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Abstract: In this paper, we use elementary method and some sort of a counting argument to show the
equality of two expressions. That is, let f (n) and g(n) be two functions, k be any positive integer. Then

f (n) =
n∑

r=0

(−1)r ·
n!
r!
·

(
n + k − 1
r + k − 1

)
· g(r) if and only if g(n) =

n∑
r=0

(−1)r ·
n!
r!
·

(
n + k − 1
r + k − 1

)
· f (r) for all

integers n ≥ 0. As an application of this formula, we obtain some new identities involving the famous
Laguerre polynomials.
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1. Introduction

For any integer n ≥ 0, the famous Laguerre polynomial Ln(x) is defined by

Ln(x) = ex dn

dxn

(
xne−x) = n∑

r=0

(−1)r ·
n!
r!
·

(
n
r

)
· xr, (1.1)

where
(
n
m

)
=

m!
m!(n − m)!

.

The exponential generating function of Ln(x) is

1
1 − t

· e−
xt

1−t =

∞∑
n=0

Ln(x)
n!
· tn. (1.2)

It is clear that L0(x) = 1, L1(x) = −x + 1, and Ln+1(x) = (2n + 1 − x)Ln(x) − n2Ln−1(x) for all positive
integer n ≥ 1. Therefore Ln(x) satisfy a 3-term recurrence relation. It satisfies the integral identity∫ +∞

0
e−x · Lm(x) · Ln(x)dx =

{
0, if m , n;
(n!)2, if m = n.

(1.3)
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In recent years, many papers investigated the elementary properties of Laguerre polynomials and
recurrence polynomials (see [3–8]).

In this paper, as a note, we prove a new inversion formula related to Laguerre polynomials. That is,
we shall prove the following conclusion.

Theorem. Let f (n) and g(n) be two functions, k be any positive integer. For all integer n ≥ 0, if

f (n) =
n∑

r=0

(−1)r ·
n!
r!
·

(
n + k − 1
r + k − 1

)
· g(r), (1.4)

then we have the inversion formula

g(n) =
n∑

r=0

(−1)r ·
n!
r!
·

(
n + k − 1
r + k − 1

)
· f (r). (1.5)

It is clear that if we take k = 1, f (n) = Ln(x) and g(r) = xr, then from (1.1) we have the identity

xn =

n∑
r=0

(−1)r ·
n!
r!
·

(
n
r

)
· Lr(x).

2. Proof of the theorem

In this section, we shall complete the proof of our main result. Hereinafter, we shall use
some elementary number theory contents and properties of power series, which can be found in
references [1,2], and also be found in [3,4], so we will not repeat them here. First we need the following
simple lemma.

Lemma. For any integer n ≥ 0, let f (n) and g(n) be two number theoretic functions. If f (n) and
g(n) satisfy the identity

f (n) =
n∑

r=0

(−1)r ·
n!
r!
·

(
n
r

)
· g(r),

then we have the inversion formula

g(n) =
n∑

r=0

(−1)r ·
n!
r!
·

(
n
r

)
· f (r).

Proof. It is clear that the lemma holds if n = 0. So without loss of generality, we can assume that
n ≥ 1. At this time, from the definition of f (n), we have

n∑
r=0

(−1)r ·
n!
r!
·

(
n
r

)
· f (r)

=

n∑
r=0

(−1)r ·
n!
r!
·

(
n
r

)  r∑
s=0

(−1)s ·
r!
s!
·

(
r
s

)
· g(s)


= n! ·

n∑
s=0

(−1)s ·
g(s)
s!
·

n∑
r=s

(−1)r ·

(
r
s

)
·

(
n
r

)
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= n! ·
n∑

s=0

(−1)s ·
g(s)
s!
·

n−s∑
r=0

(−1)r+s ·

(
r + s

s

)
·

(
n

r + s

)

= n! ·
n∑

s=0

g(s)
s!
·

n−s∑
r=0

(−1)r ·
n!

(n − s)! · s!
·

(n − s)!
r! · (n − r − s)!

= n! ·
n∑

s=0

g(s)
s!
·

n!
(n − s)! · s!

·

n−s∑
r=0

(−1)r ·

(
n − s

r

)
= n! ·

n∑
s=0

g(s)
s!
·

n!
(n − s)! · s!

· (1 − 1)n−s

= n! ·
g(n)
n!
·

n!
0! · n!

+ n! ·
n−1∑
s=0

g(s)
s!
·

n!
(n − s)! · s!

· (1 − 1)n−s

= g(n).

That is,

g(n) =
n∑

r=0

(−1)r ·
n!
r!
·

(
n
r

)
· f (r).

The lemma is proved.
Now for any positive integer k ≥ 1, let f (n) and g(n) be defined as (1.4) and (1.5). If k = 1, then the

theorem follows from the lemma. So without loss of generality we can assume k ≥ 2. This time we
have

n∑
r=0

(−1)r ·
n!
r!
·

(
n + k − 1
r + k − 1

)
· f (r)

=

n∑
r=0

(−1)r ·
n!
r!
·

(
n + k − 1
r + k − 1

)  r∑
s=0

(−1)s ·
r!
s!
·

(
r + k − 1
s + k − 1

)
· g(s)


= n! ·

n∑
s=0

(−1)s ·
g(s)
s!
·

n∑
r=s

(−1)r ·

(
r + k − 1
s + k − 1

)
·

(
n + k − 1
r + k − 1

)

= n! ·
n∑

s=0

(−1)s ·
g(s)
s!
·

n−s∑
r=0

(−1)r+s ·

(
r + s + k − 1

s + k − 1

)
·

(
n + k − 1

r + s + k − 1

)

= n! ·
n∑

s=0

g(s)
s!
·

n−s∑
r=0

(−1)r ·
(n + k − 1)!

(n − s)! · (s + k − 1)!
·

(n − s)!
r! · (n − r − s)!

= n! ·
n∑

s=0

g(s)
s!
·

(
n + k − 1
s + k − 1

)
·

n−s∑
r=0

(−1)r ·

(
n − s

r

)
= n! ·

n∑
s=0

g(s)
s!
·

(
n + k − 1
s + k − 1

)
· (1 − 1)n−s = g(n).

The theorem is proved.
This theorem can also be proved by manipulating the exponential generating function in (1.2).

Here we give an alternative proof for the theorem by using the well known method of the exponential
generating functions. Consider
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F(x) =
∞∑

n=0

f (n)
xn

n!
and G(x) =

∞∑
n=0

g(n)
xn

n!
,

where f (n) and g(n) defined as in the theorem.

Then multiplying on both sides of (1.4) by
xn

n!
and summing over n ≥ 0, we obtain

F(x) = (1 − x)−kG(−x(1 − x)−1). (2.1)

Now let y = −x(1 − x)−1, so x = −y(1 − y)−1 and 1 − x = (1 − y)−1, and expressing (2.1) in terms of y
gives

F
(
−y(1 − y)−1

)
= (1 − y)kG(y),

or rearranging slightly,

G(y) = (1 − y)−kF
(
−y(1 − y)−1

)
. (2.2)

Equating coefficients of
yn

n!
in (2.2) we obtain (1.5). This completes the second proof of the theorem.

3. Conclusions

The main result of this paper is a theorem, which proved a new reciprocal formula for some
arithmetical functions, it revealed some essential properties of the Laguerre polynomials. The result
is actually new contribution to the study of the properties of Laguerre polynomials. Of course,
the methods adopted in this paper have some good reference for the further study of the Laguerre
polynomials.
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