds+νu+f(x,u)=g(x,t)+h(t,x,u)∘dWdt,t>τ, x∈Rn, | (1.2) |
where the symbol ∘ indicates that the equation is understood in the sense of stratonovich integration. For (1.2), one can define a random dynamical system when h(⋅,⋅,u) is a linear function, see [41]. But for a general nonlinear function h, random dynamical system associated with (1.2) can not be defined due to the absence of appropriate transformation, hence asymptotic behavior of such stochastic equations has not been investigated until now by the random dynamical system approach. This paper indicates that the colored noise is much easier to handle than the white noise for studying pathwise dynamics of such stochastic equations.
The main purpose of the paper is establish the existence and uniqueness of measurable tempered random attractors in H2(Rn)×L2(Rn)×Rμ,2 for the dynamical system associated with (1.1). The key for achieving our goal is to establish the tempered pullback asymptotic compactness of solutions of (1.1) in H2(Rn)×L2(Rn)×Rμ,2. Involving to our problem (1.1), there are two essential difficulties in verifying the compactness. On the one hand, notice that system (1.1) is defined in the unbounded domain Rn where the noncompactness of Sobolev embeddings on unbounded domains gives rise to difficulty in showing the pullback asymptotic compactness of solutions, to get through of it, we use the tail-estimates method (as in[25]) and the splitting technique (see [3]) to obtain the pullback asymptotic compactness. On the other hand, there is no applicable compact embedding property in the "history'' space. In this case, we solve it with the help of a useful result in [19]. For our purpose, we introduce a new variable and an extend Hilbert space.
The rest of this article consists of four sections. In the next section, we define some functions sets and recall some useful results. In Section 3, we first establish the existence, uniqueness and continuity of solutions in initial data of (1.1) in H2(Rn)×L2(Rn)×Rμ,2, then define a non-autonomous random dynamical system based on the solution operator of problem (1.1). The last two section are devoted to derive necessary estimates of solutions of (1.1) and the existence of random attractors.
Throughout the paper, the inner product and the norm of L2(Rn) will be denoted by (⋅,⋅) and ||⋅||, respectively. The letters c and ci(i=1,2,…) are generic positive constants which may depend on some parameters in the contexts.
In this section, we define some functions sets and recall some useful results, see [4,17,18,28,29,43]. These results will be used to establish the asymptotic compactness of the solutions and attractor for the random plate equation defined on the entire space Rn.
From now on, we assume (Ω,F,P) is the canonical probability space where Ω={ω∈C(R,R):ω(0)=0} with compact-open topology, F is the Borel σ-algebra of Ω, and P is the Wiener measure on (Ω,F). Recall the standard group of transformations {θt}t∈R on Ω:
θtω(⋅)=ω(t+⋅)−ω(t), ∀ t∈R and ∀ ω∈Ω. |
Suppose Φ:R+×R×Ω×X→X is a continuous cocycle on X over (Ω,F,P,{θt}t∈R). Let D be a collection of some families of nonempty subset of X:
D={D={D(τ,ω)⊆X:D(τ,ω)≠∅,τ∈R,ω∈Ω}}. |
Suppose Φ has a D-pullback absorbing set K={K(τ,ω):τ∈R,ω∈Ω}∈D; that is, for every τ∈R, ω∈Ω and D∈D there exists T=T(τ,ω,D)>0 such that for all t≥T,
Φ(t,τ−t,θ−tω,D(τ−t,θ−tω))⊆K(τ,ω). | (2.1) |
Assume that
Φ(t,τ,ω,x)=Φ1(t,τ,ω,x)+Φ2(t,τ,ω,x), ∀ t∈R+, τ∈R, ω∈Ω, x∈X, | (2.2) |
where both Φ1 and Φ2 are mappings from R+×R×Ω×X to X.
Given k∈N, denote by Ok={x∈Rn:|x|<k} and ˜Ok={x∈Rn:|x|>k}. Let X be a Banach space with norm ‖⋅‖X which consists of some functions defined on Rn. Given a function u:Rn→R, the restrictions of u to Ok and ˜Ok are written as u|Ok and u|˜Ok, respectively. Denote by
XOk={u|Ok:u∈X} and X˜Ok={u|˜Ok:u∈X}. |
Suppose XOk and X˜Ok are Banach spaces with norm ‖⋅‖Ok and ‖⋅‖˜Ok, respectively, and
‖u‖X≤‖u|Ok‖Ok+‖u|˜Ok‖˜Ok, ∀ u∈X. | (2.3) |
We further assume that for every δ>0, τ∈R, and ω∈Ω, there exists t0=t0(δ,τ,ω,K)>0 and k0=k0(δ,τ,ω)≥1 such that
‖Φ(t0,τ−t0,θ−t0ω,x)|˜Ok0‖˜Ok0<δ, ∀ x∈K(τ−t0,θ−t0ω), | (2.4) |
and
Φ1(t0,τ−t0,θ−t0ω,K(τ−t0,θ−t0ω))|Ok0has a finite cover of balls of radius δ in X|Ok0. | (2.5) |
In addition, we assume that for every k∈N, t∈R+, τ∈R, and ω∈Ω, the set
Φ2(t,τ−t,θ−tω,K(τ−t,θ−tω)) is precompact in X|Ok. | (2.6) |
Theorem 2.1 [29]. If (2.1)-(2.6) hold, then the cocycle Φ is D-pullback asymptotically compact in X; that is, the sequence {Φ(tn,τ−tn,θ−tnω,xn)}∞n=1 is precompact in X for any τ∈R,ω∈Ω,D∈D,tn→∞ monotonically, and xn∈D(τ−tn,θ−tnω).
Theorem 2.2 [29]. Let D be an inclusion closed collection of some families of nonempty subsets of X, and Φ be a continuous cocycle on X over (Ω,F,P,{θt}t∈R). Then Φ has a unique D-pullback random attractor A in D if Φ is D-pullback asymptotically compact in X and Φ has a closed measurable D-pullback absorbing set K in D.
In this section, we first establish the existence of solution for problem (1.1), then define a non-autonomous cocycle of (1.1).
Given δ>0, let ζδ(θtω) be the unique stationary solution of the stochastic equation:
dζδ+1δζδdt=1δdW, | (3.1) |
where W is a two-sided real-valued Wiener process on (Ω,F,P). The process ζδ(θtω) is called the one-dimensional colored noise. Recall that there exists a θt-invariant subset of full measure (see [1]), which is still denoted by Ω, such that for all ω∈Ω, ζδ(θtω) is continuous in t∈R and
limt→±∞ζδ(θtω)t=0. |
Let −Δ denote the Laplace operator in Rn, A=Δ2 with the domain D(A)=H4(Rn). We can also define the powers Aν of A for ν∈R. The space Vν=D(Aν4) is a Hilbert space with the following inner product and norm
(u,v)ν=(Aν4u,Aν4v),‖⋅‖ν=‖Aν4⋅‖. |
Following Dafermos [5], we introduce a Hilbert "history" space Rμ,2=L2μ(R+,V2) with the inner product
(η1,η2)μ,2=∫∞0μ(s)(Δη1(s),Δη2(s))ds, ∀η1,η2∈Rμ,2, |
and new variables
η=ηt(x,s)=u(x,t)−u(x,t−s), (x,s)∈Rn×R+, t≥τ. |
By differentiation we have
ηtt(x,s)=−ηts(x,s)+ut(x,t), (x,s)∈Rn×R+, t≥τ. |
Then (1.1) can be rewritten as the equivalent system
{utt+αut+Δ2u+∫∞0μ(s)Δ2ηt(s)ds+νu+f(x,u) =g(x,t)+h(t,x,u)ζδ(θtω), t>τ, x∈Rn,ηtt+ηts=ut,u(x,τ)=u0(x),ut(x,τ)=u1,0(x), x∈Rn, t≤τ,ητ(x,s)=η0(x,s)=u(x,τ)−u(x,τ−s), x∈Rn,s∈R+. | (3.2) |
We introduce the following hypotheses to complete the uniform estimates.
Assume that the memory kernel function μ∈C1(R+)∩L1(R+), and satisfy the following conditions:
∀ s∈R+ and some ϱ>0.
μ(s)≥0,μ′(s)+ϱμ≤0, | (3.3) |
note that (3.3) implies ϖdef=‖μ‖L1(R+)=∫∞0μ(s)ds>0.
Let f:Rn×R→R be a continuous function and F(x,r)=∫r0f(x,s)ds for all x∈Rn,r∈R and s,s1,s2∈R,
lim inf|s|→∞infx∈Rn(f(x,s)s)>0, | (3.4) |
f(x,0)=0, |f(x,s1)−f(x,s2)|≤α1(φ(x)+|s1|p+|s2|p)|s1−s2|, | (3.5) |
F(x,s)+φ1(x)≥0, | (3.6) |
where p>0 for 1≤n≤4 and 0<p≤4n−4 for n≥5, α1 is a positive constant, φ1∈L1(Rn), and φ∈L∞(Rn).
Let h:R×Rn×R→×R be continuous such that for all t,s,s1,s2∈R and x∈Rn,
|h(t,x,s)|≤α2|s|+φ2(t,x), | (3.7) |
|h(t,x,s1)−h(t,x,s2)|≤α3|s1−s2|, | (3.8) |
where α2 and α3 are positive constants, and φ2∈L2loc(R,L2(Rn)).
By (3.3), the space Rμ,r=L2μ(R+,Vr)(r∈R) is a Hilbert space of Vr-valued functions on R+ with the inner product and norm
(ηt1,ηt2)μ,r=∫∞0μ(s)(Ar4ηt1(s),Ar4ηt2(s))ds,‖ηt‖2μ,r=∫∞0μ(s)(Ar4ηt(s),Ar4ηt(s))ds,∀ηt,ηt1,ηt2∈Vr, |
and on Rμ,r, the linear operator −∂s has domain
D(−∂s)={ηt∈H1μ(R+,Vr):η0=0} where H1μ(R+,Vr)={ηt:ηt(s),∂sηt∈L2μ(R+,Vr)}. |
Definition 3.1. Given τ∈R,ω∈Ω, T>0,u0∈H2(Rn), u1,0∈L2(Rn), and η0∈Rμ,2, a function z(t)=(u,ut,ηt) is called a (weak) solution of (3.2) if the following conditions are fulfilled:
(i) u(⋅,τ,ω,u0,u1,0)∈L∞(τ,τ+T;H2(Rn))∩C([τ,τ+T],L2(Rn)) with u(τ,τ,ω,u0,u1,0)=u0,ut(⋅,τ,ω,u0,u1,0)∈L∞(τ,τ+T;L2(Rn))∩C([τ,τ+T],L2(Rn)) with ut(τ,τ,ω,u0,u1,0)=u1,0 and ηt(⋅,τ,ω,η0,s)∈L∞(τ,τ+T;Rμ,2)∩C([τ,τ+T],L2(Rn)) with ηt(τ,τ,ω,η0,s)=η0.
(ii) u(t,τ,⋅,u0,u1,0):Ω→H2(Rn) is (F,B(H2(Rn))-measurable, ut(t,τ,⋅,u0,u1,0):Ω→L2(Rn) is (F,B(L2(Rn))-measurable, and ηt(t,τ,⋅,η0,s):Ω→Rμ,2 is (F,B(Rμ,2)-measurable.
(iii) For all ξ∈C∞0((τ,τ+T)×Rn),
−∫τ+Tτ(ut,ξt)dt+α∫τ+Tτ(ut,ξ)dt+∫τ+Tτ(Δu,Δξ)dt +∫∞0μ(s)(Δ2ηt(s),ξ)ds+ν∫τ+Tτ(u,ξ)dt+∫τ+Tτ∫Rnf(x,u(t,x))ξ(t,x)dxdt=∫τ+Tτ(g(t,x),ξ)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)ξ(t,x)dxdt. |
In order to investigate the long-time dynamics, we are now ready to prove the existence and uniqueness of solutions of (3.2). We first recall the following well-known existence and uniqueness of solutions for the corresponding linear plate equations of (1.1)(see [34,35]).
Lemma 3.1. Let u0∈H2(Rn),u1,0∈L2(Rn) and g∈L1(τ,τ+T;L2(Rn)) with τ∈R and T>0. Then the linear plate equation
utt+αut+Δ2u+∫∞0μ(s)Δ2(u(t)−u(t−s))ds+νu=g(t), τ<t≤τ+T, |
with the initial conditions
u(τ)=u0, and ut(τ)=u1,0, |
possesses a unique solution (u,ut,ηt) in the sense of Definition 3.1. In addition,
u∈C([τ,τ+T],H2(Rn)), ut∈C([τ,τ+T],L2(Rn)) and ηt∈C([τ,τ+T],Rμ,2) |
and there exists a positive number C depending only on ν (but independent of τ,T,u0,u1,0 and g) such that for all t∈[τ,τ+T],
‖u(t)‖H2(Rn)+‖ut(t)‖+‖ηt‖μ,2≤C(‖u0‖H2(Rn)+‖u1,0‖+∫τ+Tτ‖g(t)‖dt). | (3.9) |
Furthermore, the solution (u,ut,ηt) satisfies the energy equation
ddt(‖ut‖2+‖Δu‖2+ν‖u‖2+‖ηt‖2μ,2)=−2α‖ut‖2+∫∞0μ′(s)‖Δηt‖2ds+2(g(t),ut), | (3.10) |
and
ddt(u(t),ut(t))+α(u(t),ut(t))+‖Δu(t)‖2+(ηt(s),u(t))μ,2+ν‖u(t)‖2=‖ut(t)‖2+(g(t),u(t)), | (3.11) |
for almost all t∈[τ,τ+T].
Theorem 3.1. Let τ∈R,u0∈H2(Rn),u1,0∈L2(Rn) and η0∈Rμ,2. Suppose (3.3)-(3.8) hold, then:
(a) Problem (3.2) possesses a solution z(t)=(u,ut,ηt) in the sense of Definition 3.1;
(b) The solution z(t)=(u,ut,ηt) to problem (3.2) is unique, continuous in initial data in H2(Rn)×L2(Rn)×Rμ,2, and
u∈C([τ,τ+T],H2(Rn)), ut∈C([τ,τ+T],L2(Rn)) and ηt∈C([τ,τ+T],Rμ,2). | (3.12) |
Moreover, the solution z(t)=(u,ut,ηt) to problem (3.2) satisfies the energy equation:
ddt(‖ut‖2+ν‖u‖2+‖Δu‖2+‖ηt‖2μ,2+2∫RnF(x,u(t,x))dx)+2α‖ut‖2=∫∞0μ′(s)‖Δηt‖2ds+2(g(t),ut)+2ζδ(θtω)∫Rnh(t,x,u(t,x))ut(t,x)dx | (3.13) |
for almost all t∈[τ,τ+T].
Proof. The proof will be divided into four steps. We first construct a sequence of approximate solutions, and then derive uniform estimates, in the last two steps we take the limit of those approximate solutions to prove the uniqueness of solutions.
Step (i): Approximate solutions. Given k∈N, define a function ηk:R→R by
ηk(s)={s, if −k≤s≤k,k, if s>k,−k, if s<−k. | (3.14) |
Then for every fixed k∈N, the function ηk as defined by (3.14) is bounded and Lipschitz continuous; more precisely, for all s,s1,s2∈R
ηk(0)=0,|ηk(s)|≤|s| and |ηk(s1)−ηk(s2)|≤|s1−s2|. | (3.15) |
For all x∈Rn and t,s∈R, denote
fk(x,s)=f(x,ηk(s)), Fk(x,s)=∫s0fk(x,r)dr and hk(t,x,s)=h(t,x,ηk(s)). | (3.16) |
By (3.4) we know that there exists k0∈N such that for all |s|≥k0 and x∈Rn,
f(x,s)s>0, | (3.17) |
thus, for all k≥k0 and x∈Rn,
fk(x,k)>0, fk(x,−k)<0. | (3.18) |
By (3.5)-(3.6), (3.15)-(3.16) and (3.18) we know that for all s,s1,s2∈R and x∈Rn,
|fk(x,s1)−fk(x,s2)|≤α1(φ(x)+|s1|p+|s2|p)|s1−s2|, ∀ k≥1, | (3.19) |
and
Fk(x,s)+φ1(x)≥0, ∀ k≥k0. | (3.20) |
By (3.19) we get that for all s∈N and x∈Rn,
|Fk(x,s)|≤α1(φ(x)|s|2+|s|p+2), ∀ k≥1. | (3.21) |
By (3.7)-(3.8) and (3.15)-(3.16) we obtain that for all k≥1,t,s,s1,s2∈R and x∈Rn,
|hk(t,x,s)|≤α2|s|+φ2(t,x), | (3.22) |
|hk(t,x,s1)−hk(t,x,s2)|≤α3|s1−s2|. | (3.23) |
By (3.3) and (3.15)-(3.16), we find that for all k∈N,s,s1,s2∈N and x∈Rn,
|fk(x,s)|≤α1k(φ(x)+kp), | (3.24) |
|fk(x,s1)−fk(x,s2)|≤α1(φ(x)+2kp)|s1−s2|. | (3.25) |
For every k∈N, consider the following approximate system for uk,ηtk:
{∂2∂t2uk+α∂∂tuk+Δ2uk+∫∞0μ(s)Δ2ηtk(s)ds+νuk+fk(⋅,uk) =g(⋅,t)+hk(t,⋅,uk)ζδ(θtω), t>τ,uk(τ)=u0,∂∂tuk(τ)=u1,0,ητk(x,s)=η0(x,s). | (3.26) |
From (3.23)-(3.24), φ∈L∞(Rn) and the standard method (see, e.g., [11]), it follows that for each τ∈R,ω∈Ω,u0∈H2(Rn),u1,0∈L2(Rn) and η0∈Rμ,2, problem (3.26) has a unique global solution (uk,∂tuk,ηtk) defined on [τ,τ+T] for every T>0 in the sense of Definition 3.1. In particular, uk(⋅,τ,ω,u0)∈C([τ,τ+T],H2(Rn)) and uk(t,τ,ω,u0) is measurable with respect to ω∈Ω in H2(Rn) for every t∈[τ,τ+T]; ∂tuk(⋅,τ,ω,u0)∈C([τ,τ+T],L2(Rn)) and ∂tuk(t,τ,ω,u0) is measurable with respect to ω∈Ω in L2(Rn) for every t∈[τ,τ+T]; ηtk(⋅,τ,ω,η0,s)∈C([τ,τ+T],Rμ,2) and ηtk(t,τ,ω,η0,s) is measurable with respect to ω∈Ω in Rμ,2 for every t∈[τ,τ+T] Furthermore, the solution uk satisfies the energy equation:
ddt(‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)+2α‖∂tuk‖2=∫∞0μ′(s)‖Δηtk‖2ds+2(g(t),∂tuk)+2ζδ(θtω)∫Rnhk(t,x,uk(t,x))∂tuk(t,x)dx | (3.27) |
for almost all t∈[τ,τ+T]. Next, we use the energy equation (3.25) to derive uniform estimate on the sequence {uk,∂tuk,ηtk}∞k=1.
Step (ii): Uniform estimates.
For the last term on the right-hand side of (3.25), by (3.21) we have
2ζδ(θtω)∫Rnhk(t,x,uk(t,x))∂tuk(t,x)dx≤2|ζδ(θtω)|(α2∫Rn|uk(t,x)|⋅|∂tuk(t,x)|dx+∫Rn|φ2(t,x)|⋅|∂tuk(t,x)|dx)≤|ζδ(θtω)|(α2‖uk(t)‖2+(1+α2)‖∂tuk(t)‖2+‖φ2(t)‖2). | (3.28) |
By Young's inequality, we get
2(g(t),∂tuk)≤‖∂tuk(t)‖2+‖g(t)‖2. | (3.29) |
By (3.27)–(3.29) together with (3.3), it follows that for almost all t∈[τ,τ+T],
ddt(‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)+2α‖∂tuk‖2≤c1(1+|ζδ(θtω)|)(‖uk(t)‖2+‖∂tuk(t)‖2)+|ζδ(θtω)|⋅‖φ2(t)‖2+‖g(t)‖2, | (3.30) |
where c1>0 depends only on α2, but independent of k.
By (3.20) and (3.30) we obtain
ddt(‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)≤c2(1+|ζδ(θtω)|)(‖∂tuk(t)‖2+ν‖uk(t)‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)+|ζδ(θtω)|⋅‖φ2(t)‖2+2c1(1+|ζδ(θtω)|)‖φ1‖L1(Rn)+‖g(t)‖2, | (3.31) |
where c2>0 depends only on ν and α2, but independent of k.
Multiplying (3.31) with e−c2∫t0(1+|ζδ(θrω)|)dr, and then integrating the inequality on (τ,t), we have
‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx≤ec2∫tτ(1+|ζδ(θrω)|)dr(‖u1,0‖2+ν‖u0‖2+‖Δu0‖2+‖η0‖2μ,2+2∫RnFk(x,u0(x))dx)+∫tτec2∫ts(1+|ζδ(θrω)|)dr(|ζδ(θsω)|⋅‖φ2(s)‖2+2c1(1+|ζδ(θsω)|)‖φ1‖L1(Rn)+‖g(s)‖2)ds. | (3.32) |
By (3.21) we get, for all k≥1,
2∫Rn|Fk(x,u0(x))|dx≤2α1(‖φ‖L∞(Rn)‖u0‖2+‖u0‖p+2Lp+2(Rn))≤2α1(‖φ‖L∞(Rn)‖u0‖2+‖u0‖p+2H2(Rn)). | (3.33) |
By (3.32)-(3.33) imply that there exists a positive constant c3=c3(τ,T,φ,φ1,φ2,g,ω,δ,α1,ν) (but independent of k,u0,u1,0) such that for all t∈[τ,τ+T] and k≥1,
‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx≤c3+c3(1+‖u1,0‖2+‖u0‖p+2H2(Rn)+‖η0‖2μ,2), |
which along with (3.20) show that for all t∈[τ,τ+T] and k≥k0,
‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx≤c3+2‖φ1‖L1(Rn)+c3(1+‖u1,0‖2+‖u0‖p+2H2(Rn)+‖η0‖2μ,2), | (3.34) |
thus,
{uk}∞k=1 is bounded in L∞(τ,τ+T;H2(Rn)), | (3.35) |
{∂tuk}∞k=1 is bounded in L∞(τ,τ+T;L2(Rn)). | (3.36) |
{ηtk}∞k=1 is bounded in L∞(τ,τ+T;Rμ,2), | (3.37) |
By (3.19), there exists a positive constant c4=c4(p,n,α1) such that
∫Rn|fk(x,uk(t,x))|2dx≤c4(∫Rn|φ(x)|2dx+∫Rn|uk(t,x)|2(p+1)dx), |
which along with the embedding H2(Rn)↪L2(p+1)(Rn) and the assumption φ∈L∞(Rn) implies that there exists c5=c5(p,n,α1,φ)>0 (independent of k) such that
∫Rn|fk(x,uk(t,x))|2dx≤c5(1+‖uk(t)‖2(p+1)H2(Rn)). | (3.38) |
By (3.35) and (3.38) we see that
{fk(⋅,uk)}∞k=1 is bounded in L2(τ,τ+T;L2(Rn)). | (3.39) |
By (3.22) we get
∫Rn|hk(t,x,uk(t,x))|2dx≤2α2‖uk‖2+2‖φ2(t)‖2, |
which together with (3.35) shows that
{hk(⋅,⋅,uk)}∞k=1 is bounded in L2(τ,τ+T;L2(Rn)). | (3.40) |
By (3.35)–(3.37) and (3.39)-(3.40), it follows that there exists u∈L∞(τ,τ+T;H2(Rn)) with ∂tu∈L∞(τ,τ+T;L2(Rn)),κ1∈L2(τ,τ+T;L2(Rn)),κ2∈L2(τ,τ+T;L2(Rn)),vτ+T∈H2(Rn) and vτ+T1∈L2(Rn) such that
uk→u weak-star in L∞(τ,τ+T;H2(Rn)), | (3.41) |
∂tuk→∂tu weak-star in L∞(τ,τ+T;L2(Rn)), | (3.42) |
ηtk→ηt weak-star in L∞(τ,τ+T;Rμ,2), | (3.43) |
fk(⋅,uk)→κ1 weakly in L2(τ,τ+T;L2(Rn)), | (3.44) |
hk(⋅,⋅,uk)→κ2 weakly in L2(τ,τ+T;L2(Rn)), | (3.45) |
uk(τ+T)→vτ+T weakly in H2(Rn), | (3.46) |
∂tuk(τ+T)→vτ+T1 weakly in L2(Rn). | (3.47) |
It follows from (3.41)-(3.42) that there exists a subsequence which is still denoted uk, such that
uk(t,x)→u(t,x) for almost all (t,x)∈[τ,τ+T]×Rn. | (3.48) |
By (3.15) and (3.48) we get that for almost all (t,x)∈[τ,τ+T]×Rn,
|ηk(uk(t,x))−u(t,x)|≤|ηk(uk(t,x))−ηk(u(t,x))|+|ηk(u(t,x))−u(t,x)|≤|uk(t,x)−u(t,x)|+|ηk(u(t,x))−u(t,x)|→0, as k→∞. | (3.49) |
By (3.49), we have
fk(x,uk(t,x))→f(x,u(t,x)) for almost all (t,x)∈[τ,τ+T]×Rn, | (3.50) |
hk(t,x,uk(t,x))→h(t,x,u(t,x)) for almost all (t,x)∈[τ,τ+T]×Rn. | (3.51) |
It follows from (3.44)-(3.45), (3.50)-(3.51) that
fk(⋅,uk)→f(⋅,u) weakly in L2(τ,τ+T;L2(Rn)), | (3.52) |
hk(⋅,⋅,uk)→h(⋅,⋅,u) weakly in L2(τ,τ+T;L2(Rn)). | (3.53) |
Step (iii): Existence of solutions.
Choosing an arbitrary ξ∈C∞0((τ,τ+T)×Rn). By (3.26) we get
−∫τ+Tτ(∂tuk,ξt)dt+α∫τ+Tτ(∂tuk,ξ)dt+∫τ+Tτ(Δuk,Δξ)dt+ν∫τ+Tτ(uk,ξ)dt +∫τ+Tτ∫∞0μ(s)(Δ2ηtk(s),ξ)dsdt+∫τ+Tτ∫Rnfk(x,uk(t,x))ξ(t,x)dxdt=∫τ+Tτ(g(t),ξ)dt+∫τ+Tτ∫Rnhk(t,x,uk(t,x))ζδ(θtω)ξ(t,x)dxdt. | (3.54) |
Letting k→∞ in (3.54), it follows from (3.41)-(3.43) and (3.52)-(3.53) that for any ξ∈C∞0((τ,τ+T)×Rn),
−∫τ+Tτ(ut,ξt)dt+α∫τ+Tτ(ut,ξ)dt+∫τ+Tτ(Δu,Δξ)dt+ν∫τ+Tτ(u,ξ)dt +∫τ+Tτ∫∞0μ(s)(Δ2ηt(s),ξ)dsdt+∫τ+Tτ∫Rnf(x,u(t,x))ξ(t,x)dxdt=∫τ+Tτ(g(t),ξ)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)ξ(t,x)dxdt. | (3.55) |
Notice that
u∈L∞(τ,τ+T;H2(Rn)) and ∂tu∈L∞(τ,τ+T;L2(Rn)). | (3.56) |
By (3.56) we obtain
h(⋅,⋅,u)∈L2(τ,τ+T;L2(Rn)). | (3.57) |
We claim that
f(⋅,u) belongs to L∞(τ,τ+T;L2(Rn)). | (3.58) |
In fact, by (3.5) we obtain that there exists some c6=c6(p,n,α1,φ)>0 such that
‖f(⋅,u(t))‖2≤2α21(‖φ‖2L∞(Rn)‖u(t)‖2+‖u(t)‖2(p+1)L2(p+1)(Rn))≤c6(‖u(t)‖2+‖u(t)‖2(p+1)H2(Rn)), |
which along with (3.56) to obtain (3.58).
By (3.54)–(3.58), we can get
utt belongs to L2(τ,τ+T;H−2(Rn)), | (3.59) |
where H−2(Rn) is the dual space of H2(Rn).
Next, we prove (u,ut,ηt) satisfy the initial conditions (3.2)2.
By (3.26), we get that for any v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
∫τ+Tτ(uk(t),v)ψ″(t)dt+(∂tuk(τ+T),v)ψ(τ+T)−(uk(τ+T),v)ψ′(τ+T)+(u0,v)ψ′(τ)−(u1,0,v)ψ(τ)+α∫τ+Tτ(∂tuk(t),v)ψ(t)dt+∫τ+Tτ(Δuk(t),Δv)ψ(t)dt+∫τ+Tτ∫∞0μ(s)(Δ2ηtk(s),v)ψ(t)dsdt+ν∫τ+Tτ(uk(t),v)ψ(t)dt+∫τ+Tτ∫Rnfk(x,uk(t,x))v(x)ψ(t)dxdt=∫τ+Tτ(g(t),v)ψ(t)dt+∫τ+Tτ∫Rnhk(t,x,uk(t,x))ζδ(θtω)v(x)ψ(t)dxdt. | (3.60) |
Letting k→∞ in (3.60), by (3.41)-(3.43), (3.46)-(3.47) and (3.52)-(3.53) we obtain, for any v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
∫τ+Tτ(u(t),v)ψ″(t)dt+(vτ+T1,v)ψ(τ+T)−(vτ+T,v)ψ′(τ+T)+(u0,v)ψ′(τ)−(u1,0,v)ψ(τ)+α∫τ+Tτ(∂tu(t),v)ψ(t)dt+∫τ+Tτ(Δu(t),Δv)ψ(t)dt+∫τ+Tτ∫∞0μ(s)(Δ2ηt(s),v)ψ(t)dsdt+ν∫τ+Tτ(u(t),v)ψ(t)dt+∫τ+Tτ∫Rnf(x,u(t,x))v(x)ψ(t)dxdt=∫τ+Tτ(g(t),v)ψ(t)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)v(x)ψ(t)dxdt. | (3.61) |
By (3.55) we get that for any v∈C∞0(Rn),
ddt(ut,v)+α(ut,v)+(Δu,Δv)+∫∞0μ(s)(Δ2ηt(s),v)ds+ν(u,v)+∫Rnf(x,u(t,x))v(x)dx=(g(t),v)+∫Rnh(t,x,u(t,x))ζδ(θtω)v(x)dx. | (3.62) |
By (3.62) we find that for any v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
∫τ+Tτ(u(t),v)ψ″(t)dt+(∂tu(τ+T),v)ψ(τ+T)−(u(τ+T),v)ψ′(τ+T)+(u(τ),v)ψ′(τ)−(∂tu(τ),v)ψ(τ)+α∫τ+Tτ(∂tu(t),v)ψ(t)dt+∫τ+Tτ(Δu(t),Δv)ψ(t)dt+∫τ+Tτ∫∞0μ(s)(Δ2ηt(s),v)ψ(t)dsdt+ν∫τ+Tτ(u(t),v)ψ(t)dt+∫τ+Tτ∫Rnf(x,u(t,x))v(x)ψ(t)dxdt=∫τ+Tτ(g(t,⋅),v)ψ(t)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)v(x)ψ(t)dxdt, | (3.63) |
together with (3.61) to obtain, for v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
(vτ+T1,v)ψ(τ+T)−(vτ+T,v)ψ′(τ+T)+(u0,v)ψ′(τ)−(u1,0,v)ψ(τ)=(∂tu(τ+T),v)ψ(τ+T)−(u(τ+T),v)ψ′(τ+T)+(u(τ),v)ψ′(τ)−(∂tu(τ),v)ψ(τ). | (3.64) |
Let ψ∈C2([τ,τ+T]) such that ψ(τ+T)=ψ′(τ+T)=ψ′(τ)=0 and ψ(τ)=1, by (3.64), we have
(∂tu(τ),v)=(u1,0,v), ∀ v∈C∞0(Rn). | (3.65) |
Let ψ∈C2([τ,τ+T]) such that ψ(τ+T)=ψ′(τ+T)=ψ(τ)=0 and ψ′(τ)=1, by (3.64), we have
(u(τ),v)=(u0,v), ∀ v∈C∞0(Rn), | (3.66) |
which together with (3.65) that (u,ut,ηt) satisfies the initial conditions (3.2)2.
Through choosing proper ψ∈C2([τ,τ+T]), we can also obtain from (3.64) that
u(τ+T)=vτ+T, and ∂tu(τ+T)=vτ+T1, |
which along with (3.46)-(3.47) implies that
uk(τ+T)→u(τ+T) weakly in H2(Rn), | (3.67) |
∂tuk(τ+T)→∂tu(τ+T) weakly in L2(Rn), | (3.68) |
thereby,
ηtk(τ+T)→ηt(τ+T) weakly in Rμ,2. | (3.69) |
Similar to (3.67)-(3.69), one can verify that for any t∈[τ,τ+T],
uk(t)→u(t) weakly in H2(Rn), | (3.70) |
∂tuk(t)→∂tu(t) weakly in L2(Rn), | (3.71) |
ηtk→ηt weakly in Rμ,2. | (3.72) |
By (3.70)–(3.72), we get the that (u,ut,ηt) is a solution of (3.2) in the sense of Definition 3.1.
Step (iv): Uniqueness of solutions.
Let (u1,(u1)t,ηt1) and (u2,(u2)t,ηt2) be solutions to (3.2), denote v=u1−u2,ˉηt=ηt1−ηt2. Then we have
{vtt+αvt+Δ2v+∫∞0μ(s)Δ2ˉηt(s)ds+νv =f(⋅,u2)−f(⋅,u1)+(h(t,⋅,u1)−h(t,⋅,u2))ζδ(θtω),v(τ)=0,vt(τ)=0. | (3.73) |
by (3.10), we get
ddt(‖vt‖2+‖Δv‖2+‖ˉηt(s)‖2μ,2+ν‖v‖2)=−2α‖vt‖2+2(f(⋅,u2)−f(⋅,u1),vt)+2(h(t,⋅,u1)−h(t,⋅,u2),vt)ζδ(θtω). | (3.74) |
Since H2(Rn)↪L2(p+1)(Rn) for 0<p≤4n−4, by (3.5), we get
‖f(⋅,u2)−f(⋅,u1)‖≤α1‖φ‖L∞(Rn)‖v‖+α1(‖u1‖pH2(Rn)+‖u2‖pH2(Rn))‖v‖H2(Rn) |
and hence
2(f(⋅,u2)−f(⋅,u1),vt)≤2‖f(⋅,u2)−f(⋅,u1)‖‖vt‖≤α1(‖φ‖L∞(Rn)+‖u1‖pH2(Rn)+‖u2‖pH2(Rn))(‖v‖2H2(Rn)+‖vt‖2). | (3.75) |
By (3.8) we get
2(h(t,⋅,u1)−h(t,⋅,u2),vt)ζδ(θtω)≤‖h(t,⋅,u1)−h(t,⋅,u2)‖‖vt‖|ζδ(θtω)|≤2α3‖v‖‖vt‖|ζδ(θtω)|≤α3(‖v‖2+‖vt‖2)|ζδ(θtω)|. | (3.76) |
It follows from (3.74)–(3.76) that
ddt(‖vt‖2+‖Δv‖2+‖ˉηt(s)‖2μ,2+ν‖v‖2)≤c7(1+‖u1‖pH2(Rn)+‖u2‖pH2(Rn))(‖vt‖2+‖Δv‖2+‖ˉη(s)‖2μ,2+ν‖v‖2), | (3.77) |
where c7>0 depends on τ and T. Since u1,u2∈L∞(τ,τ+T;H2(Rn)), then applying the Gronwall's lemma on [τ,τ+T], we can obtain that the uniqueness of solution as well as the continuous dependence property of solution with initial data.
We now define a mapping Φ:R+×R×Ω×H2(Rn)×L2(Rn)×Rμ,2→H2(Rn)×L2(Rn)×Rμ,2 such that for all t∈R+,τ∈R,ω∈Ω and (u0,u1,0,η0)∈H2(Rn)×L2(Rn)×Rμ,2,
Φ(t,τ,ω,(u0,u1,0,η0))=(u(t+τ,τ,θ−τω,u0),ut(t+τ,τ,θ−τω,u1,0),ηt(t+τ,τ,θ−τω,η0,s)), | (3.78) |
where (u,ut,ηt) is the solution of (3.2). Then Φ is a continuous cocycle on H2(Rn)×L2(Rn)×Rμ,2 over (Ω,F,P,{θt}t∈R).
In this section, we derive necessary estimates of solutions of (3.2) under stronger conditions than (3.4)-(3.8) on the nonlinear functions f and h. These estimates are useful for proving the asymptotic compactness of the solutions and the existence of pullback random attractors.
From now on, we assume f satisfies: for all x∈Rn and s∈R,
f(x,s)s−γF(x,s)≥φ3(x), | (4.1) |
F(x,s)+φ1(x)≥α4|s|p+2, | (4.2) |
|∂sf(x,s)|≤ι|s|p+ς, |∂xf(x,s)|≤φ4(x), | (4.3) |
where p>0 for 1≤n≤4 and 0<p≤4n−4 for n≥5, γ∈(0,1], α4,ς are positive constants, φ3∈L1(Rn), and φ4∈L2(Rn)∩L∞(Rn),ι>0 will be denoted later.
By (3.5) and (4.1) we get that for all x∈Rn and s∈R,
γF(x,s)≤α1s2φ(x)+α1|s|p+2−φ3(x). | (4.4) |
Assume the nonlinearity h satisfies: for all x∈Rn and t,s∈R,
|h(t,x,s)|≤φ5(x)|s|+φ6(x), | (4.5) |
|∂xh(t,x,s)|+|∂sh(t,x,s)|≤φ7(x), | (4.6) |
where φ5∈L∞(Rn)∩L2+4p(Rn), φ6∈L2(Rn), and φ7∈L2(Rn)∩L∞(Rn).
Let D be the set of all tempered families of nonempty bounded subsets of H2(Rn)×L2(Rn)×Rμ,2. D={D(τ,Ω):τ∈R,ω∈Ω} is called tempered if for any c>0,
limt→+∞e−ct‖D(τ−t,θ−tω)‖H2(Rn)×L2(Rn)×Rμ,2=0, |
where ‖D‖H2(Rn)×L2(Rn)×Rμ,2=supξ∈D‖ξ‖H2(Rn)×L2(Rn)×Rμ,2.
Under α>0,ν>0,ϱ>0,ϖ>0 and γ∈(0,1], we can choose a sufficiently small positive constant ε such that
ε<min{1,ν,2α5,32ϱ,3ϱγ}, 12α−2ε−18εγ>0, ν−12νγ−εα+18ε2γ>0,ν−ε−εα+12ε2>0, 1−γ2−2ϖεϱ>0. | (4.7) |
We also assume
∫τ−∞e14εγs‖g(s)‖21ds<∞, ∀ τ∈R, | (4.8) |
limt→+∞e−ct∫0−∞e14εγs‖g(s−t)‖21ds=0, for ∀ c>0. | (4.9) |
Lemma 4.1. Let (3.3)–(3.5), (3.8), (4.1)-(4.2) and (4.5)–(4.8) hold. Then for any τ∈R,ω∈Ω and D∈D, there exists T=T(τ,ω,D)>0 such that for all t≥T, the solution of (3.2) satisfies
‖ut(τ,τ−t,θ−τω,u1,0)‖2+‖u(τ,τ−t,θ−τω,u0)‖2H2(Rn)+‖ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2+∫ττ−te14εγ(s−τ)(‖ut(s,τ−t,θ−τω,u1,0)‖2+‖u(s,τ−t,θ−τω,u0)‖2H2(Rn)+‖ηt(s,τ−t,θ−τω,η0,s)‖2μ,2)ds≤M1+M1∫0−∞e14εγs(1+‖g(s+τ)‖2+|ζδ(θsω)|2+4p)ds, |
where (u0,u1,0,η0)∈D(τ−t,θ−tω) and M1 is a positive constant independent of τ,ω and D.
Proof. By (3.11), (3.13), (4.1) and (4.10) we obtain, for almost all t∈[τ,τ+T],
ddt(‖ut‖2+ν‖u‖2+‖Δu‖2+‖ηt‖2μ,2+2∫RnF(x,u(t,x))dx+ε(u,ut))+(2α−ε)‖ut‖2+εα(u,ut)+ε‖Δu‖2+ε(ηt(s),u(t))μ,2−∫∞0μ′(s)‖Δηt‖2ds+εν‖u‖2+εγ∫RF(x,u(t,x))dx≤ε‖φ3‖L1(Rn)+(g(t)+h(t,⋅,u(t))ζδ(θtω),εu+2ut). | (4.10) |
By (3.3), (4.2) and (4.5) we have
ε(ηt(s),u(t))μ,2≥−ϱ4‖ηt‖2μ,2−ϖε2ϱ‖Δu‖2, | (4.11) |
−∫∞0μ′(s)‖Δηt‖2ds≥ϱ‖ηt‖2μ,2, | (4.12) |
![]() |
(4.13) |
where c4>0 depends on α,ν,γ,ε.
It follows from (4.10)-(4.13) and rewrite the result obtained, we have
![]() |
(4.14) |
where c5>0 depends on α,ν,γ,ε.
For the second term on the right-hand side of (4.14) we get
−ε(α−14εγ)(u,ut))≤ε(α−14εγ)‖u‖‖ut‖≤12ε2(α−14εγ)‖u‖2+12(α−14εγ)‖ut‖2. | (4.15) |
By (4.14)-(4.15) we get
ddt(‖ut‖2+ν‖u‖2+‖Δu‖2+‖ηt‖2μ,2+2∫RnF(x,u(t,x))dx+ε(u,ut))+14εγ(‖ut‖2+ν‖u‖2+‖Δu‖2+2∫RnF(x,u(t,x))dx+ε(u,ut))+(12α−ε−18εγ)‖ut‖2+ε(1−14γ−ϖεϱ)‖Δu‖2+14(3ϱ−εγ)‖ηt‖2μ,2+12ε(ν−12νγ−εα+14ε2γ)‖u‖2≤c5(1+‖g(t)‖2+|ζδ(θtω)|2+4p). | (4.16) |
Multiplying (4.14) by e14εγt, and then integrating the inequality [τ−t,τ], after replacing ω by θ−τω, we get
‖ut(τ,τ−t,θ−τω,u1,0)‖2+ν‖u(τ,τ−t,θ−τω,u0)‖2+‖Δu(τ,τ−t,θ−τω,u0)‖2+‖ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2+2∫RnF(x,u(τ,τ−t,θ−τω,u0))dx+ε(u(τ,τ−t,θ−τω,u0),ut(τ,τ−t,θ−τω,u1,0))+(12α−ε−18εγ)∫ττ−te14εγ(s−τ)‖ut(s,τ−t,θ−τω,u1,0)‖2ds+ε(1−14γ−ϖεϱ)∫ττ−te14εγ(s−τ)‖Δu(s,τ−t,θ−τω,u0)‖2ds+14(3ϱ−εγ)∫ττ−te14εγ(s−τ)‖ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2ds+12ε(ν−12νγ−εα+14ε2γ)∫ττ−te14εγ(s−τ)‖u(s,τ−t,θ−τω,u0)‖2ds≤e−14εγt(‖u1,0‖2+ν‖u0‖2+‖Δu0‖2+‖η0‖2μ,2+2∫RnF(x,u0)dx+ε(u0,u1,0))+c5∫ττ−te14εγ(s−τ)(1+‖g(s)‖2+|ζδ(θs−τω)|2+4p)ds. | (4.17) |
For the first term on the right-hand side of (4.17), by (4.4) we get
e−14εγt(‖u1,0‖2+ν‖u0‖2+‖Δu0‖2+‖η0‖2μ,2+2∫RnF(x,u0)dx+ε(u0,u1,0))≤c6e−14εγt(1+‖u1,0‖2+‖u0‖2H2(Rn+‖u0‖p+2H2(Rn)+‖η0‖2μ,2)≤c7e−14εγt(1+‖D(τ−t,θ−tω)‖p+2)→0, as t→∞. | (4.18) |
By (4.7) we get
|ε(u(τ,τ−t,θ−τω,u0),ut(τ,τ−t,θ−τω,u1,0))|≤12ε‖u(τ,τ−t,θ−τω,u0)‖2+12ε‖ut(τ,τ−t,θ−τω,u1,0)‖2≤12ν‖u(τ,τ−t,θ−τω,u0)‖2+12‖ut(τ,τ−t,θ−τω,u1,0)‖2, |
which along with (4.2) and (4.18) that for all t≥T,
12‖ut(τ,τ−t,θ−τω,u1,0)‖2+12ν‖u(τ,τ−t,θ−τω,u0)‖2+‖Δu(τ,τ−t,θ−τω,u0)‖2+‖ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2+(12α−ε−18εγ)∫ττ−te14εγ(s−τ)‖ut(s,τ−t,θ−τω,u1,0)‖2ds+ε(1−14γ−ϖεϱ)∫ττ−te14εγ(s−τ)‖Δu(s,τ−t,θ−τω,u0)‖2ds+14(3ϱ−εγ)∫ττ−te14εγ(s−τ)‖ηt(s,τ−t,θ−τω,η0,s)‖2μ,2ds+12ε(ν−12νγ−εα+14ε2γ)∫ττ−te14εγ(s−τ)‖u(s,τ−t,θ−τω,u0)‖2ds≤1+2‖φ1‖L1(Rn)+c5∫0−∞e14εγs(1+‖g(s+τ)‖2+|ζδ(θsω)|2+4p)ds. |
Then the proof is completed.
Based on Lemma 4.1, we can easily obtain the following Lemma that implies the existence of tempered random absorbing sets of Φ.
Lemma 4.2. If (3.3)-(3.5), (3.8), (4.1)-(4.2) and (4.5)-(4.9) hold, then the cocycle Φ possesses a closed measurable D-pullback absorbing set B={B(τ,ω):τ∈R,ω∈Ω}∈D, which is given by
B(τ,ω)={(u0,u1,0,η0)∈H2(Rn)×L2(Rn)×Rμ,2:‖u0‖2H2(Rn)+‖u1,0‖2+‖η0‖2μ,2≤L(τ,ω)}, | (4.19) |
where
L(τ,ω)=M1+M1∫0−∞e14εγs(1+‖g(s+τ)‖2+|ζδ(θsω)|2+4p)ds. |
In order to derive the uniform tail-estimates of the solutions of (3.2) for large space variables when times is large enough, we need to derive the regularity of the solutions in a space higher than H2(Rn).
Lemma 4.3. Let (3.3)–(3.5), (3.8), (4.1)-(4.2) and (4.5)–(4.8) hold. Then for any τ∈R,ω∈Ω and D∈D, there exists T=T(τ,ω,D)>0 such that for all t≥T, the solution of (3.2) satisfies
‖A14ut(τ,τ−t,θ−τω,u1,0)‖2+‖A34u(τ,τ−t,θ−τω,u0)‖2+‖A14ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2+∫ττ−te14εγ(s−τ)(‖A14ut(s,τ−t,θ−τω,u1,0)‖2+‖A34u(s,τ−t,θ−τω,u0)‖2)ds+∫ττ−te14εγ(s−τ)(‖A14ηt(s,τ−t,θ−τω,η0,s)‖2μ,2≤M2+M2∫0−∞e14εγs(1+‖g(s+τ)‖21+|ζδ(θsω)|2)ds, |
where (u0,u1,0,η0)∈D(τ−t,θ−τω) and M2 is a positive number independent of τ,ω and D.
Proof. Taking the inner product of (3.2)1 with A12u in L2(Rn), we have
ddt(A14ut,A14u)+α(A14ut,A14u)+‖A34u‖2+(∫∞0μ(s)Δ2η(s)ds,A12u)+ν‖A14u‖2+(f(x,u),A12u)=‖A14ut‖2+(g(t)+h(t,⋅,u)ζδ(θtω),A12u) | (4.20) |
Taking the inner product of (1.1)1 with A12ut in L2(Rn), we find that
ddt(‖A14ut‖2+ν‖A14u‖2+‖A34u‖2+‖A14ηt‖2μ,2)=∫∞0μ′(s)‖A34ηt‖2ds−2α‖A14ut‖2−2(f(x,u),A12ut)+2(g(t)+h(t,⋅,u)ζδ(θtω),A12ut) | (4.21) |
By (4.20) and (4.21), we get
ddt(‖A14ut‖2+ν‖A14u‖2+‖A34u‖2+‖A14ηt‖2μ,2+ε(A14ut,A14u))+(2α−ε)‖A14ut‖2+εα(A14ut,A14u)+ε‖A34u‖2+ε(∫∞0μ(s)Δ2η(s)ds,A12u)−∫∞0μ′(s)‖A34ηt‖2ds+εν‖A14u‖2+ε(f(x,u),A12u)+2(f(x,u),A12ut)=(g(t)+h(t,⋅,u)ζδ(θtω),εA12u+2A12ut). | (4.22) |
By (3.3), (4.5), (4.6) and Lemma 4.1, we have
ε(∫∞0μ(s)Δ2η(s)ds,A12u)≥−ϱ4‖A14ηt‖2μ,2−ϖε2ϱ‖A34u‖2, | (4.23) |
−∫∞0μ′(s)‖A34ηt‖2ds≥ϱ‖A14ηt‖2μ,2, | (4.24) |
(g(t)+h(t,⋅,u(t))ζδ(θtω),εA12u+2A12ut)≤(‖g(t)‖1+‖h(t,⋅,u(t))ζδ(θtω)‖1)(ε‖A14u‖+2‖A12ut‖)≤12εν‖A14u‖2+α‖A12ut‖2+(α−1+12εν−1)(‖g(t)‖1+‖h(t,⋅,u(t))ζδ(θtω)‖1)2≤12εν‖A14u‖2+α‖A14ut‖2+(2α−1+εν−1)‖g(t)‖21+(2α−1+εν−1)‖h(t,⋅,u(t))ζδ(θtω)‖21≤12εν‖A14u‖2+α‖A14ut‖2+(2α−1+εν−1)‖g(t)‖21+c8|ζδ(θtω)|2. | (4.25) |
From (4.3) and Lemma 4.1 yields
|ε(f(x,u),A12u)+2(f(x,u),A12ut)|≤2∫Rn|∂f∂u(x,u)⋅A14u⋅A14ut+∂f∂x(x,u)⋅A14ut|dx+ε∫Rn|∂f∂u(x,u)⋅A14u⋅A14u+∂f∂x(x,u)⋅A14u|dx≤2ι∫Rn|u|p⋅|A14u|⋅|A14ut|dx+2ς∫Rn|A14u|⋅|A14ut|dx+2∫Rn|φ4|⋅|A14ut|dx+ει∫Rn|u|p⋅|A14u|⋅|A14u|dx+ες∫Rn|A14u|⋅|A14u|dx+ε∫Rn|φ4|⋅|A14u|dx≤2ι‖u‖pL10p4⋅‖A14u‖L10⋅‖A14ut‖+2ς‖A14u‖⋅‖A14ut‖+ε4‖A14ut‖2+4ε‖φ4‖2+ει‖u‖p⋅‖A14u‖2+ες‖A14u‖2+ε2‖A14u‖2+ε2‖φ4‖2≤ε‖A14ut‖2+2Cp+1ι2εLp‖A34u‖2+c9, |
where the definition of L see Lemma 4.2, and C is the positive constant satisfying
C‖Δu‖2≥(∫Rn|u|10dx)15, C‖u‖22≥(∫Rn|u|10p4dx)210p. |
Choosing
0<ι2≤ε24LpCp+1, |
thus, we get
|ε(f(x,u),A12u)+2(f(x,u),A12ut)|≤ε‖A14ut‖2+ε2‖A34u‖2+c9. | (4.26) |
By (4.22)–(4.26), we get
ddt(‖A14ut‖2+ν‖A14u‖2+‖A34u‖2+‖A14ηt‖2μ,2+ε(A14ut,A14u))+(α−2ε)‖A14ut‖2+εα(A14ut,A14u)+ε(12−ϖεϱ)‖A34u‖2+34ϱ‖A14ηt‖2μ,2+ε2ν‖A14u‖2≤c10(1+‖g(t)‖21+|ζδ(θtω)|2), |
which can be rewritten as
ddt(‖A14ut‖2+ν‖A14u‖2+‖A34u‖2+‖A14ηt‖2μ,2+ε(A14ut,A14u))+14εγ(‖A14ut‖2+ν‖A14u‖2+‖A34u‖2+‖A14ηt‖2μ,2+ε(A14ut,A14u))+(α−2ε−14εγ)‖A14ut‖2+ε2(1−2ϖεϱ−γ2)‖A34u‖2+34(ϱ−13εγ)‖A14ηt‖2μ,2+ε2ν(1−γ2)‖A14u‖2≤c10(1+‖g(t)‖21+|ζδ(θtω)|2)−ε(α−14εγ)(A14ut,A14u). | (4.27) |
For the last term on the right-hand side of (4.27) we have
−ε(α−14εγ)(A14ut,A14u)≤ε(α−14εγ)‖A14u‖‖A14ut‖≤12ε2(α−14εγ)‖A14u‖2+12(α−14εγ)‖A14ut‖2, |
which together with (4.27), we get
ddt(‖A14ut‖2+ν‖A14u‖2+‖A34u‖2+‖A14ηt‖2μ,2+ε(A14ut,A14u))+14εγ(‖A14ut‖2+ν‖A14u‖2+‖A34u‖2+‖A14ηt‖2μ,2+ε(A14ut,A14u))+(α2−2ε−18εγ)‖A14ut‖2+ε2(1−2ϖεϱ−γ2)‖A34u‖2+34(ϱ−13εγ)‖A14ηt‖2μ,2+ε2(ν−ν2γ−ε2α+18ε2γ)‖A14u‖2≤c10(1+‖g(t)‖21+|ζδ(θtω)|2). |
Similar to the remainder of Lemma 4.1, we can obtain the desired result.
Lemma 4.4. Let (3.3)–(3.5), (3.8), (4.1)-(4.2) and (4.5)–(4.8) hold. Then for every η>0,τ∈R,ω∈Ω and D∈D, there exists T0=T0(η,τ,ω,D)>0 and m0=m0(η,τ,ω)≥1 such that for all t≥T0, m≥m0 and (u0,u1,0,η0)∈D(τ−t,θ−τω), the solution of (3.2) satisfies
∫|x|≥m(|ut(τ,τ−t,θ−τω,u1,0)|2+|u(τ,τ−t,θ−τω,u0)|2+|Δu(τ,τ−t,θ−τω,u0)|2+|ηt(τ,τ−t,θ−τω,η0,s)|2μ,2)dx<η. |
Proof. Let ρ:Rn→R be a smooth function such that 0≤ρ(x)≤1 for all x∈Rn, and
ρ(x)=0 for |x|≤12; and ρ(x)=1 for |x|≥1. |
For every m∈N, let
ρm(x)=ρ(x/m), x∈Rn. |
Then there exist positive constants c11 and c12 independent of m such that |∇ρm(x)|≤1mc11, |Δρm(x)|≤1mc12 for all x∈Rn and m∈N.
Similar to the energy equation (3.11), we have
ddt∫Rnρm(x)(|ut(t,x)|2+ν|u(t,x)|2+|Δu(t,x)|2+|ηt(s)|2μ,2+2F(x,u(t,x)))dx+2α∫Rnρm(x)|ut(t,x)|2dx−∫Rnρm(x)∫∞0μ′(s)|Δηt(s)|2dsdx=−4∫Rn∇ρm(x)⋅Δu(t,x)⋅∇ut(t,x)dx−2∫RnΔρm(x)⋅Δu(t,x)⋅ut(t,x)dx−4∫Rn∇ρm(x)∫∞0μ(s)Δηt(s)∇ut(t,x)dsdx−2∫RnΔρm(x)∫∞0μ(s)Δηt(s)ut(t,x)dsdx+2∫Rnρm(x)g(t,x)ut(t,x)dx+2ζδ(θtω)∫Rnρm(x)h(t,x,u(t,x))ut(t,x)dx. | (4.28) |
Taking the inner product of (3.2)1 with ρm(x)u in L2(Rn), we have
![]() |
(4.29) |
By (4.28)-(4.29) and (4.1), we get
![]() |
(4.30) |
Similar to the arguments of (4.11)-(4.13), we have the following estimates:
ε∫Rnρm(x)∫∞0μ(s)Δηt(s)Δu(t,x)dsdx≥−ϱ4∫Rnρm(x)|ηt|2μ,2dx−ϖε2ϱ∫Rnρm(x)|Δu|2dx, | (4.31) |
−∫Rnρm(x)∫∞0μ′(s)|Δηt(s)|2dsdx≥ϱ∫Rnρm(x)|ηt|2μ,2dx, | (4.32) |
|∫Rnρm(x)(g(t,x)+h(t,x,u(t,x))ζδ(θtω))(εu(t,x)+2ut(t,x))dx|≤12εν∫Rnρm(x)|u(t,x)|2dx+α∫Rnρm(x)|ut(t,x)|2dx+12εγ∫Rnρm(x)F(x,u(t,x))dx+c13∫Rnρm(x)(|g(t,x)|2+|φ1(x)|+|ζδ(θtω)φ6(x)|2+|ζδ(θtω)φ5(x)|2+4p)dx, | (4.33) |
where c13 depends only on α,ν,γ and ε.
By (4.30)–(4.33) we get
![]() |
(4.34) |
where c14>0 depends only on α,ν,γ and ε, but not on m.
By (4.34) we get
![]() |
(4.35) |
By Young's inequality we get
|ε(α−14γ)∫Rnρm(x)u(t,x)ut(t,x)dx|≤12ε2(α−14εγ)∫Rnρm(x)|u(t,x)|2dx+12(α−14εγ)∫Rnρm(x)|ut(t,x)|2dx. | (4.36) |
By (4.35)-(4.36) we get
![]() |
(4.37) |
By (4.7) and (4.37) we have
![]() |
(4.38) |
Multiplying (4.38) by e14εγt, and then integrating the inequality [τ−t,τ], after replacing ω by θ−τω, we get
∫Rnρm(x)(|ut(τ,τ−t,θ−τω,u1,0)|2+ν|u(τ,τ−t,θ−τω,u0)|2+|Δu(τ,τ−t,θ−τω,u0)|2+|ηt(τ,τ−t,θ−τω,η0,s)|2μ,2+2F(x,u(τ,τ−t,θ−τω,u0))+εu(τ,τ−t,θ−τω,u0)ut(τ,τ−t,θ−τω,u1,0))dx≤e−14εγt∫Rnρm(x)(|u1,0|2+ν|u0|2+|Δu0|2+|η0|2μ,2+2F(x,u0(x))+εu0(x)u1,0(x))dx+c14∫ττ−te14εγ(s−τ)∫Rnρm(x)(|g(s,x)|2+|φ1(x)|+|φ3(x)|)dxds+c14∫ττ−te14εγ(s−τ)∫Rnρm(x)(|ζδ(θs−τω)φ6(x)|2+|ζδ(θs−τω)φ5(x)|2+4p)dxds+2c14m∫ττ−te14εγ(s−τ)(‖u(τ,τ−t,θ−τω,u0)‖2H2(Rn)+‖ut(τ,τ−t,θ−τω,u1,0)‖2H1(Rn)+‖ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2)ds. | (4.39) |
Next, we estimate the right-hand side of (4.39). By (4.18), we know that there exists T1(η,τ,ω,D)>0 such that for all t≥T1,
e−14εγt∫Rnρm(x)(|u1,0|2+ν|u0|2+|Δu0|2+|η0|2μ,2+2F(x,u0(x))+εu0(x)u1,0(x))dx<η. | (4.40) |
For the second and the third terms on the right-hand side of (4.39) we get
c14∫ττ−te14εγ(s−τ)∫Rnρm(x)(|g(s,x)|2+|φ1(x)|+|φ3(x)|)dxds+c14∫ττ−te14εγ(s−τ)∫Rn(ρm(x)|ζδ(θs−τω)φ6(x)|2+|ζδ(θs−τω)φ5(x)|2+4p)dxds≤c14∫τ−∞e14εγ(s−τ)∫|x|≥12m(|g(s,x)|2+|φ1(x)|+|φ3(x)|)dxds+c14∫τ−∞e14εγ(s−τ)∫|x|≥12m(|ζδ(θs−τω)φ6(x)|2+|ζδ(θs−τω)φ5(x)|2+4p)dxds≤c14∫τ−∞e14εγ(s−τ)∫|x|≥12m(|g(s,x)|2+|φ1(x)|+|φ3(x)|)dxds+c14∫0−∞e14εγs|ζδ(θsω)|2ds∫|x|≥12m|φ6(x)|2dx+c14∫0−∞e14εγs|ζδ(θsω)|2+4pds∫|x|≥12m|φ5(x)|2+4pdx. | (4.41) |
By (4.8) and the conditions of φi(x)(i=1,3,5,6) satisfy, we know that there exists m1=m1(η,τ,ω)≥1 such that for all m≥m1, the right-hand of side of (4.39) is bounded by η, i.e.,
c14∫ττ−te14εγ(s−τ)∫Rnρm(x)(|g(s,x)|2+|φ1(x)|+|φ3(x)|)dxds+c14∫ττ−te14εγ(s−τ)∫Rn(ρm(x)|ζδ(θs−τω)φ6(x)|2+|ζδ(θs−τω)φ5(x)|2+4p)dxds<η. | (4.42) |
For the last term in (4.39), by Lemma 4.1 and Lemma 4.3, we know that there exists T2(η,τ,ω,D)≥T1 such that for all t≥T2,
2c14m∫ττ−te14εγ(s−τ)(‖u(τ,τ−t,θ−τω,u0)‖2H2(Rn)+‖ut(τ,τ−t,θ−τω,u1,0)‖2H1(Rn)+‖ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2)ds≤c15m, |
where c15>0 depends only on α,ν,γ,ε,τ and ω, but not on m. Thus, there exists m2=m2(η,τ,ω)≥m1 such that for all m≥m2 and t≥T2,
2c14m∫ττ−te14εγ(s−τ)(‖u(τ,τ−t,θ−τω,u0)‖2H2(Rn)+‖ut(τ,τ−t,θ−τω,u1,0)‖2H1(Rn)+‖ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2)ds≤η, | (4.43) |
By (4.39), (4.40), (4.42) and (4.43) we see that for all m≥m2 and t≥T2,
∫Rnρm(x)(|ut(τ,τ−t,θ−τω,u1,0)|2+ν|u(τ,τ−t,θ−τω,u0)|2+|Δu(τ,τ−t,θ−τω,u0)|2+|ηt(τ,τ−t,θ−τω,η0,s)|2μ,2+2F(x,u(τ,τ−t,θ−τω,u0))+εu(τ,τ−t,θ−τω,u0)ut(τ,τ−t,θ−τω,u1,0))dx<3η. | (4.44) |
By (4.7) we have
ε∫Rnρm(x)u(τ,τ−t,θ−τω,u0)ut(τ,τ−t,θ−τω,u1,0)dx≤12ν∫Rnρm(x)|u(τ,τ−t,θ−τω,u0)|2dx+12∫Rnρm(x)|ut(τ,τ−t,θ−τω,u1,0)|2dx, |
which together with (4.2) and (4.44) yields that for all m≥m2 and t≥T2,
∫Rnρm(x)(12|ut(τ,τ−t,θ−τω,u1,0)|2+12ν|u(τ,τ−t,θ−τω,u0)|2+|Δu(τ,τ−t,θ−τω,u0)|2+|ηt(τ,τ−t,θ−τω,η0,s)|2μ,2)dx≤3η+2∫Rnρm(x)φ1(x)dx. | (4.45) |
Since φ1∈L1(Rn), there exists m3=m3(η,τ,ω)≥m2 such that for all m≥m3,
2∫Rnρm(x)φ1(x)dx=2∫|x|≥12mρm(x)φ1(x)dx≤2∫|x|≥12m|φ1(x)|dx<η. | (4.46) |
From (4.45)-(4.46) we obtain, for all m≥m3 and t≥T2,
∫|x|≥mρm(x)(12|ut(τ,τ−t,θ−τω,u1,0)|2+12ν|u(τ,τ−t,θ−τω,u0)|2+|Δu(τ,τ−t,θ−τω,u0)|2+|ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2|)dx≤∫Rnρm(x)(12|ut(τ,τ−t,θ−τω,u1,0)|2+12ν|u(τ,τ−t,θ−τω,u0)|2+|Δu(τ,τ−t,θ−τω,u0)|2+|ηt(τ,τ−t,θ−τω,η0,s)‖2μ,2|)dx<4η. |
In this section, we present the existence and uniqueness of D-pullback random attractors of (3.2).
Let z=(u,ut,ηt) be the solution of (3.2). Denote u=˜v+v,ηt=˜ηt+η where (˜v,˜ηt) and (v,ηt) are the solutions of the following equations, respectively,
{˜vtt+α˜vt+Δ2˜v+∫∞0μ(s)Δ2˜ηt(s)ds+ν˜v=g(t), t>τ,˜v(τ)=u0,˜vt(τ)=u1,0,˜ηt(τ)=η0 | (5.1) |
and
{vtt+αvt+Δ2v+∫∞0μ(s)Δ2ηt(s)ds+νv=−f(x,u)+h(t,x,u)ζδ(θtω), t>τ,v(τ)=0,vt(τ)=0,ηt(τ)=0. | (5.2) |
Lemma 5.1. Suppose (3.3), (4.7)-(4.8) hold. Then for every τ∈R,ω∈Ω and D∈D, there exists T=T(τ,ω,D)>0 such that for all t≥T and r∈[−t,0], the solution ˜v of (5.1) satisfies
‖˜v(τ+r,τ−t,θ−τω,u0)‖2H2(Rn)+‖˜vr(τ+r,τ−t,θ−τω,u1,0)‖2+‖˜ηt(τ+r,τ−t,θ−τω,η0,s)‖2μ,2≤e−12εrM2(1+∫0∞e12εs‖g(s+τ)‖2ds), |
where (u0,u1,0)∈D(τ−t,θ−tω) and M2 is a positive number independent of τ,ω and D.
Proof. From (3.10)-(3.11) and (5.1) we see that
ddt(‖˜vt‖2+‖Δ˜v‖2+‖˜ηt‖2μ,2+ν‖˜v‖2+ε(˜v(t),˜vt(t)))+(2α−ε)‖˜vt‖2+ε‖Δ˜v‖2+εν‖˜v‖2+εα(˜v(t),˜vt(t))+ε(˜ηt(s),˜v(t))μ,2−∫∞0μ′(s)‖Δ˜ηt‖2ds=(g(t),ε˜v(t)+2˜vt(t))≤ε‖g(t)‖‖˜v(t)‖+2‖g(t)‖‖˜vt(t)‖≤12ε2‖˜v(t)‖2+α‖˜vt(t)‖2+(12+α−1)‖g(t)‖2. | (5.3) |
In addition, we get
|(α−12ε)ε(˜v(t),˜vt(t))|≤12(α−12ε)(ε2‖˜v(t)‖2+‖˜vt(t)‖2). | (5.4) |
By (4.11)-(4.12) and (5.3)-(5.4) we have
ddt(‖˜vt‖2+‖Δ˜v‖2+‖˜ηt‖2μ,2+ν‖˜v‖2+ε(˜v(t),˜vt(t)))+(12α−34ε)‖˜vt‖2+ε(1−ϖεϱ)‖Δ˜v‖2+3ϱ4‖˜ηt‖2μ,2+ε(ν−12ε−12εα+14ε2)‖˜v‖2+12ε2(˜v(t),˜vt(t))≤(12+α−1)‖g(t)‖2, |
which can be rewritten as
ddt(‖˜vt‖2+‖Δ˜v‖2+‖˜ηt‖2μ,2+ν‖˜v‖2+ε(˜v(t),˜vt(t)))+12ε(‖˜vt‖2+‖Δ˜v‖2+‖˜ηt‖2μ,2+ν‖˜v‖2+ε(˜v(t),˜vt(t)))+(12α−54ε)‖˜vt‖2+12ε(1−2ϖεϱ)‖Δ˜v‖2+34(ϱ−23ε)‖˜ηt‖2μ,2+12ε(ν−ε−εα+12ε2)‖˜v‖2≤(12+α−1)‖g(t)‖2. | (5.5) |
It follows from (4.7) and (5.5) that
ddt(‖˜vt‖2+‖Δ˜v‖2+‖˜ηt‖2μ,2+ν‖˜v‖2+ε(˜v(t),˜vt(t)))+12ε(‖˜vt‖2+‖Δ˜v‖2+‖˜ηt‖2μ,2+ν‖˜v‖2+ε(˜v(t),˜vt(t)))≤(12+α−1)‖g(t)‖2. | (5.6) |
Applying Gronwall's lemma to (5.6), we get for all τ∈R,t≥0,r∈[−t,0] and ω∈Ω,
‖˜vr(τ+r,τ−t,θ−τω,u1,0)‖2+‖Δ˜v(τ+r,τ−t,θ−τω,u0)‖2+‖˜ηt(τ+r,τ−t,θ−τω,η0,s)‖2μ,2+ν‖˜v(τ+r,τ−t,θ−τω,u0)‖2+ε(˜v(τ+r,τ−t,θ−τω,u0),˜vr(τ+r,τ−t,θ−τω,u1,0))≤e−12εre−12εt(‖u1,0‖2+ν‖u0‖2+‖Δu0‖2+ε(u0,u1,0))+(12+α−1)e−12εr∫τ+rτ−te12ε(s−τ)‖g(s)‖2ds. | (5.7) |
By (4.7) we have
ε(˜v(τ+r,τ−t,θ−τω,u0),˜vr(τ+r,τ−t,θ−τω,u1,0))≤12ε‖˜v(τ+r,τ−t,θ−τω,u0)‖2+12ε‖˜vr(τ+r,τ−t,θ−τω,u1,0)‖2≤12ν‖˜v(τ+r,τ−t,θ−τω,u0)‖2+12‖˜vr(τ+r,τ−t,θ−τω,u1,0)‖2. | (5.8) |
By (5.7)-(5.8) we see that for all τ∈R,t≥0,r∈[−t,0] and ω∈Ω,
12‖˜vr(τ+r,τ−t,θ−τω,u1,0)‖2+‖Δ˜v(τ+r,τ−t,θ−τω,u0)‖2+‖˜ηt(τ+r,τ−t,θ−τω,η0,s)‖2μ,2+12ν‖˜v(τ+r,τ−t,θ−τω,u0)‖2≤e−12εre−12εt(‖u1,0‖2+ν‖u0‖2+‖Δu0‖2+‖η0‖2μ,2+ε(u0,u1,0))+(12+α−1)e−12εr∫τ+rτ−te12ε(s−τ)‖g(s)‖2ds. | (5.9) |
Similar to (4.16), one can verify that
e−12εt(‖u1,0‖2+ν‖u0‖2+‖Δu0‖2+‖η0‖2μ,2+ε(u0,u1,0))→0, as t→∞, |
which along with (5.9) yields the desire result.
Based on Lemma 5.1, we infer that system (5.1) has a tempered pullback random absorbing set.
Lemma 5.2. Suppose (3.3), (4.8)-(4.9) hold, then (5.1) possesses a closed measurable D-pullback absorbing set B1={B1(τ,ω):τ∈R,ω∈Ω}∈D, which is given by
B1(τ,ω)={(u0,u1,0,η0)∈H2(Rn)×L2(Rn)×Rμ,2:‖u0‖2H2(Rn)+‖u1,0‖2+‖η0‖2μ,2≤L1(τ,ω)}, | (5.10) |
where
L1(τ,ω)=M2+M2∫0−∞e12εs‖g(s+τ)‖2ds. |
Lemma 5.3. Suppose (4.8)-(4.9) hold, then the sequence of the solutions to (5.1)
{˜v(τ,τ−tn,θ−τω,u(n)0),˜vt(τ,τ−tn,θ−τω,u(n)1,0),˜ηt(τ,τ−tn,θ−τω,η(0n))}∞n=1 |
converges in H2(Rn)×L2(Rn)×Rμ,2 for any τ∈R,ω∈Ω,D∈D,tn→∞ monotonically, and (u(n)0,u(n)1,0,η(0n))∈D(τ−tn,θ−tnω).
Proof. Let m>n and
vn,m(t,τ−tn,θ−τω)=˜v(t,τ−tn,θ−τω,u(n)0)−˜v(t,τ−tm,θ−τω,u(m)0)=˜v(t,τ−tn,θ−τω,u(n)0)−˜v(t,τ−tn,θ−τω,˜v(τ−tn,τ−tm,θ−τω,u(m)0)ηtn,m(t,τ−tn,θ−τω,s)=˜ηt(t,τ−tn,θ−τω,η(0n),s)−˜ηt(t,τ−tm,θ−τω,η(0m),s)=˜ηt(t,τ−tn,θ−τω,η(0n),s)−˜ηt(t,τ−tn,θ−τω,s,˜ηt(τ−tn,τ−tm,θ−τω,η(0m),s). | (5.11) |
for t≥τ−tn.
by (5.1) we get
{∂2ttvn,m(t)+α∂tvn,m(t)+Δ2vn,m(t)+∫∞0μ(s)Δ2ηtn,mds+νvn,m(t)=0, t>τ−tn,vn,m(τ−tn)=u(n)0−˜v(τ−tn,τ−tm,θ−τω,u(m)0),∂tvn,m(τ−tn)=u(n)1,0−˜vt,ητn,m(τ−tn,s)=η(0n)−˜ηt(τ−tn,τ−tm,θ−τω,η(0m),s). | (5.12) |
Similar to (5.9) with r=0,t=tn and g=0, we obtain
12‖∂tvn,m(τ,τ−tn,θ−τω)‖2+‖Δvn,m(τ,τ−tn,θ−τω)‖2+‖ηtn,m(τ,τ−tn,θ−τω,s)‖2μ,2+12νvn,m(τ,τ−tn,θ−τω)‖2≤e−12εtn(‖∂tvn,m(τ−tn)‖2+‖vn,m(τ−tn)‖2+‖Δvn,m(τ−tn)‖2+‖ητn,m(τ−tn,s)‖2μ,2), | (5.13) |
which together with (5.12)2, we get
‖∂tvn,m(τ,τ−tn,θ−τω)‖2+2‖Δvn,m(τ,τ−tn,θ−τω)‖2+‖ηtn,m(τ,τ−tn,θ−τω,s)‖2μ,2+νvn,m(τ,τ−tn,θ−τω)‖2≤2e−12εtn(‖˜vt(τ−tn,τ−tm,θ−τω,u(m)1,0‖2+‖˜v(τ−tn,τ−tm,θ−τω,u(m)0‖2H2)+‖˜ηt(τ−tn,τ−tm,θ−τω,η(0m),s)‖2μ,2)+2e−12εtn(‖u(n)1,0‖2+‖u(n)0‖2+‖Δu(n)0‖2+‖η(0n)‖2μ,2). | (5.14) |
By (5.9) with r=−tn, and t=tm, we obtain
‖˜vt(τ−tn,τ−tm,θ−τω,u(m)1,0)‖2+2‖Δ˜v(τ−tn,τ−tm,θ−τω,u(m)0)‖2+‖˜ηt(τ−tn,τ−tm,θ−τω,η(0m))‖2μ,2+ν‖˜v(τ−tn,τ−tm,θ−τω,u(m)0)‖2≤2e12εtne−12εtm(‖u(n)1,0‖2+ν‖u(n)0‖2+‖Δu(n)0‖2+‖η(0n)‖2μ,2+ε(u(n)0,u(n)1,0))+(1+2α−1)e12εtn∫τ−tnτ−tme12ε(s−τ)‖g(s)‖2ds. | (5.15) |
It follows from (5.14)-(5.15) that for m>n→∞,
‖∂tvn,m(τ,τ−tn,θ−τω)‖2+‖vn,m(τ,τ−tn,θ−τω)‖2H2(Rn)+‖ηtn,m(τ,τ−tn,θ−τω,s)‖2μ,2→0, |
together with (5.11) implies {˜v(τ,τ−tn,θ−τω,u(n)0),˜vt(τ,τ−tn,θ−τω,u(n)1,0),˜ηt(τ,τ−tn,θ−τω,η(0n))}∞n=1 is a Cauchy sequence in H2(Rn)×L2(Rn)×Rμ,2. This complete the proof.
Lemma 5.4. Suppose (3.3), (4.8)-(4.9) hold, then (5.1) has a unique D-pullback random attractor A1={A1(τ,ω):τ∈R,ω∈Ω}∈D in H2(Rn)×L2(Rn)×Rμ,2, which is actually a singleton; that is, A1(τ,ω) consisting of a single point for all τ∈R,ω∈Ω.
Proof. From Lemmas 5.2 and 5.3 by applying the abstract results in [29], we can get the existence and uniqueness of the D-pullback random attractor A1∈D of (5.1) in H2(Rn)×L2(Rn)×Rμ,2 immediately.
Next, we prove A1 is a singleton. Suppose {tn}∞n=1 1 be a sequence of numbers such that tn→∞ as n→∞. Given τ∈R,ω∈Ω, let (z(n)0,z(n)1,0,η(0n)),(y(n)0,y(n)1,0,y(0n))∈A1(τ−tn,θ−tnω).
Similar to (5.13) we have
‖˜vt(τ,τ−tn,θ−τω,z(n)1,0)−˜vt(τ,τ−tn,θ−τω,y(n)1,0)‖2+2‖Δ˜v(τ,τ−tn,θ−τω,z(n)0)−Δ˜v(τ,τ−tn,θ−τω,y(n)0)‖2+‖˜ηt(τ,τ−tn,θ−τω,η(0n))−˜ηt(τ,τ−tn,θ−τω,y(0n))‖2μ,2+ν‖˜v(τ,τ−tn,θ−τω,z(n)0)−˜v(τ,τ−tn,θ−τω,y(n)0)‖2≤e−12εtn(‖z(n)1,0−y(n)1,0‖2+‖z(n)0−y(n)0‖2+‖Δz(n)0−Δy(n)0‖2+‖η(0n)−y(0n)‖2μ,2)≤2e−12εtn(‖z(n)1,0‖2+‖z(n)0‖2H2(Rn)+‖y(n)1,0‖2+‖y(n)1,0‖2H2(Rn)+‖η(0n)‖2μ,2+‖y(0n)‖2μ,2)≤4e−12εtn‖A1(τ−tn,θ−tnω)‖2H2(Rn)×L2(Rn)×Rμ,2. | (5.16) |
Due to A1∈D, we see that the right-hand side of (5.16) tends to zero as n→∞, and thus we get
limn→∞(˜vt(τ,τ−tn,θ−τω,z(n)1,0)−˜vt(τ,τ−tn,θ−τω,y(n)1,0))=0 in L2(Rn),limn→∞(˜v(τ,τ−tn,θ−τω,z(n)0)−˜v(τ,τ−tn,θ−τω,y(n)0))=0 in H2(Rn),limn→∞(˜ηt(τ,τ−tn,θ−τω,η(0n))−˜ηt(τ,τ−tn,θ−τω,y(0n)))=0 in Rμ,2. |
which together with the invariance of A1, we know that the D-pullback random attractor A1 is a singleton. This complete the proof.
To obtain the asymptotic compactness of the solutions of (5.2), we need the following Lemma.
Lemma 5.5. Let u0∈H2(Rn), u1,0∈L2(Rn),η0∈Rμ,2,τ∈R,ω∈Ω and T>0. If (3.3)-(3.5), (3.8), (4.1)-(4.2) and (4.5)-(4.8) hold, then the solution of (5.2) satisfies, for all t∈[τ,τ+T],
‖A34v(t,τ,ω)‖+‖A14vt(t,τ,ω)‖+‖A14ηt(t,τ,ω,s)‖μ,2≤C, |
where C is a positive number depending on τ,ω,T and R when ‖(u0,u1,0,η0)‖H2(Rn)×L2(Rn)×Rμ,2≤R.
Proof. This is an immediate consequence of Lemma 4.3.
Lemma 5.6. Let (3.3)–(3.5), (3.6), (4.1)–(4.3) and (4.5)–(4.9) hold. Then the cocycle Φ is D-pullback asymptotically compact in H2(Rn)×L2(Rn)×Rμ,2; that is, the sequence {Φ(tn,τ−tn,θ−tnω,(u(n)0,u(n)1,0),η(0n)}∞n=1 has a convergent subsequence in H2(Rn)×L2(Rn)×Rμ,2 for any τ∈R,ω∈Ω,D∈D,tn→∞ and (u(n)0,u(n)1,0,η(0n))∈D(τ−tn,θ−tnω).
Proof. Given t∈R+,τ∈R,ω∈Ω and (u0,u1,0,η0)∈H2(Rn)×L2(Rn)×Rμ,2, define
Φ1(t,τ,ω,(u0,u1,0,η0))=(˜v(t+τ,τ,θ−τω,u0),˜vt(t+τ,τ,θ−τω,u1,0),˜ηt(t+τ,τ,θ−τω,η0,s)),Φ2(t,τ,ω,(u0,u1,0,η0))=(v(t+τ,τ,θ−τω,u0),vt(t+τ,τ,θ−τω,u1,0),ηt(t+τ,τ,θ−τω,η0,s)), |
where (˜v,˜ηt) and (v,ηt) are the solutions of (5.1) and (5.2), respectively.
By(3.78) we have
Φ(t,τ,ω,(u0,u1,0,η0))=Φ1(t,τ,ω,(u0,u1,0,η0))+Φ2(t,τ,ω,(u0,u1,0,η0)). | (5.17) |
Let B∈D be the ∈D-pullback absorbing set of Φ given by (4.19). From Lemmas 4.2, 4.4 and 5.4 we see that for every δ>0 there exists t0=t0(δ,τ,ω,B)>0 and k0=k0(δ,τ,ω)≥1 such that for all (u0,u1,0,η0)∈B(τ−t0,θ−t0ω),
‖Φ(t0,τ−t0,θ−t0ω,(u0,u1,0,η0))|˜Ok0‖H2(˜Ok0)×L2(˜Ok0)×Rμ,2<δ, | (5.18) |
with ˜Ok0={x∈Rn:|x|>k0}, and
Φ1(t0,τ−t0,θ−t0ω,B(τ−t0,θ−t0ω)) is covered by a ball of radius δ | (5.19) |
in H2(Rn)×L2(Rn)×Rμ,2.
In addition, by Lemma 5.5 we know that for every t∈R+,τ∈R,ω∈Ω and k∈N,
Φ2(t,τ−t,θ−tω,B(τ−t,θ−tω)) is bounded in H3(Rn)×H1(Rn)×Rμ,3, |
and thus for each k∈N,
Φ2(t,τ−t,θ−tω,B(τ−t,θ−tω))|Ok is precompact H2(Ok)×L2(Ok)×Rμ,2, | (5.20) |
with Ok={x∈Rn:|x|<k}.
It follows from (5.17)–(5.20) we get that all conditions of Theorem 2.1 are satisfied, so Φ is D-pullback asymptotically compact in H2(Rn)×L2(Rn)×Rμ,2.
Since Lemma 4.2 implies a closed measurable D-pullback absorbing set for Φ, and Φ is D-pullback asymptotically compact in H2(Rn)×L2(Rn)×Rμ,2 from Lemma 5.6, we immediately get the following existence theorem by Theorem 2.2.
Theorem 5.1. Let (3.3)–(3.5), (3.6), (4.1)–(4.3) and (4.5)–(4.9) hold. Then the cocycle Φ has a unique D-pullback random attractor in H2(Rn)×L2(Rn)×Rμ,2.
In this paper, we use the uniform estimates on the tails of solutions and the splitting technique to obtained the existence and uniqueness of D-pullback attractor for the problem (1.1). The method used in this paper is proposed by P. W. Bates et al [3], they applied the method to deal with the asymptotic behavior of the non-automatous random system on unbounded domains. More precisely, one first need to show that the tails of the solutions of (1.1) are uniformly small outside a bounded domain for large time, and then derive the asymptotic compactness of solutions in bounded domains by splitting the solutions as two parts: one part has trivial dynamics in the sense that it possesses a unique tempered attracting random solution; and the other part has regularity higher than H2(Rn)×L2(Rn)×Rμ,2 based on the estimates of solutions (see Lemma 4.3).
Using the uniform estimates on the tails of solutions and the splitting technique, we obtained the existence and uniqueness of D-pullback attractor for the problem (1.1). It is well-known that the pullback random attractors are employed to describe long-time behavior for an non-autonomous dynamical system with random term, while the D-pullback attractor that we obtained can characterize the asymptotic behavior of the equation like (1.1), which is featured with both stochastic term and non-autonomous term.
The author X. Yao was supported by the Natural Science Foundation of China (No. 12161071, 11961059).
The authors declare that there is no conflict of interests regarding the publication of this article.
[1] | L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer Verlag, Berlin, 1998. http://dx.doi.org/10.1007/BFb0095238 |
[2] |
A. R. A. Barbosaa, T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143–165. http://dx.doi.org/10.1016/j.jmaa.2014.02.042 doi: 10.1016/j.jmaa.2014.02.042
![]() |
[3] |
P. W. Bates, K. Lu, B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domain, J. Differential Equations, 246 (2009), 845–869. http://dx.doi.org/10.1016/j.jde.2008.05.017 doi: 10.1016/j.jde.2008.05.017
![]() |
[4] |
C. Chen, F. S. Alotaibi, R. E. E. Omer, 3D Mathematical Modelling Technology in Visual Rehearsal System of Sports Dance, Appl. Math. Nonlin. Sci., 7 (2022), 113–122. http://dx.doi.org/10.2478/amns.2021.2.00078 doi: 10.2478/amns.2021.2.00078
![]() |
[5] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297–308. http://dx.doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
![]() |
[6] |
A. Gu, B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720. http://dx.doi.org/10.3934/dcdsb.2018072 doi: 10.3934/dcdsb.2018072
![]() |
[7] |
A. Gu, B. Guo, B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2495–2532. http://dx.doi.org/10.3934/dcdsb.2020020 doi: 10.3934/dcdsb.2020020
![]() |
[8] |
A. Kh. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping, Non. Anal., 74 (2011), 1607–1615. http://dx.doi.org/10.1016/j.na.2010.10.031 doi: 10.1016/j.na.2010.10.031
![]() |
[9] |
A. Kh. Khanmamedov, Existence of global attractor for the plate equation with the critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827–832. http://dx.doi.org/10.1016/j.aml.2004.08.013 doi: 10.1016/j.aml.2004.08.013
![]() |
[10] |
A. Kh. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differ. Equ., 225 (2006), 528–548. http://dx.doi.org/10.1016/j.jde.2005.12.001 doi: 10.1016/j.jde.2005.12.001
![]() |
[11] | J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Gauthier-Villars, Paris, 1969. |
[12] |
T. T. Liu, Q. Z. Ma, Time-dependent asymptotic behavior of the solution for plate equations with linear memory, Discrete Cont. Dyn-S., 23 (2018), 4595–4616. http://dx.doi.org/10.3934/dcdsb.2018178 doi: 10.3934/dcdsb.2018178
![]() |
[13] |
T. T. Liu, Q. Z. Ma, Time-dependent attractor for plate equations on Rn, J. Math. Anal. Appl., 479 (2019), 315–332. http://dx.doi.org/10.1016/j.jmaa.2019.06.028 doi: 10.1016/j.jmaa.2019.06.028
![]() |
[14] |
T. T. Liu, Q. Z. Ma, The existence of time-dependent strong pullback attractors for non-autonomous plate equations, Chinese J. Contemporary Math.(English), 2 (2017), 101–118. http://dx.doi.org/10.16205/j.cnki.cama.2017.0011 doi: 10.16205/j.cnki.cama.2017.0011
![]() |
[15] | W. J. Ma, Q. Z. Ma, Attractors for the stochastic strongly damped plate equations with additive noise, Electron. J. Differ. Equ., 111 (2013), 1–12. |
[16] | Q. Z. Ma, W. J. Ma, Asymptotic behavior of solutions for stochastic plate equations with strongly damped and white noise, J. Northwest Norm. Univ. Nat. Sci., 50 (2014), 6–17. |
[17] |
Yanran Ma, Nan Chen and Han Lv, Back propagation mathematical model for stock price prediction, Appl. Math. Nonlin. Sci., 7 (2022), 165–174. http://dx.doi.org/10.2478/amns.2021.2.00144 doi: 10.2478/amns.2021.2.00144
![]() |
[18] |
M. Mohan Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, H. M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order 1<r<2 with sectorial operators, J. Comput. Appl. Math., 415 (2022), 165–174. http://dx.doi.org/10.1016/j.cam.2022.114492 doi: 10.1016/j.cam.2022.114492
![]() |
[19] |
V. Pata, A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2011), 505–529. http://dx.doi.org/10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C
![]() |
[20] | L. Ridolfi, P. D'Odorico, F. Laio, Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, Cambridge, 2011. |
[21] |
X. Y. Shen, Q. Z. Ma, The existence of random attractors for plate equations with memory and additive white noise, Korean J. Math., 24 (2016), 447–467. http://dx.doi.org/10.11568/kjm.2016.24.3.447 doi: 10.11568/kjm.2016.24.3.447
![]() |
[22] |
X. Y. Shen, Q. Z. Ma, Existence of random attractors for weakly dissipative plate equations with memory and additive white noise, Comput. Math. Appl., 73 (2017), 2258–2271. http://dx.doi.org/10.1016/j.camwa.2017.03.009 doi: 10.1016/j.camwa.2017.03.009
![]() |
[23] |
G. Uhlenbeck, L. Ornstein, On the theory of Brownian motion, Phys. Rev., 36 (1930), 823–841. http://dx.doi.org/10.1103/PhysRev.36.823 doi: 10.1103/PhysRev.36.823
![]() |
[24] |
M. Wang, G. Uhlenbeck, On the theory of Brownian motion. II, Rev. Modern Phys., 17 (1945), 323–342. http://dx.doi.org/10.1103/RevModPhys.17.323 doi: 10.1103/RevModPhys.17.323
![]() |
[25] |
B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41–52. http://dx.doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2
![]() |
[26] |
R. Wang, L. Shi, B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on Rn, Nonlinearity, 32 (2019), 4524–4556. http://dx.doi.org/10.1088/1361-6544/ab32d7 doi: 10.1088/1361-6544/ab32d7
![]() |
[27] |
X. Wang, K. Lu, B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2018), 378–424. http://dx.doi.org/10.1016/j.jde.2017.09.006 doi: 10.1016/j.jde.2017.09.006
![]() |
[28] |
B. Wang, Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains, Discrete Cont. Dyn-S., 27 (2022), 4185–4229. http://dx.doi.org/10.3934/dcdsb.2021223 doi: 10.3934/dcdsb.2021223
![]() |
[29] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544–1583. http://dx.doi.org/10.1016/j.jde.2012.05.015 doi: 10.1016/j.jde.2012.05.015
![]() |
[30] |
B. Wang, Long-time behavior for a nonlinear plate equation with thermal memory, J. Math. Anal. Appl., 348 (2008), 650–670. http://dx.doi.org/10.1016/j.jmaa.2008.08.001 doi: 10.1016/j.jmaa.2008.08.001
![]() |
[31] |
H. B. Xiao, Asymptotic dynamics of plate equations with a critical exponent on unbounded domain, Non. Anal., 70 (2009), 1288–1301. http://dx.doi.org/10.1016/j.na.2008.02.012 doi: 10.1016/j.na.2008.02.012
![]() |
[32] |
L. Yang, C. K. Zhong, Uniform attractor for non-autonomous plate equations with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243–1254. http://dx.doi.org/10.1016/j.jmaa.2007.06.011 doi: 10.1016/j.jmaa.2007.06.011
![]() |
[33] |
L. Yang, C. K. Zhong, Global attractor for plate equation with nonlinear damping, Non. Anal., 69 (2008), 3802–3810. http://dx.doi.org/10.1016/j.na.2007.10.016 doi: 10.1016/j.na.2007.10.016
![]() |
[34] |
B. X. Yao, Q. Z. Ma, Ling Xu, Global attractors for a Kirchhoff type plate equation with memory, Kodai Math. J., 40 (2017), 63–78. http://dx.doi.org/10.2996/kmj/1490083224 doi: 10.2996/kmj/1490083224
![]() |
[35] |
B. X. Yao, Q. Z. Ma, Global attractors of the extensible plate equations with nonlinear damping and memory, J. Funct. Spaces, 2017 (2017), 1–11. http://dx.doi.org/10.1155/2017/4896161 doi: 10.1155/2017/4896161
![]() |
[36] |
X. B. Yao, Q. Z. Ma, T. T. Liu, Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains, Discrete Cont. Dyn-S., 24 (2019), 1889–1917. http://dx.doi.org/10.3934/dcdsb.2018247 doi: 10.3934/dcdsb.2018247
![]() |
[37] |
X. B. Yao, X. Liu, Asymptotic behavior for non-autonomous stochastic plate equation on unbounded domains, Open Math., 17 (2019), 1281–1302. http://dx.doi.org/10.1515/math-2019-0092 doi: 10.1515/math-2019-0092
![]() |
[38] |
X. B. Yao, Existence of a random attractor for non-autonomous stoc- hastic plate equations with additive noise and nonlinear damping on Rn, Bound. Value Probl., 49 (2020), 1–27. http://dx.doi.org/10.1186/s13661-020-01346-z doi: 10.1186/s13661-020-01346-z
![]() |
[39] |
X. B. Yao, Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping, AIMS Math., 5 (2020), 2577–2607. http://dx.doi.org/10.3934/math.2020169 doi: 10.3934/math.2020169
![]() |
[40] |
X. B. Yao, Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains, Discrete Cont. Dyn-S., 27 (2022), 443–468. http://dx.doi.org/10.3934/dcdsb.2021050 doi: 10.3934/dcdsb.2021050
![]() |
[41] |
X. B. Yao, Random attractors for stochastic plate equations with memory in unbounded domains, Open Math., 19 (2021), 1435–1460. http://dx.doi.org/10.1515/math-2021-0097 doi: 10.1515/math-2021-0097
![]() |
[42] |
G. C. Yue, C. K. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces, Non. Anal., 21 (2009), 4105–4114. http://dx.doi.org/10.1016/j.na.2009.02.089 doi: 10.1016/j.na.2009.02.089
![]() |
[43] |
Y. Zhang, J. Huang, J. Zhang, S. Liu, S. S. Huang, Analysis and prediction of second-hand house price based on random forest, Appl. Math. Nonlin. Sci., 7 (2022), 27–42. http://dx.doi.org/10.2478/amns.2022.1.00052 doi: 10.2478/amns.2022.1.00052
![]() |
[44] |
J. Zhou, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput., 265 (2015), 807–818. http://dx.doi.org/10.1016/j.amc.2015.05.098 doi: 10.1016/j.amc.2015.05.098
![]() |