Processing math: 83%
Research article

Solving a nonlinear integral equation via orthogonal metric space

  • Received: 07 July 2021 Accepted: 11 October 2021 Published: 21 October 2021
  • MSC : 47H10, 54H25

  • We propose the concept of orthogonally triangular α-admissible mapping and demonstrate some fixed point theorems for self-mappings in orthogonal complete metric spaces. Some of the well-known outcomes in the literature are generalized and expanded by our results. An instance to help our outcome is presented. We also explore applications of our key results.

    Citation: Arul Joseph Gnanaprakasam, Gunaseelan Mani, Jung Rye Lee, Choonkil Park. Solving a nonlinear integral equation via orthogonal metric space[J]. AIMS Mathematics, 2022, 7(1): 1198-1210. doi: 10.3934/math.2022070

    Related Papers:

    [1] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [2] Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681
    [3] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [4] Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780
    [5] Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143
    [6] Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
    [7] Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227
  • We propose the concept of orthogonally triangular α-admissible mapping and demonstrate some fixed point theorems for self-mappings in orthogonal complete metric spaces. Some of the well-known outcomes in the literature are generalized and expanded by our results. An instance to help our outcome is presented. We also explore applications of our key results.



    Let q be a positive integer. For each integer a with 1a<q,(a,q)=1, we know that there exists one and only one ˉa with 1ˉa<q such that aˉa1(q). Let r(q) be the number of integers a with 1a<q for which a and ˉa are of opposite parity.

    D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:

    r(q)=12ϕ(q)+O(q12d2(q)log2q).

    Zhang [4] generalized the problem over short intervals and proved that

    aNaR(q)1=12Nϕ(q)q1+O(q12d2(q)log2q),

    where

    R(q):={a:1aq,(a,q)=1,2a+ˉa}.

    Let n2 be a fixed positive integer, q3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ21. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as

    rn(δ1,δ2,c;q):=aδ1qˉaδ2qaˉacmodqna+ˉa1,

    and obtained an interesting asymptotic formula,

    rn(δ1,δ2,c;q)=(1n1)δ1δ2ϕ(q)+O(q12d6(q)log2q).

    Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by

    Bα,β:=(αn+β)n=1,

    where t denotes the integer part of any tR. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate

    #{ prime px:pBα,β}α1π(x) as x

    where π(x) is the prime counting function.

    We define type τ=τ(α) for any irrational number α by the following definition:

    τ:=sup{tR:lim infnntαn=0}.

    Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,

    rn(δ1,δ2,,δk,c,α,β;q):=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,βnx1++xk1,(0<δ1,δ2,,δk1),

    and where k = 2, we get the result of [7].

    By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.

    Theorem 1.1. Let k2 be a fixed positive integer, qn3 and c be two integers with (n,q)=(c,q)=1, and δ1,δ2,,δk be real numbers satisfying 0<δ1,δ2,,δk1. Let α>1 be an irrational number of finite type. Then, we have the following asymptotic formula:

    rn(δ1,δ2,,δk,c,α,β;q)=(1n1)α(k1)δ1δ2δkϕk1(q)+O(qk11τ+1+ε),

    where ϕ() is the Euler function, ε is a sufficiently small positive number, and the implied constant only depends on n.

    Notation. In this paper, we denote by t and {t} the integral part and the fractional part of t, respectively. As is customary, we put

    e(t):=e2πit and {t}:=tt.

    The notation t is used to denote the distance from the real number t to the nearest integer; that is,

    t:=minnZ|tn|.

    Let χ0 be the principal character modulo q. The letter p always denotes a prime. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, and may depend (where obvious) on the parameters α,n,ε but are absolute otherwise. For given functions F and G, the notations FG, GF and F=O(G) are all equivalent to the statement that the inequality |F|C|G| holds with some constant C>0.

    To complete the proof of the theorem, we need the following several definitions and lemmas.

    Definition 2.1. For an arbitrary set S, we use 1S to denote its indicator function:

    1S(n):={1ifnS,0ifnS.

    We use 1α,β to denote the characteristic function of numbers in a Beatty sequence:

    1α,β(n):={1ifnBα,β,0ifnBα,β.

    Lemma 2.2. Let a,q be integers, δ(0,1) be a real number, θ be a rational number. Let α be an irrational number of finite type τ and H=qε>0. We have

    aδqaBα,β1=α1δϕ(q)+O((ϕ(q))ττ+1+ε),

    and

    aδqaBα,βe(θa)=α1aδ1qe(θa)+O(θ1qε+qε).

    Taking

    H=θ1τ+1+ε,

    we have

    aδqaBα,βe(θa)=α1aδ1qe(θa)+O(θ(ττ+1+ε)).

    Proof. This is Lemma 2.4 and Lemma 2.5 of [7].

    Lemma 2.3. Let

    Kl(r1,r2,,rk;q)=x1q1xk1q1e(r1x1++rk1xk1+rk¯x1xk1p).

    Then

    Kl(r1,r2,,rk;q)qk12kω(q)(r1,rk,q)12(rk1,rk,q)12

    where (a,b,c) is the greatest common divisor of a,b and c.

    Proof. See [9].

    Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If

    a=sr+θr2,(r,s)=1,r1,|θ|1,

    then

    kKmin(U,1ak+b)(Kr+1)(U+rlogr).

    Proof. The proof is given in [10].

    We begin by the definition

    rn(δ1,δ2,,δk,c,α,β;q)=S1S2,

    where

    S1:=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,β1,

    and

    S2:=x1δ1qxkδkqx1xkcmodqx1,xk1Bα,βnx1++xk1.

    By the Definition 2.1, Lemma 2.2 and congruence properties, we have

    S1=x1δ1qxkδkqx1xkcmodq1α,β(x1)1α,β(xk1)=1ϕ(q)x1δ1qxkδkqχmodqχ(x1)χ(xk)χ(¯c)1α,β(x1)1α,β(xk1)=S11+S12,

    where

    S11:=1ϕ(q)x1δ1qxkδkq1α,β(x1)1α,β(xk1),

    and

    S12:=1ϕ(q)χmodqχχ0χ(¯c)(x1δ1qxkδkqχ(x1)χ(xk)1α,β(x1)1α,β(xk1)).

    For S2, it follows that

    S2=1ϕ(q)x1δ1qxkδkqnx1++xkχmodqχ(x1)χ(xk)χ(¯c)1α,β(x1)1α,β(xk1)=S21+S22,

    where

    S21:=1ϕ(q)x1δ1qxkδkqnx1++xk1α,β(x1)1α,β(xk1),

    and

    S22:=1ϕ(q)χmodqχχ0χ(¯c)x1δ1qxkδkqnx1++xkχ(x1)χ(xk1)1α,β(x1)1α,β(xk1).

    From the classical bound

    aδq1=δϕ(q)+O(d(q))

    and Lemma 2.2, we have

    S11=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkq1)=(δk+O(d(q)ϕ(q)))k1i=1(α1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α(k1)ϕk1(q)k1i=1δi+O(qk11τ+1+ε). (3.1)

    From Lemma 2.2, we obtain

    S21=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkqnxk+(x1++xk1)1)=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(xkδkqxk(x1++xk1)modnd(xk,q)μ(d))=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(dqμ(d)xkδkqdxkxk(x1++xk1)modn1)=1ϕ(q)(x1δ1q1α,β(x1))(xk1δk1q1α,β(xk1))(dqμ(d)(δkqnd+O(1)))=1ϕ(q)(δkϕ(q)n+O(d(q)))k1i=1(α1δiϕ(q)+O((ϕ(q))ττ+1+ε))=α(k1)n1ϕk1(q)k1i=1δi+O(qk11τ+1+ε). (3.2)

    By the properties of exponential sums,

    S22=1nϕ(q)χmodqχχ0χ(¯c)(x1δ1qxkδk1qχ(x1)χ(xk)1α,β(x1)1α,β(xk1))×(nl=1e(x1++xknl))=1nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(xiδiq1α,β(xi)χ(xi)e(xinl))(xkδkqχ(xk)e(xknl)). (3.3)

    Let

    G(r,χ):=qh=1χ(h)e(rhq)

    be the Gauss sum, and we know that for χχ0,

    χ(xi)=1qqr=1G(r,χ)e(xirq)=1qq1r=1G(r,χ)e(xirq),

    and

    lnrq0

    for 1ln,1rq1 and (n,q)=1.

    Therefore,

    xkδkqχ(xk)e(xknl)=1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqlh)1, (3.4)

    where

    f(δ,l,r;n,p):=1e((lnrq)δq)

    and

    |f(δk,l,rk;n,q)|2.

    For xi(1ik1), using Lemma 2.2, we also have

    xiδiq1α,β(xi)χ(xi)e(xinl)=1qxiδiq1α,β(xi)q1ri=1G(ri,χ)e((lnriq)xi)=1qq1ri=1G(ri,χ)xiδiq1α,β(xi)e((lnriq)xi)=1qq1ri=1G(ri,χ)(α1aδiqe((lnriq)xi)+O(qεlnriq+qε))=1qαq1ri=1G(ri,χ)(f(δi,l,ri;n,q)e(riqln)1+O(qεlnriq+qε)). (3.5)

    Let

    S23=1nϕ(q)χmodqχχ0χ(¯c)nl=1k1i=1(1qαq1ri=1G(ri,χ)f(δi,l,ri;n,q)e(riqln)1)(1qq1rk=1G(rk,χ)f(δk,l,rk;n,q)e(rkqln)1)=1nϕ(q)qkαk1nl=1q1r1=1q1rk=1f(δ1,l,r1;n,q)f(δk,l,rk;n,q)(e(r1qln)1)(e(rkqln)1)×χmodqχχ0χ(¯c)G(r1,χ)G(rk,χ). (3.6)

    From the definition of Gauss sum and Lemma 2.3, we know that

    χmodqχ(¯c)G(r1,χ)G(rk,χ)=q1h1=1q1hk=1χmodqχ(¯c)χ(h1)χ(hk)e(r1h1++rkhkq)=ϕ(q)q1h1=1q1hk=1h1hkcmodqe(r1h1++rkhkq)=ϕ(q)q1h1=1q1hk=1e(r1h1+rk1hk1+rkc¯h1hk1q)=ϕ(q)Kl(r1,r2,,rkc;q)ϕ(q)qk12kω(q)(r1,rkc,q)12(rk1,rkc,q)12ϕ(q)qk12kω(q)(r1,q)(rk,q). (3.7)

    By Mobius inversion, we get

    G(r,χ0)=qh=1e(rhq)=μ(q(r,q))φ(q)φ(q/(r,q))(r,q),

    and

    χ0(¯c)G(r1,χ0)G(rk,χ0)(r1,q)(rk,q).

    Hence,

    χmodqχχ0χ(¯c)G(r1,χ)G(rk,χ)=χmodqχ(¯c)G(r1,χ)G(rk,χ)χ0(¯c)G(r1,χ0)G(rk,χ0)ϕ(q)qk12kω(q)(r1,q)(rk,q). (3.8)

    From (3.8) we may deduce the following result:

    S23kω(q)nqk+12αk1nl=1(q1r=1(r,q)|e(rqln)1|)kkω(q)nqk+12αk1nl=1(q1r=1(r,q)|sinπ(rqln)|)kkω(q)nqk+12αk1nl=1(q1r=1(r,q)rqln)k=kω(q)nqk+12αk1nl=1(dqd<qrq1(r,q)=ddrqln)k=kω(q)nqk+12αk1nl=1(dqd<qdmq1d(m,q)=11mdqln)k=kω(q)nqk+12αk1nl=1(dqd<qdkqμ(k)mq1kd1mkdqln)k.

    It is easy to see

    mkdqln=mknl(q/d)(q/d)n1(q/d)n,

    and we obtain

    S23kω(q)nϕ(q)qk+12αk1nl=1(dqd<qdkqmq1kdmin(qnd,1mkdqln))k.

    Let kd/q=h0/q0, where q01,(h0,q0)=1, and we will easily obtain q/(kd)q0q/d. By using Lemma 2.4, we have

    S23kω(q)nqk+12αk1nl=1(dqd<qdkq((q1)/(kd)q0+1)(qnd+q0logq0))kkω(q)nqk+12αk1nl=1(dqd<qdkq((q1)/(kd)q/(kd)+1)(qnd+qdlogqd))kkω(q)qk12αk1(dqd<qkqn+logq)kqk12d2k(q)(logq+n)k.

    Let

    S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right)

    and

    S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right).

    By the same argument of S_{23} , it follows that

    S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k},
    S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n).

    Since n\ll q^{\frac{1}{3}} , we have

    \begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} (3.9)

    Taking n = 1 , we get

    \begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} (3.10)

    With (3.1), (3.2), (3.9) and (3.10), the proof is complete.

    This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

    This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] H. H. Alsulami, S. Gülyaz, E. Karapinar, I. M. Erhan, Fixed point theorems for a class of \alpha-admissible contractions and applications to boundary value problems, Abstr. Appl. Anal., 2014 (2014), 187031. doi: 10.1155/2014/187031. doi: 10.1155/2014/187031
    [2] I. Beg, M. Gunaseelan, G. Arul Joseph, Fixed point of orthogonal F-Suzuki contraction mapping on O-complete b-metric space with an application, J. Funct. Spaces, 2021 (2021), 6692112. doi: 10.1155/2021/6692112. doi: 10.1155/2021/6692112
    [3] M. Eshaghi Gordji, M. Ramezani, M. De la Sen, Y. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. doi: 10.24193/fpt-ro.2017.2.45. doi: 10.24193/fpt-ro.2017.2.45
    [4] M. Eshaghi Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebra, 6 (2017), 251–260.
    [5] M. Eshaghi Gordji, H. Habibi, Fixed point theory in \epsilon-connected orthogonal metric space, Sahand Comm. Math. Anal., 16 (2019), 35–46. doi: 10.22130/scma.2018.72368.289. doi: 10.22130/scma.2018.72368.289
    [6] M. Gunaseelan, G. Arul Joseph, L. N. Mishra, V. N. Mishra, Fixed point theorem for orthogonal F-Suzuki contraction mapping on an O-complete metric space with an application, Malay. J. Mat., 1 (2021), 369–377. doi: 10.26637/MJM0901/0062. doi: 10.26637/MJM0901/0062
    [7] N. B. Gungor, D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conf. Proc., 2183 (2019), 040011. doi: 10.1063/1.5136131. doi: 10.1063/1.5136131
    [8] R. Maryam, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl., 6 (2015), 127–132. doi: 10.22075/ijnaa.2015.261. doi: 10.22075/ijnaa.2015.261
    [9] M. S. Khan, S. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1–9. doi: 10.1017/S0004972700001659. doi: 10.1017/S0004972700001659
    [10] H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210. doi: 10.1186/1687-1812-2014-210. doi: 10.1186/1687-1812-2014-210
    [11] K. Sawangsup, W. Sintunavarat, Fixed point results for orthogonal Z-contraction mappings in O-complete metric space, Int. J. Appl. Phys. Math., in press.
    [12] K. Sawangsup, W. Sintunavarat, Y. Cho, Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces, J. Fixed Point Theory Appl., 22 (2020), 10. doi: 10.1007/s11784-019-0737-4. doi: 10.1007/s11784-019-0737-4
    [13] T. Senapati, L. K. Dey, B. Damjanović, A. Chanda, New fixed results in orthogonal metric spaces with an Application, Kragujevac J. Math., 42 (2018), 505–516.
    [14] F. Uddin, C. Park, K. Javed, M. Arshad, J. Lee, Orthogonal m-metric spaces and an application to solve integral equations, Adv. Differ. Equ., 2021 (2021), 159. doi: 10.1186/s13662-021-03323-x. doi: 10.1186/s13662-021-03323-x
    [15] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. doi: 10.1186/1687-1812-2012-94. doi: 10.1186/1687-1812-2012-94
    [16] O. Yamaod, W. Sintunavarat, On new orthogonal contractions in b-metric spaces, Int. J. Pure Math., 5 (2018), 37–40.
    [17] Q. Yang, C. Bai, Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on O-complete metric spaces, AIMS Math., 5 (2020), 5734–5742. doi: 10.3934/math.2020368. doi: 10.3934/math.2020368
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2458) PDF downloads(94) Cited by(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog