Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

Some new identities involving Laguerre polynomials

  • Received: 05 March 2021 Accepted: 30 August 2021 Published: 06 September 2021
  • MSC : 11B37, 11B83

  • In this paper, we use elementary method and some sort of a counting argument to show the equality of two expressions. That is, let f(n) and g(n) be two functions, k be any positive integer. Then f(n)=nr=0(1)rn!r!(n+k1r+k1)g(r) if and only if g(n)=nr=0(1)rn!r!(n+k1r+k1)f(r) for all integers n0. As an application of this formula, we obtain some new identities involving the famous Laguerre polynomials.

    Citation: Xiaowei Pan, Xiaoyan Guo. Some new identities involving Laguerre polynomials[J]. AIMS Mathematics, 2021, 6(11): 12713-12717. doi: 10.3934/math.2021733

    Related Papers:

    [1] Xin Du, Quansheng Liu, Yuanhong Bi . Bifurcation analysis of a two–dimensional p53 gene regulatory network without and with time delay. Electronic Research Archive, 2024, 32(1): 293-316. doi: 10.3934/era.2024014
    [2] Fang Yan, Changyong Dai, Haihong Liu . Oscillatory dynamics of p53 pathway in etoposide sensitive and resistant cell lines. Electronic Research Archive, 2022, 30(6): 2075-2108. doi: 10.3934/era.2022105
    [3] Yongwei Yang, Yang Yu, Chunyun Xu, Chengye Zou . Passivity analysis of discrete-time genetic regulatory networks with reaction-diffusion coupling and delay-dependent stability criteria. Electronic Research Archive, 2025, 33(5): 3111-3134. doi: 10.3934/era.2025136
    [4] Weijie Ding, Xiaochen Mao, Lei Qiao, Mingjie Guan, Minqiang Shao . Delay-induced instability and oscillations in a multiplex neural system with Fitzhugh-Nagumo networks. Electronic Research Archive, 2022, 30(3): 1075-1086. doi: 10.3934/era.2022057
    [5] Yulin Zhao, Fengning Liang, Yaru Cao, Teng Zhao, Lin Wang, Jinhui Xu, Hong Zhu . MRI-based model for accurate prediction of P53 gene status in gliomas. Electronic Research Archive, 2024, 32(5): 3113-3129. doi: 10.3934/era.2024142
    [6] Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li . Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, 2021, 29(5): 2973-2985. doi: 10.3934/era.2021022
    [7] Rui Ma, Xin-You Meng . Dynamics of an eco-epidemiological model with toxicity, treatment, time-varying incubation. Electronic Research Archive, 2025, 33(5): 3074-3110. doi: 10.3934/era.2025135
    [8] Fengrong Zhang, Ruining Chen . Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215
    [9] Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128
    [10] Mengting Sui, Yanfei Du . Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay. Electronic Research Archive, 2023, 31(9): 5124-5150. doi: 10.3934/era.2023262
  • In this paper, we use elementary method and some sort of a counting argument to show the equality of two expressions. That is, let f(n) and g(n) be two functions, k be any positive integer. Then f(n)=nr=0(1)rn!r!(n+k1r+k1)g(r) if and only if g(n)=nr=0(1)rn!r!(n+k1r+k1)f(r) for all integers n0. As an application of this formula, we obtain some new identities involving the famous Laguerre polynomials.



    The time-delay phenomenon is widely present in various engineering systems, and its existence will affect the stability and performance of the system. Therefore, the investigations into time-delay systems have been widely studied in the control field in recent years [1,2,3]. Many achievements have been obtained in the fields involving discrete-time systems [4,5,6], fuzzy systems [7,8,9], networked control systems [10,11], load frequency control systems [12,13,14,15], Markovian jump systems [16,17], Lur'e systems [18,19], and H filtering control [20,21,22].

    The Lyapunov–Razumikhin approach and the Lyapunov–Krasovskii (L–K) approach are the most widely used methods for addressing stability issues in time-delay systems. The Lyapunov–Razumikhin approach has achieved some advancements in deriving necessary and sufficient conditions for the stability of time-delay systems [23]. On the other hand, the L–K approach aims to construct an appropriate L–K functional to obtain less conservative stability criteria in the form of Linear Matrix Inequality (LMI) for time-delay systems, especially for time-varying delay systems [24,25,26,27]. It is worth mentioning that the L–K approach is frequently employed in combination with some integral inequality methods for bounding the integral terms in the derivatives delay-related L–K functionals [28,29,30,31,32]. Admittedly, recent research mainly focuses on reducing the conservativeness of the stability criteria by refining the structure of delay-related L–K functionals. An augmented L–K functional incorporating additional state information was presented in [21], enhancing the stability criteria's dependence on time delay. The augmented L–K functional constructed in [33] further considered the integrity of the information about delay intervals and gave less conservative results. An augmented L–K functional was also introduced in [27]. Unlike the L–K functionals in [21,33], it avoids the occurrence of high-order terms of variables in the derivative of the functional, thus easing the hardship of the solving process.

    In addition to various augmented L–K functionals mentioned above, the delay-segmentation-based piecewise L–K functionals have also been widely discussed in recent research. The delay segmenting method can augment the delay-interval-related information in the functional derivatives. Subsequently, it enables a more in-depth exploration of the functional decrease within each interval instead of merely considering its global decreasing property. Consequently, this functional effectively reduces the conservativeness of the system stability criterion. Delay-segmentation-based piecewise L–K functionals can be categorized into continuous and non-continuous piecewise L–K functionals. A time-delay-partitioning-based L–K functional was constructed in [34], which effectively relaxes the constraints on the stability criteria of the system. In [35], Han et al. established a non-continuous L–K functional and gave a delay-related stability criterion. Additionally, for time-varying delay systems, some quadratic terms with time-varying delay were introduced in [18] in constructing the L–K functional using an improved delay-segmentation method, proposing a novel delay-segmentation-based piecewise functional.

    Based on the domain of time-varying delay and its derivatives, the definition of allowable delay set (ADS) was given in [1]. Building upon this, an improved ADS was presented in [31], which optimized the stability criterion for linear systems with time-varying delay. However, the ADS given in [1] and [31] exhibit the coverage areas in the form of polygons, as indicated in [36]. However, this issue was further explored in [37], which gave ADS covering a complete ellipsoidal field by introducing specific periodically varying delays. Subsequently, an ADS partitioning approach was introduced in [38], which further refines the ADS through the application of the delay-segmenting method. By integrating this with the non-continuous L–K functional method, a stability criterion with reduced conservativeness was developed. However, the non-continuous piecewise function in [38] does not account for information regarding the delay segmentation and hinders potential improvements. Consequently, the existing criterion remains rather conservative.

    In recent years, the research for periodical time delay has aroused the interest of researchers, and it exists widely in some mechanical motions[39,40,41]. Combining delay-related L–K functional and a looped function, a stability criterion based on a periodically varying delay with monotone intervals was given in [37]. Based on this, a higher-order free-matrix-based integral inequality was introduced to optimize the stability criteria in [42], reducing the conservativeness of the stability criterion of the system. Furthermore, an exponential stability analysis of switching time-delay systems is presented in [43], which utilizes the symbolic transformation of delay derivatives as switching information. The stability of periodic time-delay systems is also studied in [38] by further partitioning the monotone intervals. In light of this, conducting in-depth research on periodic time-delay systems characterized by monotonic intervals on such a foundation holds significant and promising research prospects.

    This paper proposes an innovative delay-segmentation-based non-continuous piecewise L–K functional. In different segments, the construction of different L–K functionals is presented according to the intervals where the delay is located, and information regarding the delay-interval-segmentation is fully exploited in the functional of each segment. Therefore, the derived stability condition is less conservative. Finally, two numerical examples and a single-area load frequency control system are given to demonstrate that the proposed approach significantly reduces the conservativeness of the presented stability criterion.

    For brevity, the notations used in this paper are summarized in Table 1.

    Table 1.  Notations.
    Symbol Meaning
    N Natural numbers: {1,2,3,}
    Rn Euclidean space in n dimensions
    Rm×n All real matrices of dimension m×n
    Sn All symmetric matrices of dimension n×n
    Sn+ All positive definite symmetric matrices of dimension n×n
    1 Inverse of matrix
    T Transpose of matrix
    Sym{} The sum of matrix and its transpose
    * A symmetric component inside a symmetric matrix
    diag{} A matrix with a block diagonal structure

     | Show Table
    DownLoad: CSV

    Consider the following linear system with time-varying delay:

    {˙x(t)=Ax(t)+Arx(tr(t)),x(t)=φ(t),t[r2,0],  (2.1)

    where A,ArRn×n are system matrices, x(t)Rn is state vector, and r(t) represents the time-varying delay, which satisfies the following form derived from [37,38,41]:

    r(t)=r0+˜rf(Ωt), (2.2)

    where r0 is a constant, f:R[1,1] is a differentiable periodic function satisfying |f|1, whose each period contains a monotone increasing interval and a monotone decreasing interval, and parameters ˜r and Ω represent its amplitude and frequency, respectively. For r(t), r1 is the lower bound, and r2 is the upper bound. In addition, the derivative of r(t) is defined as ˙r(t), μ,μ are its lower and upper bounds. Therefore, r(t) and ˙r(t) are satisfied

    r1r(t)r2,  |˙r(t)|μ<1, (2.3)

    with r1=r0˜r, r2=r0+˜r and μ=˜rΩ.

    The ADS partitioning approach based on a periodical time-varying delay is discussed in [38]. There exists t2k1, t2k, t2k+1, kN, in the periodic function r(t), which are extreme values of r(t) satisfying r(t2k1)=r(t2k+1)=r1 and r(t2k)=r2. r(t) is monotone increasing in the intervals t[t2k1,t2k) and monotone decreasing in the intervals t[t2k,t2k+1).

    Then, we choose moving points ϱ1k[t2k1,t2k) and ϱ2k[t2k,t2k+1), ensuring that r(ϱ1k)=r(ϱ2k)=rϱ. The uncertain delay value rϱ=r1+ϱ(r2r1),ϱ[0,1] that satisfies r1rϱr2, and its value changes with the change of parameter ϱ. Depending on the value range of r(t), we obtain two delay-segmentation-based intervals: r(t)[r1,rϱ] and r(t)[rϱ,r2]. Thus, the following ADS are obtained

    \begin{equation} \left\{\begin{aligned} \gimel_{\alpha1} &\triangleq[r_1,r_{\varrho}]\times[0,\mu]\ \ \ \ \ \ \ \ \gimel_{\beta1}\triangleq[r_{\varrho},r_2]\times[0,\mu],\\ \gimel_{\alpha2} &\triangleq[r_1,r_{\varrho}]\times[-\mu,0]\ \ \ \ \ \gimel_{\beta2} \triangleq[r_{\varrho},r_2]\times[-\mu,0]. \end{aligned}\right.\ \end{equation} (2.4)

    Remark 2.1. The ADS described in formula (2.4) was initially presented in [38]. To underscore the efficacy of the enhanced functional put forward in this paper, we opt for the identical ADS to analyze the stability of the considered systems.

    To derive the main results, the following lemma needs to be introduced.

    Lemma 2.1. [31,32] If x(t)\in[\omega_1, \omega_2]\rightarrow \mathbb{R}^n and \kappa\in\mathbb{R}^{m} are continuous and differentiable, for matrices U\in\mathbb{S}^{n}_{+} , H\in\mathbb{R}^{m\times 2n} , the following inequalities hold:

    \begin{align} &-\int^{\omega_2}_{\omega_1} \dot{x}^T(s)U\dot{x}(s)ds\leqslant-\frac{1}{\omega_2-\omega_1}\kappa^T\vartheta^T\hat{U}\vartheta\kappa, \end{align} (2.5)
    \begin{align} &-\int^{\omega_2}_{\omega_1}\dot x^T(s)U \dot{x}(s)ds\leqslant(\omega_2-\omega_1)\kappa^TH\hat{U}^{-1}H^T\kappa+2\kappa^TH\vartheta\kappa, \end{align} (2.6)

    where

    \begin{align*} \kappa& = col\left\{x(\omega_2),x(\omega_1),\frac{1}{\omega_2-\omega_1}\int^{\omega_2}_{\omega_1}x(s)ds\right\},\\ \vartheta& = [\tilde{e}_1^T-\tilde{e}_2^T\ \ \tilde{e}_1^T+\tilde{e}_2^T-2\tilde{e}_3^T]^T,\\ \hat{U}& = diag\{U,3U\},\\ \tilde{e}_{\theta}& = [0_{n\times(\theta-1)n}\ \ I_n\ \ 0_{n\times(3-i)n}],\theta = 1,\cdots,3.\\ \end{align*}

    This section discusses the stability criterion for system (2.1) based on ADS \gimel . The subsequent notations are introduced to represent the vectors and matrices for convenience.

    \begin{align*} \delta_1(t) = &[x^T(t)\ \ \ x^T(t-r_1)\ \ \ x^T(t-r(t))\ \ \ x^T(t-r_2)\ \ \ x^T(t-r_{\varrho})]^T,\\ \delta_{2}(t) = &[\dot{x}^T(t-r_1)\ \ \dot{x}^T(t-r(t))\ \ \dot{x}^T(t-r_2)\ \ \dot{x}^T(t-r_{\varrho})]^T,\\ \delta_{3}(t) = &\int^{t}_{t-r_1}x(s)ds,\ \delta_{4}(t) = \int^{t-r_1}_{t-r(t)}x(s)ds,\ \delta_{5}(t) = \int^{t-r(t)}_{t-r_{\varrho}}x(s)ds,\\ \delta_{6}(t) = &\int^{t-r(t)}_{t-r_2}x(s)ds,\ \delta_{7}(t) = \int^{t-r_1}_{t-r_{\varrho}}x(s)ds,\ \delta_{8}(t) = \int^{t-r_{\varrho}}_{t-r_2}x(s)ds,\\ \varpi_0(t) = &[\delta^T_1(t)\ \ \ \delta^T_3(t)]^T,\ \ \varpi_1(s) = [x^T(s)\ \ \ \dot x^T(s)],\\ \varpi_{2\alpha}(t) = &[\delta^T_1(t)\ \ \delta^T_3(t)\ \ \ \delta^T_4(t)\ \ \delta^T_5(t)\ \ \delta^T_{8}(t)]^T,\\ \varpi_{2\beta}(t) = &[\delta^T_1(t)\ \ \ \delta^T_3(t)\ \ \ \delta^T_{7}(t)\ \ \ -\delta^T_5(t)\ \ \ \delta^T_6(t)]^T,\\ \varpi(t) = &[\delta^T_1(t)\ \ \ \delta^T_2(t)\ \ \ \frac{1}{r_1}\delta^T_{3}(t)\ \ \frac{1}{r(t)-r_1}\delta^T_{4}(t)\ \ \frac{1}{r_{\varrho}-r(t)}\delta^T_{5}(t)\ \ \frac{1}{r_2-r(t)}\delta^T_{6}(t)\ \ \frac{1}{r_{\varrho}-r_1}\delta^T_{7}(t)\ \ \frac{1}{r_2-r_{\varrho}}\delta^T_{8}(t)]^T,\\ e_{\rho} = &[0_{n\times(\rho-1)n}\ \ \ I_n\ \ 0_{n\times(15-\rho)n}],\rho = 1,2,\cdots,15. \end{align*}

    As shown below, Theorem 3.1 provides a stability criterion for the system (2.1) based on ADS \gimel .

    Theorem 3.1. For scalars \varrho\in[0, 1], r_2\geqslant r_1\geqslant 0, \mu < 1 , suppose that there exist matrices P\in\mathbb{S}^{9n}_{+} , F, X_{\alpha i\varsigma}, X_{\beta i\varsigma}\in\mathbb{S}^{6n}_{+} , Q_\varsigma, S_{\alpha i\varsigma}, S_{\beta i\varsigma}\in\mathbb{S}^{2n}_{+} , Y_\varsigma, T_{\alpha i\varsigma}, T_{\beta i\varsigma}\in\mathbb{S}^{n}_{+} satisfying the condition (3.1), W_{\alpha i1}, W_{\alpha i2}, W_{\beta i1}, W_{\beta i2}\in\mathbb{S}^{n} , G_{\alpha i\varsigma}, G_{\beta i\varsigma}\in\mathbb{R}^{15n\times 2n} , N_{\alpha i1}, N_{\alpha i2}, N_{\beta i1}, N_{\beta i2}\in\mathbb{R}^{15n\times n}, i = 1, 2, \varsigma = 1, \cdots, 3 . Then, system (2.1) is stable if LMIs (3.2)–(3.3) and (3.4)–(3.5) are satisfied at the vertices of \gimel_{\alpha i} and \gimel_{\beta i} , respectively.

    \begin{equation} \begin{aligned} X_{\alpha 11}&\geqslant X_{\beta11}\geqslant X_{\beta21}\geqslant X_{\alpha 21},\ X_{\beta12}\geqslant X_{\beta22},\\ X_{\beta 23}&\geqslant X_{\alpha 23}\geqslant X_{\alpha 13}\geqslant X_{\beta13},\ X_{\alpha 22}\geqslant X_{\alpha 12},\\ S_{\alpha 11}&\geqslant S_{\beta11}\geqslant S_{\beta21}\geqslant S_{\alpha 21},\ S_{\beta12}\geqslant S_{\beta22},\\ S_{\beta 23}&\geqslant S_{\alpha 23}\geqslant S_{\alpha 13}\geqslant S_{\beta13},\ S_{\alpha 22}\geqslant S_{\alpha 12},\\ T_{\alpha 11}&\geqslant T_{\beta11}\geqslant T_{\beta21}\geqslant T_{\alpha 21},\ T_{\beta12}\geqslant T_{\beta22},\\ T_{\beta 23}&\geqslant T_{\alpha 23}\geqslant T_{\alpha 13}\geqslant T_{\beta13},\ T_{\alpha 22}\geqslant T_{\alpha12},\\ \end{aligned} \end{equation} (3.1)
    \begin{equation} W_{YT\alpha i1} > 0,\ W_{YT\alpha i2} > 0, \end{equation} (3.2)
    \begin{equation} \left[\begin{matrix}\Upsilon_{\alpha i}(r(t),\dot{r}(t))&\sqrt{r(t)-r_1}G_{\alpha i1}&\sqrt{r_{\varrho}-r(t)}G_{\alpha i2}&\sqrt{r_2-r_1}G_{\alpha i3}\\\ast&-\widehat{W}_{YT\alpha i1}&0&0\\ \ast&\ast&-\widehat{W}_{YT\alpha i2}&0\\ \ast&\ast&\ast&-\widehat{Y}_{T1} \end{matrix}\right] < 0, \end{equation} (3.3)
    \begin{equation} \ W_{YT\beta i1} > 0,\ W_{YT\beta i2} > 0, \end{equation} (3.4)
    \begin{equation} \left[\begin{matrix}\Upsilon_{\beta i}(r(t),\dot{r}(t))&\sqrt{r_{\varrho}-r_1}G_{\beta i1}&\sqrt{r(t)-r_{\varrho}}G_{\beta i2}&\sqrt{r_2-r(t)}G_{\beta i3}\\\ast&-\widehat{Y}_{T2}&0&0\\ \ast&\ast&-\widehat{W}_{YT\beta i1}&0\\ \ast&\ast&\ast&-\widehat{W}_{YT\beta i2} \end{matrix}\right] < 0, \end{equation} (3.5)

    where

    \begin{align*} \Upsilon_{\alpha i}(r(&t),\dot{r}(t)) = \Lambda_1+\Lambda_{2\alpha i}+\Lambda_{3\alpha i}+\Lambda_{4\alpha i},&\\ \Upsilon_{\beta i}(r(&t),\dot{r}(t)) = \Lambda_1+\Lambda_{2\beta i}+\Lambda_{3\beta i}+\Lambda_{4\beta i},&\\ \Lambda_1 = &{\mathit{\text{Sym}}}\{h_1\Pi_0^TF\Pi_1\}+\Pi_2^T{Q}_1\Pi_{2}+\Pi_3^T(Q_2-Q_1)\Pi_{3}+\Pi_4^T(Q_3-Q_2)\Pi_{4}\\ &-\Pi_5^TQ_3\Pi_5+r_1^2\Pi_{20}^TY_1\Pi_{20}+(r_{\varrho}-r_1)\Pi_{20}^TY_2\Pi_{20}+(r_2-r_{\varrho})\Pi_{20}^TY_3\Pi_{20},&\\ \Lambda_{2\alpha i} = &{\mathit{\text{Sym}}}\{\Pi_0^T[(r(t)-r_1)X_{\alpha i1}+(r_{\alpha}-r(t))X_{\alpha i2}+(r_2-r_{\varrho})X_{\alpha i3}]\Pi_1+\Pi_7^TP\Pi_8\}\\ &+\dot{r}(t)\Pi_0^T(X_{\alpha i1}-X_{\alpha i2})\Pi_0+\Pi_3^TS_{\alpha i1}\Pi_3+(1-\dot{r}(t))\Pi_6^T(S_{\alpha i2}-S_{\alpha i1})\Pi_6\\ &+\Pi_4^T(S_{\alpha i3}-S_{\alpha i2})\Pi_4-\Pi_5^TS_{\alpha i3}\Pi_5+(r_2-r_{\varrho})e_9^T(T_{\alpha i3}-T_{\alpha i2})e_9\\ &+(r_2-r(t))(1-\dot{r}(t))e_7^T(T_{\alpha i2}-T_{\alpha i1})e_7+(r_2-r_1)e_6^TT_{\alpha i1}e_6,\\ \Lambda_{3\alpha i} = &(r(t)-r_1)((1-\dot{r}(t))e^T_7W_{\alpha i2}e_7-e_9^TW_{\alpha i2}e_9)\\ &-(r_{\varrho}-r(t))(e_6^TW_{\alpha i1}e_6-(1-\dot{r}(t))e^T_7W_{\alpha i1}e_7),&\\ \Lambda_{2\beta i} = &{\mathit{\text{Sym}}}\{\Pi_0^T[(r_{\varrho}-r_1)X_{\beta i1}+(r(t)-r_{\alpha})X_{\beta i2}+(r_2-r(t))X_{\beta i3}]\Pi_1+\Pi_{9}^TP\Pi_{10}\}\\ &+\dot{r}(t)\Pi_0^T(X_{\beta i2}-X_{\beta i3})\Pi_0+\Pi_3^TS_{\beta i1}\Pi_3+(1-\dot{r}(t))\Pi_6^T(S_{\beta i3}-S_{\beta i2})\Pi_6\\ &+\Pi_4^T(S_{\beta i2}-S_{\beta i1})\Pi_4-\Pi_5^TS_{\beta i3}\Pi_5+(r_2-r(t))(1-\dot{r}(t))e_7^T(T_{\beta i3}-T_{\beta i2})e_7\\ &+(r_2-r_{\varrho})e_9^T(T_{\beta i2}-T_{\beta i1})e_9+(r_2-r_1)e_6^TT_{\beta i1}e_6,\\ \Lambda_{3\beta i} = &(r(t)-r_{\varrho})((1-\dot{r}(t))e^T_7W_{\beta i2}e_7-e_8^TW_{\beta i2}e_8)\\ &-(r_2-r(t))(e_9^TW_{\beta i1}e_9-(1-\dot{r}(t))e^T_7W_{\beta i1}e_7),&\\ \Lambda_{4\alpha i} = &{\mathit{\text{Sym}}}\{G_{\alpha i1}\Pi_{12}+G_{\alpha i2}\Pi_{13}+G_{\alpha i3}\Pi_{14}+N_{\alpha i1}\Pi_{18}+N_{\alpha i2}\Pi_{19}\}-\Pi^T_{11}\widehat{Y}_1\Pi_{11},&\\ \Lambda_{4\beta i} = &{\mathit{\text{Sym}}}\{G_{\beta i1}\Pi_{15}+G_{\beta i2}\Pi_{16}+G_{\beta i3}\Pi_{17}+N_{\beta i1}\Pi_{18}+N_{\beta i2}\Pi_{19}\}-\Pi^T_{11}\widehat{Y}_1\Pi_{11},&\\ \widehat{Y}_{T1} = &diag\{{Y}_{T1},3{Y}_{T1}\},\ \ \widehat{Y}_{T2} = diag\{{Y}_{T2},3{Y}_{T2}\},&\\ \widehat{W}_{YT\alpha i1}& = diag\{W_{YT\alpha i1},3W_{YT\alpha i1}\},\ \ \widehat{W}_{YT\alpha i2} = diag\{W_{YT\alpha i2},3W_{YT\alpha i2}\},&\\ \widehat{W}_{YT\beta i1}& = diag\{W_{YT\beta i1},3W_{YT\beta i1}\},\ \ \widehat{W}_{YT\beta i2} = diag\{W_{YT\beta i2},3W_{YT\beta i2}\},& \end{align*}

    with

    \begin{align*} \Pi_0 = &[e_1^T\ \ \ \ e_2^T\ \ \ \ e_3^T\ \ \ \ e_{4}^T\ \ \ \ e_{5}^T\ \ \ \ r_1e_{10}^T]^T,\ \ \ \ \Pi_1 = [\Pi_{20}^T\ \ \ \ e_6^T\ \ \ \ (1-\dot{r}(t))e_7^T\ \ \ \ e_{8}^T\ \ \ \ e_{9}^T\ \ \ \ r_1e_{10}^T]^T,&\\ \Pi_{2} = &[e_1^T\ \ \ \ \Pi_{20}^T]^T,\ \ \ \ \Pi_{3} = [e_2^T\ \ \ \ e_6^T]^T,\ \ \ \ \Pi_{4} = [e_5^T\ \ \ \ e_9^T]^T,\ \ \ \ \Pi_{5} = [e_4^T\ \ \ \ e_8^T]^T,\ \ \ \ \Pi_{6} = [e_3^T\ \ \ \ e_7^T]^T,&\\ \Pi_7 = &[e_1^T\ \ \ \ e_2^T\ \ \ \ e_3^T\ \ \ \ e_{4}^T\ \ \ \ e_{5}^T\ \ \ \ r_1e_{10}^T(r(t)-r_1)e_{11}^T\ \ \ \ (r_{\varrho}-r(t))e_{12}^T\ \ \ \ (r_2-r_{\varrho})e_{15}^T]^T,&\\ \Pi_{8} = &[\Pi_{20}^T\ \ \ \ e_6^T\ \ \ \ (1-\dot{r}(t))e_7^T\ \ \ \ e_{8}^T\ \ \ \ e_{9}^T\ \ \ \ e_{1}^T-e_{2}^T\ \ \ \ e_{2}^T-(1-\dot{r}(t))e_{3}^T\ \ \ \ (1-\dot{r}(t))e_{3}^T-e_{5}^T\ \ \ \ e_{5}^T-e^T_{4}]^T,&\\ \Pi_{9} = &[e_1^T\ \ \ \ e_2^T\ \ \ \ e_3^T\ \ \ \ e_{4}^T\ \ \ \ e_{5}^T\ \ \ \ r_1e_{10}^T\ \ \ \ (r_{\varrho}-r_1)(t)e_{14}^T\ \ \ \ (r(t)-r_{\varrho})e_{12}^T\ \ \ \ (r_2-r(t))e_{13}^T]^T,&\\ \Pi_{10} = &[\Pi_{20}^T\ \ \ \ e_6^T\ \ \ \ (1-\dot{r}(t))e_7^T\ \ \ \ e_{8}^T\ \ \ \ e_{9}^T\ \ \ \ e_{1}^T-e_{2}^T\ \ \ \ e_{2}^T-e_{5}^T\ \ \ \ e_{5}^T-(1-\dot{r}(t))e_{3}^T\ \ \ \ (1-\dot{r}(t))e_{3}^T-e^T_{4}]^T,&\\ \Pi_{11} = &[e_1^T-e_2^T\ \ \ \ e_1^T+e_2^T-2e_{10}^T]^T,\ \ \ \ \Pi_{12} = [e_2^T-e_3^T\ \ \ \ e_2^T+e_3^T-2e_{11}^T]^T,&\\ \Pi_{13} = &[e_3^T-e_5^T\ \ \ \ e_3^T+e_5^T-2e_{12}^T]^T,\ \ \ \ \Pi_{14} = [e_5^T-e_4^T\ \ \ \ e_5^T+e_4^T-2e_{15}^T]^T,&\\ \Pi_{15} = &[e_2^T-e_5^T\ \ \ \ e_2^T+e_5^T-2e_{14}^T]^T,\ \ \ \ \Pi_{16} = [e_5^T-e_3^T\ \ \ \ e_5^T+e_3^T-2e_{12}^T]^T,&\\ \Pi_{17} = &[e_3^T-e_4^T\ \ \ \ e_3^T+e_4^T-2e_{13}^T]^T,&\\ \Pi_{18} = &(r(t)-r_1)e_{11}+(r_{\varrho}-r(t))e_{12}-(r_{\varrho}-r_1)e_{14},&\\ \Pi_{19} = &(r(t)-r_{\varrho})e_{12}+(r_2-r(t))e_{13}-(r_2-r_{\varrho})e_{15},&\\ \Pi_{20} = &Ae_{1}+A_{r}e_{3},&\\ {Y}_{T1} = &Y_3+T_{\alpha i3},\ \ {Y}_{T2} = Y_2+T_{\beta i1},\ \ \widehat{Y}_1 = diag\{Y_{1},3Y_{1}\},\\ {W}_{YT\alpha i1}& = Y_2+T_{\alpha i1}-\dot{r}(t)W_{\alpha i1},\ \ {W}_{YT\alpha i2} = Y_2+T_{\alpha i2}-\dot{r}(t)W_{\alpha i2},&\\ {W}_{YT\beta i1}& = Y_3+T_{\beta i2}-\dot{r}(t)W_{\beta i1},\ \ {W}_{YT\beta i2} = Y_3+T_{\beta i3}-\dot{r}(t)W_{\beta i2}.& \end{align*}

    Proof. Choosing the non-continuous piecewise L–K functional defined below:

    \begin{equation} V(t) = \left\{\begin{aligned} &V_0(t)+V_{1\alpha1}(t)+V_{2\alpha1}+V_{l\alpha1}(t),\ t\in[t_{2k-1},\varrho_{1k}),\\ &V_0(t)+V_{1\beta1}(t)+V_{2\beta1}+V_{l\beta1}(t),\ t\in[\varrho_{1k},t_{2k}),\\ &V_0(t)+V_{1\beta2}(t)+V_{2\beta2}+V_{l\beta2}(t),\ t\in[t_{2k},\ \varrho_{2k}),\\ &V_0(t)+V_{1\alpha2}(t)+V_{2\alpha2}+V_{l\alpha2}(t),\ t\in[\varrho_{2k},\ t_{2k+1}), \end{aligned}\right.\ \end{equation} (3.6)

    where

    \begin{align*} {V_0(t)} = &r_1\varpi_0(t)^TF\varpi_0(t)+\int_{t-r_1}^t\varpi_1^T(s)Q_1\varpi_1(s)ds +\int_{t-r_{\varrho}}^{t-r_1}\varpi_1^T(s)Q_2\varpi_1(s)ds\\ &+\int^{t-r_{\varrho}}_{t-r_2}\varpi_1^T(s)Q_3\varpi_1(s)ds +r_1\int_{-r_1}^0\int_{t+u}^t\dot{x}^T(s)Y_1\dot{x}(s)dsdu\\ &+\int_{-r_{\varrho}}^{-r_1}\int_{t+u}^t\dot{x}^T(s)Y_2\dot{x}(s)dsdu +\int_{-r_2}^{-r_{\varrho}}\int_{t+u}^t\dot{x}^T(s)Y_3\dot{x}(s)dsdu,\\ {V_{1\alpha i}(t)} = &\varpi^T_0(t)[(r(t)-r_1)X_{\alpha i1}+(r_{\alpha}-r(t))X_{\alpha i2} +(r_2-r_{\varrho})X_{\alpha i3}]\varpi_0(t)+\varpi_{2\alpha}^T(t)P\varpi_{2\alpha}(t)\\ &+\int_{t-r(t)}^{t-r_1}\varpi_1^T(s)S_{\alpha i1}\varpi_1(s)ds +\int_{t-r_{\varrho}}^{t-r(t)}\varpi_1^T(s)S_{\alpha i2}\varpi_1(s)ds+\int^{t-r_{\varrho}}_{t-r_2}\varpi_1^T(s)S_{\alpha i3}\varpi_1(s)ds,\\ {V_{1\beta i}(t)} = &\varpi^T_0(t)[(r_{\varrho}-r_1)X_{\beta i1}+(r(t)-r_{\alpha})X_{\beta i2} +(r_2-r(t))X_{\beta i3}]\varpi_0(t)+\varpi_{2\beta}^T(t)P\varpi_{2\beta}(t)\\ &+\int_{t-r_{\varrho}}^{t-r_1}\varpi_1^T(s)S_{\beta i1}\varpi_1(s)ds +\int^{t-r_{\varrho}}_{t-r(t)}\varpi_1^T(s)S_{\beta i2}\varpi_1(s)ds+\int^{t-r(t)}_{t-r_2}\varpi_1^T(s)S_{\beta i3}\varpi_1(s)ds,\\ {V_{2\alpha i}(t)} = &\int_{t-r(t)}^{t-r_1}(r_2+s-t)\dot{x}^T(s)T_{\alpha i1}\dot{x}(s)ds +\int^{t-r(t)}_{t-r_{\varrho}}(r_2+s-t)\dot{x}^T(s)T_{\alpha i2}\dot{x}(s)ds\\ &+\int_{t-r_2}^{t-r_{\varrho}}(r_2+s-t)\dot{x}^T(s)T_{\alpha i3}\dot{x}(s)ds,\\ {V_{2\beta i}(t)} = &\int_{t-r_{\varrho}}^{t-r_1}(r_2+s-t)\dot{x}^T(s)T_{\beta i1}\dot{x}(s)ds +\int_{t-r(t)}^{t-r_{\varrho}}(r_2+s-t)\dot{x}^T(s)T_{\beta i2}\dot{x}(s)ds\\ &+\int_{t-r_2}^{t-r(t)}(r_2+s-t)\dot{x}^T(s)T_{\beta i3}\dot{x}(s)ds,\\ {V_{l\alpha i}(t)} = &(r(t)-r_{\varrho})\int^{t-r_1}_{t-r(t)}\dot{x}^T(s)W_{\alpha i1}\dot{x}(s)ds +(r(t)-r_1)\int_{t-r_{\varrho}}^{t-r(t)}\dot{x}^T(s)W_{\alpha i2}\dot{x}(s)ds,\\ {V_{l\beta i}(t)} = &(r(t)-r_2)\int^{t-r_{\varrho}}_{t-r(t)}\dot{x}^T(s)W_{\beta i1}\dot{x}(s)ds +(r(t)-r_{\varrho})\int_{t-r_{2}}^{t-r(t)}\dot{x}^T(s)W_{\beta i2}\dot{x}(s)ds. \end{align*}

    Differentiating {V}(t) yields

    \begin{equation} \dot{V}(t) = \left\{\begin{aligned} &\dot{V}_0(t)+\dot{V}_{1\alpha1}(t)++\dot{V}_{2\alpha1}(t)+\dot{V}_{l\alpha1}(t),\ t\in[t_{2k-1},\varrho_{1k}),\\ &\dot{V}_0(t)+\dot{V}_{1\beta1}(t)+\dot{V}_{2\beta1}(t)+\dot{V}_{l\beta1}(t),\ t\in[\varrho_{1k},t_{2k}),\\ &\dot{V}_0(t)+\dot{V}_{1\beta2}(t)+\dot{V}_{2\beta2}(t)+\dot{V}_{l\beta2}(t),\ t\in[t_{2k},\ \varrho_{2k}),\\ &\dot{V}_0(t)+\dot{V}_{1\alpha2}(t)+\dot{V}_{2\alpha2}(t)+\dot{V}_{l\alpha2}(t),\ t\in[\varrho_{2k},\ t_{2k+1}), \end{aligned}\right.\ \end{equation} (3.7)

    where

    \begin{align*} {\dot{V}_{0}(t)} = &2r_1\varpi_0^T(t)F\dot{\varpi}_0(t)+\varpi_1^T(t){Q}_1\varpi_1(t)+\varpi_1^T(t-r_1)(Q_2 -Q_1)\varpi_1(t-r_1)\\ &+\varpi_1^T(t-r_{\varrho})(Q_3-Q_2)\varpi_1(t-r_{\varrho}) -\varpi_1^T(t-r_2)Q_3\varpi_1(t-r_2)+r_1^2\dot{x}^T(t)Y_1\dot{x}(t)\\ &+(r_{\varrho}-r_1)\dot{x}^T(t)Y_2\dot{x}(t)+(r_2-r_{\varrho})\dot{x}^T(t)Y_3\dot{x}(t) +\digamma_{c1}+\digamma_{c2}+\digamma_{c3},&\\ {\dot{V}_{1\alpha i}(t)} = &2\varpi_0^T(t)[(r(t)-r_1)X_{\alpha i1}+(r_{\alpha}-r(t))X_{\alpha i2}+(r_2-r_{\varrho})X_{\alpha i3}]\dot{\varpi}_0(t)\\ &+\dot{r}(t)\varpi_0^T(t)(X_{\alpha i1}-X_{\alpha i2})\varpi_0(t)+2\varpi_{2\alpha}^T(t)P\dot{\varpi}_{2\alpha}(t) +\varpi_1^T(t-r_1)S_{\alpha i1}\varpi_1(t-r_1)\\ &+(1-\dot{r}(t))\varpi_1^T(t-r(t))(S_{\alpha i2}-S_{\alpha i1})\varpi_1(t-r(t)) +\varpi_1^T(t-r_{\varrho})(S_{\alpha i3}-S_{\alpha i2})\varpi_1(t-r_{\varrho})\\ &-\varpi_1^T(t-r_2)S_{\alpha i3}\varpi_1(t-r_2),\\ {\dot{V}_{1\beta i}(t)} = &2\varpi_0^T(t)[(r_{\varrho}-r_1)X_{\beta i1}+(r(t)-r_{\alpha})X_{\beta i2}+(r_2-r(t))X_{\beta i3}]\dot{\varpi}_0(t)\\ &+\dot{r}(t)\varpi_0^T(t)(X_{\beta i2}-X_{\beta i3})\varpi_0(t)+2\varpi_{2\beta}^T(t)P\dot{\varpi}_{2\beta}(t) +\varpi_1^T(t-r_1)S_{\beta i1}\varpi_1(t-r_1)\\ &+(1-\dot{r}(t))\varpi_1^T(t-r(t))(S_{\beta i3}-S_{\beta i2})\varpi_1(t-r(t)) +\varpi_1^T(t-r_{\varrho})(S_{\beta i2}-S_{\beta i1})\varpi_1(t-r_{\varrho})\\ &-\varpi_1^T(t-r_2)S_{\beta i3}\varpi_1(t-r_2),\\ {\dot{V}_{2\alpha i}(t)} = &(r_2-r_{\varrho})\dot{x}^T(t-r_{\varrho})(T_{\alpha i3}-T_{\alpha i2})\dot{x}(t-r_{\varrho})\\ &+(r_2-r(t))(1-\dot{r}(t))\dot{x}^T(t-r(t))^T(T_{\alpha i2}-T_{\alpha i1})\dot{x}(t-r(t))\\ &+(r_2-r_1)\dot{x}^T(t-r_1)T_{\alpha i1}\dot{x}(t-r_1)+\digamma_{T\alpha i1}+\digamma_{T\alpha i2}+\digamma_{T\alpha i3},\\ {\dot{V}_{2\beta i}(t)} = &(r_2-r(t))(1-\dot{r}(t))\dot{x}^T(t-r(t))(T_{\beta i3}-T_{\beta i2})\dot{x}(t-r(t))\\ &+(r_2-r_{\varrho})\dot{x}^T(t-r_{\varrho})(T_{\beta i2}-T_{\beta i1})\dot{x}(t-r_{\varrho}) +(r_2-r_1)\dot{x}^T(t-r_1)T_{\beta i1}\dot{x}(t-r_1)&\\ &+\digamma_{T\beta i1}+\digamma_{T\beta i2}+\digamma_{T\beta i3},&\\ {\dot{V}_{l\alpha i}(t)} = &(r(t)-r_1)[(1-\dot{r}(t))\dot{x}^T(t-r(t))W_{\alpha i2}\dot{x}(t-r(t)) -\dot{x}^T(t-r_{\varrho})W_{\alpha i2}\dot{x}(t-r_{\varrho})]\\ &+(r(t)-r_{\varrho})[\dot{x}^T(t-r_1)W_{\alpha i1} \dot{x}(t-r_1)-(1-\dot{r}(t))\dot{x}^T(t-r(t))W_{\alpha i1}\dot{x}(t-r(t))]\\ &+\digamma_{W\alpha i1}+\digamma_{W\alpha i2},&\\ {\dot{V}_{l\beta i}(t)} = &(r(t)-r_{\varrho})[(1-\dot{r}(t))\dot{x}^T(t-r(t))W_{\beta i2}\dot{x}(t-r(t)) -\dot{x}^T(t-r_2)W_{\beta i2}\dot{x}(t-r_2)]\\ &+(r(t)-r_2)[\dot{x}^T(t-r_{\varrho})W_{\beta i1} \dot{x}(t-r_{\varrho})-(1-\dot{r}(t))\dot{x}^T(t-r(t))W_{\beta i1}\dot{x}(t-r(t))]\\ &+\digamma_{W\beta i1}+\digamma_{W\beta i2},& \end{align*}

    with

    \begin{align*} \digamma_{c1}& = -r_1\int^{t}_{t-r_1}\dot{x}^T(s)Y_1\dot{x}(s)ds,\ \ \digamma_{c2} = -\int_{t-r_{\varrho}}^{t-r_1}\dot{x}^T(s)Y_2\dot{x}(s)ds,\ \ \digamma_{c3} = -\int^{t-r_{\varrho}}_{t-r_2}\dot{x}^T(s)Y_3\dot{x}(s)ds,\\ \digamma_{T\alpha i1}& = -\int^{t-r_1}_{t-r(t)}\dot{x}^T(s)T_{\alpha i1}\dot{x}(s)ds,\ \ \ \ \digamma_{T\alpha i2} = -\int_{t-r_{\varrho}}^{t-r(t)}\dot{x}^T(s)T_{\alpha i2}\dot{x}(s)ds,\\ \digamma_{T\alpha i3}& = -\int_{t-r_2}^{t-r_{\varrho}}\dot{x}^T(s)T_{\alpha i3}\dot{x}(s)ds,\ \ \ \ \digamma_{T\beta i1} = -\int^{t-r_1}_{t-r_{\varrho}}\dot{x}^T(s)T_{\beta i1}\dot{x}(s)ds,\\ \digamma_{T\beta i2}& = -\int^{t-r_{\varrho}}_{t-r(t)}\dot{x}^T(s)T_{\beta i2}\dot{x}(s)ds,\ \ \ \ \digamma_{T\beta i3} = -\int_{t-r_2}^{t-r(t)}\dot{x}^T(s)T_{\beta i3}\dot{x}(s)ds,\\ \digamma_{W\alpha i1}& = \dot{r}(t)\int^{t-r_1}_{t-r(t)}\dot{x}^T(s)W_{\alpha i1}\dot{x}(s)ds,\ \ \ \ \digamma_{W\alpha i2} = \dot{r}(t)\int_{t-r_{\varrho}}^{t-r(t)}\dot{x}^T(s)W_{\alpha i2}\dot{x}(s)ds,\\ \digamma_{W\beta i1}& = \dot{r}(t)\int^{t-r_{\varrho}}_{t-r(t)}\dot{x}^T(s)W_{\beta i1}\dot{x}(s)ds,\ \ \ \ \digamma_{W\beta i2} = \dot{r}(t)\int_{t-r_2}^{t-r(t)}\dot{x}^T(s)W_{\beta i2}\dot{x}(s)ds. \end{align*}

    Applying (2.5) in Lemma 2.1 to estimate \digamma_{c1} , we obtain

    \begin{equation} \begin{aligned} \digamma_{c1}\leqslant-&\varpi^T(t)E_{24}^TY_{1}E_{24}\varpi(t). \end{aligned} \end{equation} (3.8)

    Then, merging the integrals that have the same integral intervals and applying (2.6) in Lemma 2.1 to estimate the various combinations of \sum_{\iota = 2}^3\digamma_{c\iota}+\sum_{\iota = 1}^3\digamma_{T\alpha i\iota}+\sum_{\iota = 1}^2\digamma_{W\alpha i\iota} .

    For \digamma_{c2}+\digamma_{T\alpha i1}+\digamma_{T\alpha i2}+\digamma_{W\alpha i1}+\digamma_{W\alpha i2} and \digamma_{c3}+\digamma_{T\alpha i3} , suppose that Y_2+T_{\alpha i1}+\dot{r}(t)W_{\alpha i1} > 0 and Y_2+T_{\alpha i2}+\dot{r}(t)W_{\alpha i2} > 0 at the vertices of \gimel_{\alpha i} , we obtain

    \begin{align} \digamma_{c3}+\digamma_{T\alpha i3}& = -\int^{t-r_{\varrho}}_{t-r_2}\dot{x}^T(s)(Y_3+T_{\alpha i3})\dot{x}(s)ds\\ &\leqslant\varpi^T(t)[(r_2-r_{\varrho})G_{\alpha i3}(Y_3+T_{\alpha i3})^{-1}G_{\alpha i3}^T +{\text{Sym}}\{G_{\alpha i3}E_{27}\}]\varpi(t), \\ \end{align} (3.9)
    \begin{align} &\digamma_{c2}+\digamma_{T\alpha i1}+\digamma_{T\alpha i2}+\digamma_{W\alpha i1}+\digamma_{W\alpha i2}\\ = &-\int^{t-r_1}_{t-r(t)}\dot{x}^T(s)(Y_2+T_{\alpha i1}+\dot{r}(t)W_{\alpha i1})\dot{x}(s)ds-\int_{t-r_{\varrho}}^{t-r(t)}\dot{x}^T(s)(Y_2+T_{\alpha i2}+\dot{r}(t)W_{\alpha i2})\dot{x}(s)ds\\ \leqslant&\varpi^T(t)[(r(t)-r_1)G_{\alpha i1}(Y_2+T_{\alpha i1}+\dot{r}(t)W_{\alpha i1})^{-1}G_{\alpha i1}^T\\ &+(r_{\varrho}-r(t))G_{\alpha i2}(Y_2+T_{\alpha i2}+\dot{r}(t)W_{\alpha i2})^{-1}G_{\alpha i2}^T +{\text{Sym}}\{G_{\alpha i1}E_{25}+G_{\alpha i2}E_{26}\}]\varpi(t). \end{align} (3.10)

    Similarly, suppose that Y_3+T_{\beta i2}+\dot{r}(t)W_{\beta i1} > 0 and Y_3+T_{\beta i3}+\dot{r}(t)W_{\beta i2} > 0 at the vertices of \gimel_{\beta i} . Then, \digamma_{c3}+\digamma_{T\beta i2}+\digamma_{T\beta i3}+\digamma_{W\beta i1}+\digamma_{W\beta i2} and \digamma_{c2}+\digamma_{T\beta i1} satisfy the following inequalities:

    \begin{align} \digamma_{c2}+\digamma_{T\beta i1}& = -\int_{t-r_{\varrho}}^{t-r_1}\dot{x}^T(s)(Y_2+T_{\beta i1})\dot{x}(s)ds\\ &\leqslant\varpi^T(t)[(r_{\varrho}-r_1)G_{\beta i1}(Y_2+T_{\beta i1})^{-1}G_{\beta i1}^T+{\text{Sym}}\{G_{\beta i1}E_{28}\}]\varpi(t), \end{align} (3.11)
    \begin{align} &\digamma_{c3}+\digamma_{T\beta i2}+\digamma_{T\beta i3}+\digamma_{W\beta i1}+\digamma_{W\beta i2}\\ = &-\int^{t-r_{\varrho}}_{t-r(t)}\dot{x}^T(s)(Y_3+T_{\beta i2}+\dot{r}(t)W_{\beta i1})\dot{x}(s)ds -\int_{t-r_2}^{t-r(t)}\dot{x}^T(s)(Y_3+T_{\beta i3}+\dot{r}(t)W_{\beta i2})\dot{x}(s)ds\\ \leqslant&\varpi^T(t)[(r(t)-r_{\varrho})G_{\beta i2}(Y_3+T_{\beta i2}+\dot{r}(t)W_{\beta i1})^{-1}G_{\beta i2}^T\\ &+(r_2-r(t))G_{\beta i3}(Y_3+T_{\beta i3}+\dot{r}(t)W_{\beta i2})^{-1}G_{\beta i3}^T +{\text{Sym}}\{G_{\beta i2}E_{29}+G_{\beta i3}E_{30}\}]\varpi(t). \end{align} (3.12)

    According to the relationship between the internal elements of the vector, the subsequent equations are valid.

    \begin{equation} \begin{aligned} 0& = 2\varpi(t)^TN_{\alpha i1}[\delta_4(t)+\delta_5(t)-\delta_{7}(t)],\\ 0& = 2\varpi(t)^TN_{\alpha i2}[\delta_6(t)-\delta_5(t)-\delta_{8}(t)],\\ 0& = 2\varpi(t)^TN_{\beta i1}[\delta_4(t)+\delta_5(t)-\delta_{7}(t)],\\ 0& = 2\varpi(t)^TN_{\beta i2}[\delta_6(t)-\delta_5(t)-\delta_{8}(t)].\\ \end{aligned} \end{equation} (3.13)

    Combining (3.7)–(3.10) and (3.13), for t\in[t_{2k-1}, \varrho_{1k})\cup[\varrho_{2k}, t_{2k+1}) , we derive

    \begin{equation} \begin{aligned} \dot{V}(t)\leqslant&\varpi^T(t)[\Upsilon_{\alpha i}(r(t),\dot{r}(t))+(r(t)-r_1)G_{\alpha i1}(Y_2+T_{\alpha i1} +{\dot{r}(t)W_{\alpha i1})}^{-1}{\alpha i1}^T\\ &+(r_{\varrho}-r(t))G_{\alpha i2}(Y_2+T_{\alpha i2}+{\dot{r}(t)W_{\alpha i2}})^{-1} G_{\alpha i2}^T\\ &+(r_2-r_{\varrho})G_{\alpha i3}(Y_3+T_{\alpha i3})^{-1}G_{\alpha i3}^T]\varpi(t)\\ = &\varpi^T(t)\Xi_{\alpha i}(r(t),\dot{r}(t))\varpi(t), \end{aligned} \end{equation} (3.14)

    where \Upsilon_{\alpha i}(r(t), \dot{r}(t)) is defined in Theorem 3.1. From the Schur complement lemma, \Xi_{\alpha i}(r(t), \dot{r}(t)) < 0 is equivalent to LMIs (3.3) at the vertices of \gimel_{\alpha i} . Therefore, there exist scalars \gamma_{\alpha i} satisfying \dot{V}(t) < -\gamma_{\alpha i}\lvert x(t)\rvert^2 for t\in[t_{2k-1}, \varrho_{1k})\cup[\varrho_{2k}, t_{2k+1}) if (3.3) is satisfied.

    Similarly, for t\in[\varrho_{1k}, \varrho_{2k}) , combining (3.7), (3.8), (3.11)–(3.13), we derive

    \begin{equation} \begin{aligned} \dot{V}(t)\leqslant&\varpi^T(t)[\Upsilon_{\beta i}(r(t),\dot{r}(t))+(r_{\varrho}-r_1)G_{\beta i1}(Y_2+T_{\beta i1})^{-1} G_{b\beta i1}^T\\ &+(r(t)-r_{\varrho})G_{\beta i2}(Y_3+T_{\beta i2}+{\dot{r}(t)W_{\beta i1}})^{-1}G_{\beta i2}^T\\ &+(r_2-r(t))G_{\beta i3}(Y_3+T_{\beta i3}+{\dot{r}(t)W_{\beta i2}})^{-1}G_{\beta i3}^T]\varpi(t)\\ = &\varpi^T(t)\Xi_{\beta i}(r(t),\dot{r}(t))\varpi(t), \end{aligned} \end{equation} (3.15)

    where \varpi^T(t)\Xi_{\beta i}(r(t), \dot{r}(t))\varpi(t) < 0 corresponds to LMIs (3.5) at the vertices of \gimel_{\beta i} and there exist scalars \gamma_{\beta i} satisfying \dot{V}(t) < -\gamma_{\beta i}\lvert x(t)\rvert^2 for t\in[\varrho_{1k}, \varrho_{2k}) if (3.5) are satisfied.

    To ensure the overall decrement of the functional, some boundary conditions shown below need to be satisfied at each segmented point:

    \begin{equation} \left\{\begin{aligned} \lim\limits_{t \to \varrho_{1k}^{\ -}}[V_{1\alpha1}(t)+V_{2\alpha1}(t)]&\geqslant [V_{1\beta1}(\varrho_{1k})+V_{2\beta1}(\varrho_{1k})],\\ \lim\limits_{t \to t_{2k}^{\ -}}[V_{1\beta1}(t)+V_{2\beta1}(t)]&\geqslant [V_{1\beta2}(t_{2k})+V_{2\beta2}(t_{2k})], \\ \lim\limits_{t \to \varrho_{2k}^{\ -}}[V_{1\beta2}(t)+V_{2\beta2}(t)]&\geqslant [V_{1\alpha2}(\varrho_{2k})+V_{2\alpha2}(\varrho_{2k})],\\ \lim\limits_{t \to t_{2k+1}^{\ -}}[V_{1\alpha2}(t)+V_{2\alpha2}(t)]&\geqslant [V_{1\alpha1}(t_{2k-1})+V_{2\alpha1}(t_{2k-1})]. \end{aligned}\right. \end{equation} (3.16)

    From which we obtain the restriction in (3.1). Thus, the proof is completed.

    Remark 3.1. An ADS based on the delay segmenting method is proposed in [38]. However, the L–K functional established therein does not match the ADS appropriately, i.e., the delay-segmentation-related information is not directly reflected in the established L–K functional. Undoubtedly, this makes the stability criterion of the system have a relatively high conservativeness in an intuitive way. Therefore, an improved L–K functional is established in this paper, which enables the direct manifestation of the segmented delay intervals. Compared with the functional established in [38], this functional increases the weight of delay derivatives in the criterion, thereby enhancing the correlation between the system stability conditions and the delay-related information. Moreover, as shown in V_{1\alpha i} and V_{1\beta i} , the number of relevant Lyapunov matrices it encompasses has increased by 50\% , while the number of constraint conditions between Lyapunov matrices has only increased by 33.33%. As shown in constraint conditions (3.1) of Theorem 3.1, X_{\alpha 12}\geqslant X_{\beta12}, \ X_{\beta 22}\geqslant X_{\alpha22} , S_{\alpha 12}\geqslant S_{\beta12} , and S_{\beta 22}\geqslant S_{\alpha22} are not required. Consequently, the function presented in this paper will further reduce the conservativeness of the results.

    Remark 3.2. In [38], only two delay-product terms were incorporated in the established functional, aside from loop-like functions. This suggests that the delay-dependent stability conditions across different intervals will rely on a fixed set of Lyapunov matrices. Consequently, the stability criterion derived from [38] tends to produce overly conservative results. In contrast, the functional introduced in this paper incorporates V_{2\alpha i} and V_{2\beta i} based on the specific intervals associated with the delay. This approach allows for the Lyapunov matrices used in the directly delay-dependent stability conditions across different intervals to differ from one another. As a result, the proposed function grants the stability criteria of the system greater flexibility and significantly diminishes its conservativeness.

    Remark 3.3. A loop function based on periodic time delay was originally proposed in [37]. This function exhibits the property of being identically zero at the vertices of the domain of the delay function. Consequently, when integrated with the L–K functional, it inherently satisfies the requirements of Lyapunov functions. Moreover, within distinct intervals of the functional, the Lyapunov matrices associated with this function are not required to be identical. However, the ADS partitioning approach introduced in [38] leads to the derivation of stability conditions of more meticulous segmentation from the proposed functional. As a result, constraints are imposed on the Lyapunov matrices within the loop functions. This imposition undermines the definition of the loop functions and increases the conservativeness of the system stability criteria. In contrast, in the functional presented herein, a set of loop functions corresponding to the delay-belonging intervals within each segment of the functional is established. These loop functions are valid on every individual segment. For t\in[t_{2k-1}, \varrho_{1k}) , given that V(t_{2k-1})\geqslant0 , V(\varrho_{1k})\geqslant0 , and \dot{V}(t) < -\gamma_{\alpha 1}\lvert x(t)\rvert^2 , then V(t_{2k-1})\geqslant V(t)\geqslant V(\varrho_{1k}) holds true. For other intervals, similar conditions also hold. Therefore, there are no restrictive relationships among their respective Lyapunov matrices. Evidently, this configuration further diminishes the conservativeness of the derived stability conditions.

    Remark 3.4. As evident from LMIs (3.3) and (3.5), the stability criterion derived from Theorem 3.1 encompasses a substantial number of variables (NoVs). To minimize computational complexity to the greatest extent possible, conserve computational resources, and investigate the correlation between the increment in computational complexity and the results enhancement, we reduce the number of free matrices in Eq (3.13). Subsequently, we substitute Eq (3.13) with the following equations and apply them to Theorem 3.1,

    \begin{equation} \begin{aligned} 0& = 2\varpi(t)^TN_{\alpha}[\delta_4(t)+\delta_5(t)-\delta_{7}(t)],\\ 0& = 2\varpi(t)^TN_{\beta }[\delta_6(t)-\delta_5(t)-\delta_{8}(t)]. \end{aligned} \end{equation} (3.17)

    The results obtained from these modifications will be compared and analyzed in the section dedicated to numerical examples.

    Then, the following corollary is derived based on a continuous L–K functional simplified by (3.6).

    Corollary 3.1. For scalars \varrho\in[0, 1], r_2 \geqslant r_1 \geqslant 0, \mu < 1 , if there exist matrices P\in\mathbb{S}^{9n}_{+} , F, \bar{X}_{\varsigma}\in\mathbb{S}^{6n}_{+} , Q_\varsigma, \bar{S}_{\varsigma}\in\mathbb{S}^{2n}_{+} , Y_\varsigma, \bar{T}_{\varsigma}\in\mathbb{S}^{n}_{+} , W_{\alpha i1}, W_{\alpha i2}, W_{\beta i1}, W_{\beta i2}\in\mathbb{S}^{n} , G_{\alpha i\varsigma}, G_{\beta i\varsigma}\in\mathbb{R}^{15n\times 2n} , N_{\alpha i1}, N_{\alpha i2}, N_{\beta i1}, N_{\beta i2}\in\mathbb{R}^{15n\times n}, i = 1, 2, \varsigma = 1, \cdots, 3 , such that LMIs (3.18)–(3.19) and (3.20)–(3.21) are satisfied at the vertices of \gimel_{\alpha i} and \gimel_{\beta i} , respectively, then system (2.1) is stable,

    \begin{equation} W_{Y\bar{T}\alpha i1} > 0,\ W_{Y\bar{T}\alpha i2} > 0, \end{equation} (3.18)
    \begin{equation} \left[\begin{matrix}\bar{\Upsilon}_{\alpha i}(r(t),\dot{r}(t))&\sqrt{r(t)-r_1}G_{\alpha i1}&\sqrt{r_{\varrho}-r(t)}G_{\alpha i2}&\sqrt{r_2-r_1}G_{\alpha i3}\\\ast&-\widehat{W}_{Y\bar{T}\alpha i1}&0&0\\ \ast&\ast&-\widehat{W}_{Y\bar{T}\alpha i2}&0\\ \ast&\ast&\ast&-\widehat{Y}_{\bar{T}1} \end{matrix}\right] < 0, \end{equation} (3.19)
    \begin{equation} W_{Y\bar{T}\beta i1} > 0,\ W_{Y\bar{T}\beta i2} > 0, \end{equation} (3.20)
    \begin{equation} \left[\begin{matrix}\bar{\Upsilon}_{\beta i}(r(t),\dot{r}(t))&\sqrt{r_{\varrho}-r_1}G_{\beta i1}&\sqrt{r(t)-r_{\varrho}}G_{\beta i2}&\sqrt{r_2-r(t)}G_{\beta i3}\\\ast&-\widehat{Y}_{\bar{T}2}&0&0\\ \ast&\ast&-\widehat{W}_{Y\bar{T}\beta i1}&0\\ \ast&\ast&\ast&-\widehat{W}_{Y\bar{T}\beta i2} \end{matrix}\right] < 0, \end{equation} (3.21)

    where

    \begin{align*} \bar{\Upsilon}_{\alpha i}(r(&t),\dot{r}(t)) = \Lambda_1+\bar{\Lambda}_{2\alpha}+\Lambda_{3\alpha i}+\Lambda_{4\alpha i},&\\ \bar{\Upsilon}_{\beta i}(r(&t),\dot{r}(t)) = \Lambda_1+\bar{\Lambda}_{2\beta}+\Lambda_{3\beta i}+\Lambda_{4\beta i},&\\ \Lambda_1 = &{\mathit{\text{Sym}}}\{h_1\Pi_0^TF\Pi_1\}+\Pi_2^T{Q}_1\Pi_{2}+\Pi_3^T(Q_2-Q_1)\Pi_{3}+\Pi_4^T(Q_3-Q_2)\Pi_{4}\\ &-\Pi_5^TQ_3\Pi_5+r_1^2\Pi_{20}^TY_1\Pi_{20}+(r_{\varrho}-r_1)\Pi_{20}^TY_2\Pi_{20}+(r_2-r_{\varrho})\Pi_{20}^TY_3\Pi_{20},&\\ \bar{\Lambda}_{2\alpha} = &{\mathit{\text{Sym}}}\{\Pi_0^T[(r(t)-r_1)\bar{X}_{1}+(r_{\alpha}-r(t))\bar{X}_{2}+(r_2-r_{\varrho})\bar{X}_{3}]\Pi_1+\Pi_7^TP\Pi_8\}\\ &+\dot{r}(t)\Pi_0^T(\bar{X}_{1}-\bar{X}_{2})\Pi_0+\Pi_3^T\bar{S}_{1}\Pi_3+(1-\dot{r}(t))\Pi_6^T(\bar{S}_{2}-\bar{S}_{1})\Pi_6\\ &+\Pi_4^T(\bar{S}_{3}-\bar{S}_{2})\Pi_4-\Pi_5^T\bar{S}_{3}\Pi_5+(r_2-r_{\varrho})e_9^T(\bar{T}_{3}-\bar{T}_{2})e_9\\ &+(r_2-r(t))(1-\dot{r}(t))e_7^T(\bar{T}_{2}-\bar{T}_{1})e_7+(r_2-r_1)e_6^T\bar{T}_{1}e_6,\\ \bar{\Lambda}_{2\beta} = &{\mathit{\text{Sym}}}\{\Pi_0^T[(r_{\varrho}-r_1)\bar{X}_{1}+(r(t)-r_{\alpha})\bar{X}_{2}+(r_2-r(t))\bar{X}_{3}]\Pi_1+\Pi_{9}^TP\Pi_{10}\}\\ &+\dot{r}(t)\Pi_0^T(\bar{X}_{2}-\bar{X}_{3})\Pi_0+\Pi_3^T\bar{S}_{1}\Pi_3+(1-\dot{r}(t))\Pi_6^T(\bar{S}_{3}-\bar{S}_{2})\Pi_6\\ &+\Pi_4^T(\bar{S}_{2}-\bar{S}_{1})\Pi_4-\Pi_5^T\bar{S}_{3}\Pi_5+(r_2-r(t))(1-\dot{r}(t))e_7^T(\bar{T}_{3}-\bar{T}_{2})e_7\\ &+(r_2-r_{\varrho})e_9^T(\bar{T}_{2}-\bar{T}_{1})e_9+(r_2-r_1)e_6^T\bar{T}_{1}e_6,\\ \Lambda_{3\alpha i} = &(r(t)-r_1)((1-\dot{r}(t))e^T_7W_{\alpha i2}e_7-e_9^TW_{\alpha i2}e_9) -(r_{\varrho}-r(t))(e_6^TW_{\alpha i1}e_6-(1-\dot{r}(t))e^T_7W_{\alpha i1}e_7),&\\ \Lambda_{3\beta i} = &(r(t)-r_{\varrho})((1-\dot{r}(t))e^T_7W_{\beta i2}e_7-e_8^TW_{\beta i2}e_8) -(r_2-r(t))(e_9^TW_{\beta i1}e_9-(1-\dot{r}(t))e^T_7W_{\beta i1}e_7),&\\ \Lambda_{4\alpha i} = &{\mathit{\text{Sym}}}\{G_{\alpha i1}\Pi_{12}+G_{\alpha i2}\Pi_{13}+G_{\alpha i3}\Pi_{14}+N_{\alpha i1}\Pi_{18}+N_{\alpha i2}\Pi_{19}\}-\Pi^T_{11}\widehat{Y}_1\Pi_{11},&\\ \Lambda_{4\beta i} = &{\mathit{\text{Sym}}}\{G_{\beta i1}\Pi_{15}+G_{\beta i2}\Pi_{16}+G_{\beta i3}\Pi_{17}+N_{\beta i1}\Pi_{18}+N_{\beta i2}\Pi_{19}\}-\Pi^T_{11}\widehat{Y}_1\Pi_{11},&\\ \widehat{Y}_{\bar{T}1} = &diag\{{Y}_{\bar{T}1},3{Y}_{\bar{T}1}\},\ \ \widehat{Y}_{\bar{T}2} = diag\{{Y}_{\bar{T}2},3{Y}_{\bar{T}2}\},&\\ \widehat{W}_{Y\bar{T}\alpha i1}& = diag\{W_{Y\bar{T}\alpha i1},3W_{Y\bar{T}\alpha i1}\},\ \ \widehat{W}_{Y\bar{T}\alpha i2} = diag\{W_{Y\bar{T}\alpha i2},3W_{Y\bar{T}\alpha i2}\},&\\ \widehat{W}_{Y\bar{T}\beta i1}& = diag\{W_{Y\bar{T}\beta i1},3W_{Y\bar{T}\beta i1}\},\ \ \widehat{W}_{Y\bar{T}\beta i2} = diag\{W_{Y\bar{T}\beta i2},3W_{Y\bar{T}\beta i2}\},& \end{align*}

    with

    \begin{align*} {Y}_{\bar{T}1} = &Y_3+\bar{T}_{3},\ \ {Y}_{\bar{T}2} = Y_2+\bar{T}_{1},\\ {W}_{Y\bar{T}\alpha i1}& = Y_2+\bar{T}_{1}-\dot{r}(t)W_{\alpha i1},\ \ {W}_{Y\bar{T}\alpha i2} = Y_2+\bar{T}_{2}-\dot{r}(t)W_{\alpha i2},&\\ {W}_{Y\bar{T}\beta i1}& = Y_3+\bar{T}_{2}-\dot{r}(t)W_{\beta i1},\ \ {W}_{Y\bar{T}\beta i2} = Y_3+\bar{T}_{3}-\dot{r}(t)W_{\beta i2},& \end{align*}

    and \Pi_{\lambda}(\lambda = 0, \cdots, 20) , \widehat{Y}_1 are defined in Theorem 3.1.

    Proof. Setting \bar{X}_{\varsigma} = X_{\alpha i\varsigma} = X_{\beta i\varsigma} , \bar{S}_{\varsigma} = S_{\alpha i\varsigma} = S_{\beta i\varsigma} and \bar{T}_{\varsigma} = T_{\alpha i\varsigma} = T_{\beta i\varsigma} in L–K functional (3.6), we obtain a continuous piecewise L–K functional satisfying the following equations:

    \begin{equation} \left\{\begin{aligned} \lim\limits_{t \to \varrho_{1k}^{\ -}}V_{l\alpha1}(t)& = V_{l\beta1}(\varrho_{1k}),\\ \lim\limits_{t \to t_{2k}^{\ -}}V_{l\beta1}(t)& = V_{l\beta2}(t_{2k}), \\ \lim\limits_{t \to \varrho_{2k}^{\ -}}V_{l\beta2}(t)& = V_{l\alpha2}(\varrho_{2k}),\\ \lim\limits_{t \to t_{2k+1}^{\ -}}V_{l\alpha2}(t)& = V_{l\alpha1}(t_{2k-1}). \end{aligned}\right . \end{equation} (3.22)

    The proof employs a procedure analogous to that in Theorem 3.1, and the detail will not be repeated here.

    Remark 3.5. To show the advantage of the non-continuous functional (3.6), Corollary 3.1 provides a stability condition that is derived by using the continuous functional (3.22). It will be shown in the section of numerical examples that the non-continuous functional (3.6) plays an important role in the reduction of conservativeness.

    In this section, we will verify the validity and superiority of the new results obtained in the previous section through two numerical examples and a single-area load frequency control system provided.

    Example 4.1 Consider the system (2.1) with

    \begin{align*} A& = \left[\begin{array}{cc}{-2.0}&{0.0}\\{0.0}&{-0.9}\end{array}\right],\ \ \ A_{r} = \left[\begin{array}{cc}{-1.0}&{0.0}\\{-1.0}&{-1.0}\end{array}\right]. \end{align*}

    To highlight the effectiveness of our novel function for improving the results, we choose [37,38] to compare with our results in this example. Both studies adopt a similar bounding method to ours, utilizing the first-order Bessel-Legendre inequality along with the free-matrix-based inequality, and we adopt the optimal solutions for the results of [38] under the \beta changes. From Table 2, for various \mu with r_1 = 0 , we obtain larger allowable upper bounds (AUBs) of r_2 under the appropriate \varrho (the value of \varrho is accurate to the percentile) by applying Theorem 3.1 and corresponding NoVs.

    Table 2.  The AUBs of r_2 for various \mu with r_1 = 0 .
    Methods \mu=0.1 \mu=0.2 \mu=0.5 \mu=0.8 NoVs
    [37] Theorem 1 5.10 4.57 3.78 3.38 131.5n^2+9.5n
    [38] Corollary 7 4.82 4.13 3.13 2.70 76.5n^2+11.5n
    [38] Theorem 3 5.44 5.00 4.18 3.66 259.5n^2+32.5n
    Corollary 3.1 4.95 (\varrho=0.21) 4.30( \varrho=0.05 ) 3.37( \varrho=0.95 ) 2.98( \varrho=0.89 ) 317.5n^2+25.5n
    Theorem 3.1 5.61( \varrho=0.55 ) 5.29( \varrho=0.56 ) 4.40( \varrho=0.40 ) 3.86( \varrho=0.18 ) 556n^2+70n

     | Show Table
    DownLoad: CSV

    Further, when \mu = 0.2 , the result of Theorem 3.1 exhibits a 5.8\% improvement compared to the result of Theorem 3 in [38]. Additionally, when \mu = 0.5 , the result of Theorem 3.1 shows a 16.4\% enhancement over the result reported in [37]. On the other hand, we note that the result of Theorem 3.1 yields a larger NoVs than those presented in the listed literature. Indeed, it is inescapable that the computational complexity escalates as the conservativeness of the results diminishes. To further emphasize the reduction in the conservativeness of the results yielded by our proposed method, we will conduct verifications using other examples in the subsequent contents.

    In addition, compared with the results of Corollary 7 in [38] obtained by a continuous functional, Corollary 1 in this paper also gives higher AUBs in Table 2. When \mu = 0.8 , Corollary 3.1 presents a 10.3\% improvement compared to the result of Corollary 7 in [38].

    Next, we assign the initial value of the system state as x_0(t) = [1\ \ -1]^T and choose r(t) = 5.29/2+(5.29/2)cos(0.4t/5.29) , which satisfies r(t)\in[0, 5.29] and \dot{r}(t)\in[-0.2, 0.2] . As shown in Figure 1, the state response depiction of the system illustrated in Example 4.1 demonstrates that each state component converges towards zero. This outcome further reinforces the validity of the derived conclusions.

    Figure 1.  State responses of the single-area load frequency control system.

    Example 4.2. Consider the system (2.1) with

    \begin{align*} A& = \left[\begin{array}{cc}{0.0}&{1.0}\\{-1.0}&{-2.0}\end{array}\right],\ \ \ A_{r} = \left[\begin{array}{cc}{0.0}&{0.0}\\{-1.0}&{1.0}\end{array}\right]. \end{align*}

    In this example, we further present the simulation results of Theorem 3.1 and Remark 3.4 for various \mu and r_1 in Table 3 and compare them with [38,43]. Generally speaking, it is readily apparent that the results derived from Theorem 3.1 are notably superior to those presented in the existing literature, showcasing a substantial improvement. For r_1 = 0 , the result of Theorem 3.1 is 92\% better than that of Theorem 3 in [38] for the case of slow delay (\mu = 0.1) , although the NoVs is nearly doubled. In the case of rapid delay (\mu = 0.8) , the result of Theorem 3.1 also outperforms that of Theorem 3 in [38] by 27\% . When r_1 = 1 , it is observable that although the improvement effect starts to diminish as the lower bound of the delay increases, the improvement can still reach 20\% when \mu = 0.5 . Meanwhile, compared with Theorem 4 in [43], Theorem 3.1 has comparable NoVs, yet its results are evidently less conservative.

    Table 3.  The AUBs of r_2 for various \mu and r_1 .
    Methods \mu=0.1 \mu=0.2 \mu=0.5 \mu=0.8 NoVs
    r_1=0 [43] Theorem 4 9.94 4.46 3.33 521n^2+27n
    [38] Theorem 3 13.67( \varrho=0.49) 9.18( \varrho=0.49) 5.02( \varrho=0.53) 3.18 ( \varrho=0.51) 259.5n^2+32.5n
    Theorem 3.1 26.49( \varrho=0.01 ) 13.16( \varrho=0.04) 5.93( \varrho=0.27 ) 4.05( \varrho=0.21 ) 556n^2+70n
    Remark 3.4 26.33( \varrho=0.01 ) 13.14( \varrho=0.03 ) 5.93( \varrho=0.25 ) 4.05( \varrho=0.21 ) 466n^2+70n
    r_1=1 [38] Theorem 3 13.48( \varrho=0.43 ) 8.74( \varrho=0.45 ) 4.18( \varrho=0.57 ) 2.37( \varrho=0.55) 259.5n^2+32.5n
    Theorem 3.1 15.55( \varrho=0.05 ) 9.05( \varrho=0.13 ) 5.03( \varrho=0.87 ) 2.81( \varrho=0.85 ) 556n^2+70n
    Remark 3.4 15.55( \varrho=0.05 ) 9.04( \varrho=0.13 ) 5.03( \varrho=0.88 ) 2.81( \varrho=0.84 ) 466n^2+70n

     | Show Table
    DownLoad: CSV

    Furthermore, the results presented in Remark 3.4 are tabulated in Table 3. Evidently, Remark 3.4 involves fewer NoVs compared to Theorem 3.1. Consequently, it exhibits a relatively lower computational complexity. Nevertheless, the results derived from Remark 3.4 are comparable to those obtained from Theorem 3.1.

    Subsequently, we set the initial state as x_0(t) = [1\ \ 0]^T and choose the delay function as r(t) = 13.16/2+(13.16/2)cos(0.4t/13.16) . This function satisfies the conditions r(t)\in[0, 13.16] and \dot{r}(t)\in[-0.2, 0.2] . The state response is depicted in Figure 2. It is shown in the figure that the system is stable.

    Figure 2.  State responses of the single-area load frequency control system.

    Example 4.3. Consider the single-area load frequency control system, which can be expressed as the system (2.1) with

    \begin{align*} A = \begin{bmatrix}-\frac{D}{M}&\frac{1}{M}&0&0\\0&-\frac{1}{T_{t}}&\frac{1}{T_{t}}&0\\-\frac{1}{T_{g}R}&0&-\frac{1}{T_{g}}&0\\\nu&0&0&0\end{bmatrix},\ \ \ \ A_{r} = \begin{bmatrix}0&0&0&0\\0&0&0&0\\-\frac{\nu K_{p}}{T_{g}}&0&0&-\frac{K_{i}}{T_{g}}\\0&0&0&0\end{bmatrix}, \end{align*}

    where D stands for the generator's damping coefficient, M is its moment of inertia, T_t and T_g represent the time constants corresponding to the turbine and governor, respectively, R refers to the speed drop, and v represents the frequency bias factor. K_p and K_i denote the proportional and integral gains of the PI controller, respectively. Let D = 1.0, M = 10, T_t = 0.3, T_g = 0.1, R = 0.05, v = 21, K_p = 0.8, K_i = \{0.1, 0.2, 0.3\} and r_1 = 0, \mu = 0.1 . The AUBs of r_2 under the appropriate \varrho are shown in Table 4, demonstrating results that are evidently less conservative than those of Theorem 1 in [37] as well as Corollary 7 and Theorem 3 in [38]. Especially when integral gains K_i = 0.1 , the result shows a 30\% improvement in the AUBs compared to Theorem 3 in [38]. To further confirm the validity of our results, setting K_i = 0.1 and the initial state x_0(t) = [1\ \ 0\ \ 0.5\ \ -1]^T , and choosing r(t) = 12.74/2+(12.74/2)cos(0.2t/12.74) , which satisfies r(t)\in[0, 12.74] and \dot{r}(t)\in[-0.1, 0.1] , respectively, the state responses of the single-area load frequency control system are shown in Figure 3. Obviously, they tend to be stable.

    Table 4.  The AUBs of r_2 for various K_i .
    Methods K_i=0.1 K_i=0.2 K_i=0.3
    [37] Theorem 1 9.55 5.31 3.74
    [38] Corollary 7 9.04 5.12 3.39
    [38] Theorem 3 9.77 5.61 3.84
    Corollary 3.1 11.01( \varrho=0.07 ) 5.95( \varrho=0.11 ) 3.85( \varrho=0.13 )
    Theorem 3.1 12.74( \varrho=0.17 ) 6.38( \varrho=0.17 ) 4.05( \varrho=0.15 )

     | Show Table
    DownLoad: CSV
    Figure 3.  State responses of the single-area load frequency control system.

    In this paper, an improved delay-segmentation-based non-continuous piecewise L–K functional is established. Then, a low-conservativeness stability criterion for linear systems with a periodical time-varying delay is presented based on the functional. Finally, we provide two simulation examples alongside an application to a single-area load frequency control system to demonstrate the effectiveness of the proposed approach.

    Wei Wang: Writing-review & editing, formal analysis, validation, conceptualization, funding acquisition; Chang-Xin Li: Writing-original draft, software, methodology, investigation; Ao-Qian Luo: Writing-review & editing; Hui-Qin Xiao: Writing-review & editing, supervision. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

    This study is supported by the National Natural Science Foundation of China (No.62173136), the Natural Science Foundation of Hunan Province (Nos.2024JJ7130 and 2020JJ2013), and the Scientific Research and Innovation Foundation of Hunan University of Technology.

    The authors confirm that the data supporting the findings of this study are available within the article.

    The authors declare no conflict of interest.



    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976.
    [2] T. M. Apostol, Mathematical analysis, 2 Eds., Mass.-London-Don Mills: Addison-Wesley Publishing Co., 1974.
    [3] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, New York, 1965.
    [4] D. Jackson, Fourier series and orthogonal polynomials, Dover Publications, 2004.
    [5] R. Ma, W. P. Zhang, Several identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart., 45 (2007), 164–170.
    [6] Y. Yi, W. P. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart., 40 (2002), 314–318.
    [7] T. T. Wang, W. P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, 103 (2012), 95–103.
    [8] X. H. Wang, D. Han, Some identities related to Dedekind sums and the Chebyshev polynomials, Int. J. Appl. Math. Stat., 51 (2013), 334–339.
  • This article has been cited by:

    1. Xin Du, Quansheng Liu, Yuanhong Bi, Bifurcation analysis of a two–dimensional p53 gene regulatory network without and with time delay, 2023, 32, 2688-1594, 293, 10.3934/era.2024014
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2856) PDF downloads(132) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog