In this paper, we address the existence, uniqueness, decay estimates, and the large-time behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic equations involving a source term under Neumann boundary conditions with bounded Radon measure as initial data.
{ut=Δψ(u)+h(t)f(x,t) in Ω×(0,T),∂ψ(u)∂η=g(u) on ∂Ω×(0,T),u(x,0)=u0(x) in Ω,
where T>0, Ω⊂RN(N≥2) is an open bounded domain with smooth boundary ∂Ω, η is an outward normal vector on ∂Ω. The initial value data u0 is a nonnegative bounded Radon measure on Ω, the function f is a solution of the linear inhomogeneous heat equation under Neumann boundary conditions with measure data, and the functions ψ, g and h satisfy the suitable assumptions.
Citation: Quincy Stévène Nkombo, Fengquan Li, Christian Tathy. Stability properties of Radon measure-valued solutions for a class of nonlinear parabolic equations under Neumann boundary conditions[J]. AIMS Mathematics, 2021, 6(11): 12182-12224. doi: 10.3934/math.2021707
[1] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor . Fractional integral estimations pertaining to generalized γ-convex functions involving Raina's function and applications. AIMS Mathematics, 2022, 7(8): 13633-13663. doi: 10.3934/math.2022752 |
[2] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[3] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[4] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
[7] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[8] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[9] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[10] | Artion Kashuri, Rozana Liko, Silvestru Sever Dragomir . New generalized integral inequalities with applications. AIMS Mathematics, 2019, 4(3): 984-996. doi: 10.3934/math.2019.3.984 |
In this paper, we address the existence, uniqueness, decay estimates, and the large-time behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic equations involving a source term under Neumann boundary conditions with bounded Radon measure as initial data.
{ut=Δψ(u)+h(t)f(x,t) in Ω×(0,T),∂ψ(u)∂η=g(u) on ∂Ω×(0,T),u(x,0)=u0(x) in Ω,
where T>0, Ω⊂RN(N≥2) is an open bounded domain with smooth boundary ∂Ω, η is an outward normal vector on ∂Ω. The initial value data u0 is a nonnegative bounded Radon measure on Ω, the function f is a solution of the linear inhomogeneous heat equation under Neumann boundary conditions with measure data, and the functions ψ, g and h satisfy the suitable assumptions.
Fractional calculus has emerged as one of the most important interdisciplinary subjects. In recent past it experienced rapid development and consequently several new generalizations of classical concepts of fractional calculus have been obtained in the literature, for example, see [9].
The classical Riemann-Liouville fractional integrals are defined as:
Definition 1.1 ([9]). Let F∈L1[a,b]. Then the Riemann-Liouville integrals Jαa+F and Jαb−F of order α>0 with a≥0 are defined by
Jαa+F(x)=1Γ(α)x∫a(x−v)α−1F(v)dv,x>a, |
and
Jαb−F(x)=1Γ(α)b∫x(v−x)α−1F(v)dv,x<b, |
where
Γ(x)=∫∞0e−vvx−1dv, |
is the well known Gamma function.
Diaz et al. [8] introduced the notion of generalized k-gamma function. The integral form of Γk is given by:
Γk(x)=∞∫0vx−1e−vkkdv,ℜ(x)>0. |
Note that
Γk(x)=kxk−1Γ(xk). |
k-Beta function is defined as:
βk(x,y)=1k1∫0vxk−1(1−v)xk−1dv. |
Obviously
βk(x,y)=1kβ(xk,yk). |
Sarikaya et al. [18] extended the notion of Riemann-Liouville fractional integrals to k-Riemann-Liouville fractional integrals and discussed some of its interesting properties.
To be more precise let F be piecewise continuous on I∗=(0,∞) and integrable on any finite subinterval of I=[0,∞]. Then for v>0, we consider k-Riemann-Liouville fractional integral of F of order α
kJαaF(x)=1kΓk(α)x∫a(x−v)αk−1F(v)dv,x>a,k>0. |
It has been observed that k-fractional integrals are significant generalizations of classical fractional integrals. For more details, see [18].
Ahmad et al. [1] defined fractional integral operators with an exponential kernel and obtained corresponding inequalities.
Definition 1.2. Let F∈[a,b]. The fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) are defined as follows:
Iαa+F(x)=1αx∫ae−1−αα(x−v)F(v)dv, x>a, |
and
Iαb−F(x)=1αb∫xe−1−αα(v−x)F(v)dv, x<b. |
Using the ideas of [1,18], we now introduce the notion of k-fractional integral operators with an exponential kernel.
Definition 1.3. Let F∈L[a,b]. The k-fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) for k>0 are defined as follows
kIαa+F(x)=kαx∫ae−k−αα(x−v)F(v)dv, x>a, |
and
kIαb−F(x)=kαb∫xe−k−αα(v−x)F(v)dv, x<b. |
It is to be noted that by taking k→1 in Definition 1.3, we recapture Definition 1.2. Fractional analogues of integral inequalities have a great many applications in numerical quadrature, transform theory, probability, statistical problems etc. Therefore, a significant and rapid development in this field has been noticed, for details, see [2,3,20,24,25]. Sarikaya et al. [19] utilized the concepts of fractional integrals and obtained new fractional refinements of trapezium like inequalities. This article motivated many researchers and as a result several new fractional extensions of classical inequalities have been obtained in the literature, for example, see [1,4,6,7,11,14,15,16,17,18,19,22,23]. Recently Ahmad et al. [1] used fractional integral operators with an exponential kernel and obtained corresponding inequalities. Wu et al. [23] derived some new identities and bounds pertaining to fractional integrals with the exponential kernel.
The main motivation of this paper is to derive some new fractional refinements of trapezium like inequalities essentially using the new fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and the preinvexity property of the functions. In order to establish the significance of our main results, we offer some applications of our main results to means and q-digamma functions. We hope that the ideas and techniques of this paper will inspire interested readers working in the field of inequalities.
Before we proceed further, we now recall some previously known concepts from convex analysis. We first, start with the definition of invex sets.
Definition 1.4 ([10]). A set K is said to be invex with respect to bifunction θ(.,.), if
x+vθ(y,x)∈K,∀x,y∈K,v∈[0,1]. |
The preinvexity of the functions is defined as:
Definition 1.5 ([21]). A function F:K→R is said to be preinvex with respect to bifunction θ(.,.), if
F(x+vθ(y,x))≤(1−v)F(x)+vf(y),∀x,y∈K,v∈[0,1]. |
In order to obtain some of the main results of the paper, we need the famous condition C, which was introduced by Mohan and Neogy [13]. This condition played a vital role in the development of several results involving preinvex functions.
Condition C. Let θ:K×K→Rn. We say that the bifunction θ(.,.) satisfies the condition C, if for any x,y∈Rn
1. θ(x,x+vθ(y,x))=−vθ(y,x),
2. θ(y,x+vθ(y,x))=(1−v)θ(y,x),
for all v∈[0,1].
Note that for any x,y∈Rn and v1,v2∈[0,1] and from the condition C, we have, see [12]
θ(x+v2θ(y,x),x+v1θ(y,x))=(v2−v1)θ(y,x). |
In this section, we derive some new fractional trapezium type inequalities involving the functions having preinvexity property. For the sake of simplicity, we set ρ=k−ααθ(b,a) and ρ1=1−ααθ(b,a).
Theorem 2.1. Let F:[a,a+θ(b,a)]⊆R→R be a positive function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Suppose F is a preinvex function and θ(.,.) satisfies condition C, then
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤F(a)+F(b)2. | (2.1) |
Proof. By preinvexity of F, we have for every x,y∈[a,a+θ(b,a)] with λ=12
2F(x+θ(y,x)2)≤[F(x)+F(y)], |
with x=a+vθ(b,a),y=a+(1−v)θ(b,a) and using the condition C, we have
2F(a+vθ(b,a)+θ(a+(1−v)θ(b,a),a+vθ(b,a))2)=2F(a+vθ(b,a)+(1−2v)θ(b,a)2)=2F(2a+θ(b,a)2)≤F(a+vθ(b,a))+F(a+(1−v)θ(b,a)). | (2.2) |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
2(1−e−ρ)ρF(2a+θ(b,a)2)≤1∫0e−ρvf(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)ds]=αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
As a result, we get
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. | (2.3) |
For the proof of second inequality, we note that F is a preinvex function, so we have
F(a+vθ(b,a))+F(a+(1−v)θ(b,a))≤F(a)+F(b). | (2.4) |
Multiplying both sides by e−ρv and integrating with respect to v over [0,1], we have
αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤1−e−ρρ[F(a)+F(b)], | (2.5) |
Combining (2.3) and (2.5) completes the proof.
Theorem 2.2. Let F:[a,a+θ(b,a)]⊆R→R be a positive and preinvex function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Let W be a non-negative, integrable and symmetric with respect to 2a+θ(b,a)2, then using the condition C, we have
F(2a+θ(b,a)2)[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]≤kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)≤F(a)+F(b)2[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. | (2.6) |
Proof. Since F is preinvex function on L[a,a+θ(b,a)], so multiplying inequality (2.2) by
e−ρvW(a+vθ(b,a)), | (2.7) |
and then integrating with respect to v over [0,1], we get
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+vθ(b,a))F(a+(1−v)θ(b,a))dv=1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+(1−v)θ(b,a))F(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)W(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)W(s)ds]=αkθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]. |
Thus
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤αkθ(b,a)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]. |
Since W is symmetric with respect to 2a+θ(b,a)2, we have
kIα(a)+W(a+θ(b,a))=kIα(a+θ(b,a))−W(a)=12[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. |
Thus we get the left side of inequality (2.6).
For the proof of right side of inequality (2.6), we multiply (2.7) and (2.4) and then integrating the resulting inequality with respect to v over [0,1], we get the required result.
Theorem 2.3. Let F,W:[a,a+θ(b,a)]⊆R→R be nonnegative and preinvex function on L[a,a+θ(b,a)] with θ(b,a)>0. If θ(.,.) satisfies condition C, then the following inequalities for the k-fractional integrals with exponential kernel holds:
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3, | (2.8) |
and
2F(2a+θ(b,a)2)W(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]≤M(a,b)ρ−2+e−ρ(ρ+2)ρ2(1−e−ρ)+N(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ2(1−e−ρ), | (2.9) |
where
M(a,b)=F(a)W(a)+F(b)W(b), |
and
N(a,b)=F(a)W(b)+F(b)W(a). |
Proof. Since F,W are preinvex functions on [a,a+θ(b,a)], then we have
F(a+vθ(b,a))W(a+vθ(b,a))≤(1−v)2F(a)W(a)+v2F(b)W(b)+v(1−v)N(a,b), |
and
F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤v2F(a)W(a)+(1−v)2F(b)W(b)+v(1−v)N(a,b). |
Adding above inequalities, we have
F(a+vθ(b,a))W(a+vθ(b,a))+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤(2v2−2v+1)M(a,b)+2v(1−v)N(a,b). |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))dv≤M(a,b)1∫0e−ρv(2v2−2v+1)dv+M(a,b)1∫0e−ρv2v(1−v)dv=M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
So,
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
For the proof of inequality (2.9), using the preinvexity of F,W and condition C, we have
F(2a+θ(b,a)2)W(2a+θ(b,a)2)=F(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))×W(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))≤(F(a+vθ(b,a))+F(a+(1−v)θ(b,a))2)(W(a+vθ(b,a))+W(a+(1−v)θ(b,a))2)≤F(a+vθ(b,a))W(a+vθ(b,a))4+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4+v(1−v)2M(a,b)+2v2−2v+14N(a,b). | (2.10) |
Multiplying both sides of inequality (2.10) by e−ρv and integrating with respect to v over [0,1], we get
1−e−ρρF(2a+θ(b,a)2)W(2a+θ(b,a)2)≤1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))4dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4dv+M(a,b)1∫0e−ρvv(1−v)2dv+N(a,b)1∫0e−ρv2v2−2v+14dv, |
which completes the proof.
Lemma 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.1) |
where
Rab=k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]−F(2a+θ(b,a)2), |
and
u={1, for0≤v≤12,−1,for12≤v≤1. |
Proof. By simple calculations, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρvF(a+(1−v)θ(b,a))|10+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a+θ(b,a))−e−ρF(a)+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−ρθ(b,a)a+θ(b,a)∫ae−ρa+θ(b,a)−sθ(b,a)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−ααa+θ(b,a)∫ae−(k−α)α(a+θ(b,a)−s)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−αkkIα(a)+F(a+θ(b,a))], | (3.2) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρ(1−v)F(a+(1−v)θ(b,a))|10−ρ1∫0e−ρ(1−v)F(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a)−e−ρF(a+θ(b,a))−ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+ρθ(b,a)a+θ(b,a)∫ae−ρs−aθ(b,a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−ααa+θ(b,a)∫ae−(k−α)α(s−a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−αkkIα(a+θ(b,a))−F(a)]. | (3.3) |
Also note that
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=−12[F(a+(1−v)θ(b,a))|120−F(a+(1−v)θ(b,a))|112]=F(a)−F(2a+θ(b,a)2)2−F(2a+θ(b,a)2)−F(a+θ(b,a))2. | (3.4) |
Substituting (3.2), (3.3) and (3.4) in (3.1) completes the proof.
Theorem 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)] and |F′| is preinvex on [a,a+θ(b,a)]. Then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.1, preinvexity of |F′| and increasing property of exponential function, we have
|Rab|=|θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv]|≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))|F′(a+(1−v)θ(b,a))|dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)|F′(a+(1−v)θ(b,a))|dv]≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)(v|F′(a)|+(1−v)|F′(b)|)dv]=θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−12∫0(1−e−ρ−e−ρv+e−ρ(1−v))((1−v)|F′(a)|+v|F′(b)|)dv]=θ(b,a)2(1−e−ρ)12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(|F′(a)|+|F′(b)|)dv=θ(b,a)2(1−e−ρ)[1−e−ρ2−1ρ(1−e−ρ2)2](|F′(a)|+|F′(b)|)=θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the fractional integrals with exponential kernel holds:
Lab=θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.5) |
where
Lab=F(a)+F(a+θ(b,a)2−k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
Proof. Using 3.2 and 3.3, we get the required result.
Theorem 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. If |F′| is preinvex function on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.2, preinvexity of |F′| and increasing property of exponential function, we have
|Lab|≤θ(b,a)21∫0|e−ρv−e−ρ(1−v)|1−e−ρ|F′(a+vθ(b,a))|dv≤θ(b,a)2[1∫0|e−ρv−e−ρ(1−v)|1−e−ρv|F′(a)|dv+1∫0|e−ρv−e−ρ(1−v)|1−e−ρ(1−v)|F′(b)|dv]=θ(b,a)2|F′(a)|[12∫0e−ρv−e−ρ(1−v)1−e−ρvdv+1∫12e−ρ(1−v)−e−ρv1−e−ρvdv]+θ(b,a)2|F′(b)|[12∫0e−ρv−e−ρ(1−v)1−e−ρ(1−v)dv+1∫12e−ρ(1−v)−e−ρv1−e−ρ(1−v)dv]=θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Lab=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv. | (3.6) |
Proof. Using (3.5) and integration by parts, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1ρ[e−ρvF′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv]=−1ρ[e−ρF′(a)−F′(a+θ(b,a))+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv], | (3.7) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=1ρ[e−ρ(1−v)F′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]=1ρ[F′(a)−e−ρF′(a+θ(b,a))+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]. | (3.8) |
Substituting (3.7) and (3.8) in (3.5), we have
Lab=θ(b,a)2ρ(1−e−ρ)[(1+e−ρ)(F′(a+θ(b,a))−F′(a))−θ(b,a)1∫0(e−ρv+e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv]=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv, |
which completes the proof.
Theorem 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|). |
Proof. It is to be noted that
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))vdv=1+e−ρ2−1−e−ρρ, | (3.9) |
and
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(1−v)dv=1+e−ρ2−1−e−ρρ. | (3.10) |
Using (3.6), (3.9), (3.10) and the preinvexity of |F′′|, we have
Lab=|θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|), |
the proof is complete.
Lemma 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv, | (3.11) |
where
h(v)={v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ), for0≤v≤12,(1−v)−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ),for12≤v≤1. |
Proof. Using (3.1), we have
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], |
Thus
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=θ(b,a)2[vF′(a+(1−v)θ(b,a))|120+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[vF′(a+(1−v)θ(b,a))|112+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[12F′(2a+θ(b,a)2)+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[F′(a)−12F′(2a+θ(b,a)2)+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[F′(2a+θ(b,a)2)−F′(a)]+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)21∫12F′′(a+(1−v)θ(b,a))dv+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv+θ2(b,a)21∫12(1−v)F′′(a+(1−v)θ(b,a))dv. | (3.12) |
Substituting (3.7), (3.8) and (3.12) in (3.1), we get the required result.
Theorem 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is a twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
Proof. Using (3.11) and preinvexity of |F′′|, we have
|Rab|=|θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)21∫0h(v)|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)212∫0(v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv+θ2(b,a)21∫12(1−v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2[12∫0(v2|F′′(a)|+v(1−v)|F′′(b)|)dv+1∫12(v(1−v)|F′′(a)|+(1−v)2|F′′(b)|)dv]+1ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
The proof is complete.
Remark 3.1. We would like to remark here that by taking k→1, new results can be obtained from our results.
Applications
We now discuss some applications of the results obtained in previous section. Before we proceed further let us recall the definition of arithmetic mean.
The arithmetic mean is defined as
A(a,b):=a+b2,a≠b. |
Proposition 3.1. Suppose all the assumptions of Theorem 3.1 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤(b−a)A(a,b)(12−tanh(ρ14)ρ1). |
Proof. The proof directly follows from Theorem 3.1 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.2. Suppose all the assumptions of Theorem 3.2 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤(b−a)A(a,b)tanh(ρ14). |
Proof. The proof directly follows from Theorem 3.2 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.3. Suppose all the assumptions of Theorem 3.3 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤2(b−a)2A(a,b)ρ1(1−e−ρ1)(1+e−ρ12−1−e−ρ1ρ1). |
Proof. The proof directly follows from Theorem 3.3 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.4. Suppose all the assumptions of Theorem 3.4 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤2(b−a)2A(a,b)(18+1+e−ρ12ρ1(1−e−ρ1)−1ρ21). |
Proof. The proof directly follows from Theorem 3.4 by setting θ(b,a)=b−a,k=1 and F(x)=x2. We now discuss applications to q-digamma functions, which is defined as:
Suppose 0<q<1, the q-digamma function χq(u) is given as
χq(u)=−ln(1−q)+ln(q)∞∑i=0qi+u1−qi+u.=−ln(1−q)+ln(q)∞∑i=0qiu1−qiu. |
For q>1,t>0, then q-digamma function χq can be given as
χq(u)=−ln(q−1)+ln(q)[u−12−∞∑i=0q−(i+u)1−q−(i+u)].=−ln(q−1)+ln(q)[u−12−∞∑i=0q−iu1−q−iu]. |
From the above definition, it is clear that χ′q is completely monotone on (0,∞) for q>0. This implies that χ′q is convex. For more details, see [5].
Proposition 3.5. Under the assumption of Theorem 2.1, the following inequality holds:
χq(a+b2)≤1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]≤χq(a)+χq(b)2. |
Proof. The proof is direct consequence of Theorem 2.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.6. Under the assumption of Theorem 3.1, the following inequality holds:
|1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]−χq(a+b2)|≤b−a2(12−tanh(ρ14)ρ1)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.7. Under the assumption of Theorem 3.1, the following inequality holds:
|χq(a)+χq(b)2−1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]|≤b−a2tanh(ρ14)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
In the article, we have extended the fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and derived several new trapezium type integral inequalities involving the new fractional integral operator essentially using the functions having preinvexity property. We have also discussed some interesting applications of our obtained results, which show the significance of our main results. It is also worth mentioning here that our obtained results are the generalizations of some previously known results and our ideas may lead to a lot of follow-up research.
The authors are thankful to the editor and anonymous reviewers for their valuable comments and suggestions. This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled, "Some integrals inequalities and generalized convexity" (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).
[1] | J. L. Vázquez, Measure-valued solutions and the phenomenon of blow-down in logarithmic diffusion, J. Math. Anal. Appl., 352 (2009), 515-547. |
[2] | S. Itǒ, Fundamental solutions of parabolic differential equations and boundary value problems, Jnp. J. Math., 27 (1957), 55-102. |
[3] | S. Itǒ, A boundary value problem of partial differential equations of parabolic type, Duke Math. J., 24 (1957), 299-312. |
[4] |
C. S. Kahane, On the asymptotic behavior of solutions of parabolic equations, Czechoslovak Math. J., 33 (1983), 262-285. doi: 10.21136/CMJ.1983.101876
![]() |
[5] | C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York: Plenum Press, 1992. |
[6] | M. Bertsch, F. Smarrazzo, A. Tesei, Pseudo-parabolic regularization of forward-backward parabolic equations: Power-type nonlinearities, J. Reine Angew. Math., 712 (2016), 51-80. |
[7] |
M. Bertsch, F. Smarrazzo, A. Tesei, Pseudo-parabolic regularization of forward-backward parabolic equations: A logarithmic nonlinearity, Anal. PDE, 6 (2013), 1719-1754. doi: 10.2140/apde.2013.6.1719
![]() |
[8] | L. C. Evance, Partial differential equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, R.I., 2010. |
[9] |
M. M. Porzio, F. Smarrazzo, A. Tesei, Radon measure-valued solutions for a class of quasilinear parabolic equations, Arch. Ration. Mech. Anal., 210 (2013), 713-772. doi: 10.1007/s00205-013-0666-0
![]() |
[10] |
M. M. Porzio, F. Smarrazzo, A. Tesei, Radon measure-valued solutions of nonlinear strongly degenerate parabolic equations, Calc. Var. Partial Dif., 51 (2014), 401-437. doi: 10.1007/s00526-013-0680-y
![]() |
[11] |
F. Smarrazzo, A. Tesei, Degenerate regularization of forward-backward parabolic equations: The regularized problem, Arch. Ration. Mech. Anal., 204 (2012), 85-139. doi: 10.1007/s00205-011-0470-7
![]() |
[12] |
L. Orsina, M. M. Porzio, F. Smarrazzo, Measure-valued solutions of nonlinear parabolic equations with logarithmic diffusion, J. Evol. Equ., 15 (2015), 609-645. doi: 10.1007/s00028-015-0275-5
![]() |
[13] |
M. M. Porzio, F. Smarrazzo, Radon measure-valued solutions for some quasilinear degenerate elliptic equations, Ann. Mat. Pura Appl., 194 (2015), 495-532. doi: 10.1007/s10231-013-0386-y
![]() |
[14] |
F. Petitta, A. C. Ponce, A. Porretta, Approximation of diffuse measures for parabolic capacities, C. R. Math. Acad. Sci. Paris, 346 (2008), 161-166. doi: 10.1016/j.crma.2007.12.002
![]() |
[15] |
J. Droniou, A. Porretta, A. Prignet, Parabolic capacity and soft measures for nonlinear equations, Potential Anal., 19 (2003), 99-161. doi: 10.1023/A:1023248531928
![]() |
[16] |
F. Petitta, A. C. Ponce, A. Porretta, Diffuse measures and nonlinear parabolic equations, J. Evol. Equ., 11 (2011), 861-905. doi: 10.1007/s00028-011-0115-1
![]() |
[17] | J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford: Oxford Mathematical Monographs, 2007. |
[18] |
J. R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Commun. Part. Diff. Eq., 16 (1991), 105-143. doi: 10.1080/03605309108820753
![]() |
[19] |
E. DiBenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), 83-118. doi: 10.1512/iumj.1983.32.32008
![]() |
[20] |
J. Ding, B. Z. Guo, Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term, Appl. Math. Lett., 24 (2011), 936-942. doi: 10.1016/j.aml.2010.12.052
![]() |
[21] | J. L. Lions, Quelques Méthodes de Résolutions des Problèmes aux Limites non Linéaires, Paris: Dunod., French, 1969. |
[22] | O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 23 (1968). |
[23] | J. Simon, Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl., 146 (1987), 65-96. |
[24] | L. C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[25] | M. Papi, M. M. Porzio, F. Smarrazzo, Existence of solutions to a class of weakly coercive diffusion equations with singular initial data, Adv. Differential Eq., 22 (2017), 893-963. |
[26] |
L. Boccardo, L. Moreno-Mérida, W1,1(Ω) Solutions of nonlinear problems with nonhomogeneous Neumann boundary conditions, Milan J. Math., 83 (2015), 279-293. doi: 10.1007/s00032-015-0235-0
![]() |
[27] | E. DiBenedetto, Degenerate Parabolic Equations, Universitext, New York: Springer-Verlag, 1993. |
[28] | H. Amann, Quasilinear parabolic system under nonlinear boundary conditions, Arch. Rational Mech. Anal., 92 (1986), 53-192. |
[29] | H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differ. Equations, 73 (1988), 201-269. |
[30] |
L. Dung, Remarks on Hölder continuity for parabolic equations and convergence to global attractors, Nonlinear Anal., 41 (2000), 921-941. doi: 10.1016/S0362-546X(98)00319-8
![]() |
[31] |
V. Bögelein, F. Duzaar, U. Gianazza, Porous medium type equations with measure data and potential estimates, SIAM J. Math. Anal., 45 (2013), 3283-3330. doi: 10.1137/130925323
![]() |
[32] |
V. Liskevich, I. I. Skrypnik, Pointwise estimates for solutions to the porous medium equation with measure as a forcing term, Israel J. Math., 194 (2013), 259-275. doi: 10.1007/s11856-012-0098-9
![]() |
[33] | U. Gianazza, Degenerate and singular porous medium type equations with measure data, Elliptic and Parabolic Equations, 119 (2015), 139-158. |
[34] | H. Brézis, W. A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), 565-590. |
[35] | J. R. Cannon, The One-dimensional Heat Equations, Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Company, 23 (1984). |
[36] |
G. Q. Chen, H. Frid, Extended divergence measure fields and the Euler equations for gas dynamic, Comm. Math, Phys., 236 (2003), 251-280. doi: 10.1007/s00220-003-0823-7
![]() |
[37] |
B. P. Andreianov, N. Igbida, Uniqueness for inhomogeneous Dirichlet problem for elliptic-parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1119-1133 doi: 10.1017/S0308210505001290
![]() |
[38] |
L. Boccardo, J. M. Mazón, Existence of solutions and regularizing effect for some elliptic nonlinear problems with nonhomogeneous Neumann boundary conditions, Rev. Mat. Complut., 28 (2015), 263-280. doi: 10.1007/s13163-014-0162-6
![]() |
[39] | F. Audreu, N. Igbida, J. M. Mazón, J. Toledo, Degenerate elliptic equations with nonlinear boundary conditions and measure data, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 8 (2009), 769-803. |
[40] | F. Audreu, J. M. Mazón, S. Segura De Léon, J. Toledo, Quasilinear elliptic and parabolic equations in L1 with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7 (1997), 183-213. |
[41] |
M. M. Porzio, F. Smarrazzo, Radon measure-valued solutions for some quasilinear degenerate elliptic equations, Ann. Mat. Pura Appl., 194 (2015), 495-532. doi: 10.1007/s10231-013-0386-y
![]() |
[42] | S. Itô, The fundamental solution of the parabolic equation in a differentiable manifold. II, Osaka Math. J., 6 (1954), 167-185. |
[43] | A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964. |
[44] | M. Giaquinta, G. Modica, J. Souček, Cartesian Currents in the Calculus of Variations. I. Cartesian Currents, Berlin: Springer-Verlag, 1998. |
[45] | M. Bertsch, F. Smarrazzo, A. Terracina, A. Tesei, Radon measure-valued solutions of first order scalar conservation laws, Adv. Nonlinear Anal., 9 (2020), 65-107. |
[46] |
Q. S. Nkombo, F. Li, Radon Measure-valued solutions for nonlinear strongly degenerate parabolic equations with measure data, Eur. J. Pure Appl. Math., 14 (2021), 204-233. doi: 10.29020/nybg.ejpam.v14i1.3877
![]() |
[47] |
U. S. Fjordholm, S. Mishra, E. Tadmor, On the computation of measure-valued solutions, Acta Numer., 25 (2016), 567-679. doi: 10.1017/S0962492916000088
![]() |
[48] |
S. Lanthaler, S. Mishra, Computation of measure-valued solutions for the incompressible Euler equations, Math. Models Methods Appl. Sci., 25 (2015), 2043-2088. doi: 10.1142/S0218202515500529
![]() |
[49] | J. Droniou, T. Gallouët, R. Herbin, A finite volume scheme for a noncoercive elliptic equation with measure data, SIAM J. Numer. Anal., 41 (2003), 1997-2031. |
[50] |
R. Eymard, T. Gallouët, R. Herbin, A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math., 92 (2002), 41-82. doi: 10.1007/s002110100342
![]() |