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2 Laboratoire de Mécanique, Energétique et Ingénierie Ecole Nationale Supérieure Polytechnique
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Abstract: In this paper, we address the existence, uniqueness, decay estimates, and the large-time
behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic
equations involving a source term under Neumann boundary conditions with bounded Radon measure
as initial data. 

ut = ∆ψ(u) + h(t) f (x, t) in Ω × (0,T ),
∂ψ(u)
∂η

= g(u) on ∂Ω × (0,T ),

u(x, 0) = u0(x) in Ω,

where T > 0, Ω ⊂ RN(N ≥ 2) is an open bounded domain with smooth boundary ∂Ω, η is an
outward normal vector on ∂Ω. The initial value data u0 is a nonnegative bounded Radon measure on
Ω, the function f is a solution of the linear inhomogeneous heat equation under Neumann boundary
conditions with measure data, and the functions ψ, g and h satisfy the suitable assumptions.
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1. Introduction

In this paper, we study the existence, uniqueness, decay estimates, and the large-time behavior of
the solutions for a class of the nonlinear strongly degenerate parabolic equations involving the linear
inhomogeneous heat equation solution as a source term under Neumann boundary conditions with
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bounded Radon measure as initial data. This problem is described as follows:
ut = ∆ψ(u) + h(t) f (x, t) in Q := Ω × (0,T ),
∂ψ(u)
∂η

= g(u) on S := ∂Ω × (0,T ),

u(x, 0) = u0(x) in Ω,

(P)

where T > 0, Ω ⊂ RN(N ≥ 2) is an open bounded domain with smooth boundary ∂Ω, η is an unit
outward normal vector. The initial value data u0 is a nonnegative bounded Radon measure on Ω. The
functions ψ and g fulfill the following assumptions

(i) ψ ∈ L∞(R+) ∩C2(R+), ψ(0) = 0, ψ′ > 0 in R+,

(ii) ψ′ , ψ′′ ∈ L∞(R+) and ψ′(s)→ 0 as s→ +∞,

(iii) ψ(s)→ γ as s→ +∞,

(iv) |ψ′′ |

ψ′
≤ κ in R∗+, for some κ ∈ R∗+,

(I)

and (i) g ∈ L∞(R+) ∩C1(R+), g′ < 0 in R+ and g > 0 in R+,

(ii) g′ ∈ L∞(R+) and g(s)→ 0 as s→ +∞,
(A)

where R+ ≡ [0,+∞), R∗+ ≡ (0,+∞) and γ ∈ R∗+. By ψ′ and ψ′′ we denote the first and second
derivatives of the function ψ. The assumption (I)-(iii) stem from (I)-(i), hence we extend the function
ψ in [0,+∞] defining ψ(+∞) = γ.

The typical example of the functions ψ and g are given

ψ(s) = γ
[
1 − e1−(1+s)m]

and g(s) = e1−(1+s)m
. (1.1)

where 0 < m ≤ 1.
The function h satisfies the following hypothesis

h ∈ C1(R+) ∩ L1(R+) , h(0) = 0 , h′ > 0 in R+. (J)

The function f is a solution of the linear inhomogeneous heat equation under Neumann boundary
conditions with measure data 

ft = ∆ f + µ in Q := Ω × (0,T ),
∂ f
∂η

= g( f ) on S := ∂Ω × (0,T ),

f (x, 0) = u0(x) in Ω,

(H)

where µ is a nonnegative bounded Radon measure on Q and g fulfills the assumption (A).
Throughout this paper, we consider solutions of the problem (P) as maps from (0,T) to the cone of

nonnegative finite Radon measure on Ω, which satisfy (P) in the following sense: For a suitable class
of test functions ξ there holds∫ T

0
〈ur(·, t), ξt(·, t)〉Ω dt +

∫ T

0
h(t) 〈 f (·, t), ξ(·, t)〉Ω dt + 〈u0, ξ(·, 0)〉+
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+

∫ T

0
〈g(ur(·, t)), ξ〉∂Ω dt =

∫ T

0
〈∇ψ(ur)(·, t),∇ξ(·, t)〉Ω dt (1.2)

(see Definition 2.1). Here the measure u(·, t) is defined for almost every t ∈ (0,T ), ur ∈ L1(Q).
The type of the problem (P) has been intensively studied by many authors for instance (see [5, 18–

20, 27, 28, 30]) few to mention. For the general form of the problem (P), we consider the following
problem studied in [18],

ut = div(∇φ(x, t, u) + h(x, t, u)) + F(x, t, u) in ΩT ,

(∇φ(x, t, u) + h(x, t, u)) · η = r(x, t, u) on
∑

T ,

u(x, 0) = u0 in (∂Ω \
∑

)T ∪Ω × {0},

(A.1)

where ΩT = Ω× (0,T ),
∑

T =
∑
×(0,T ), (∂Ω \

∑
)T = (∂Ω \

∑
)× (0,T ) with

∑
is a relative open subset

of ∂Ω,
∑

and ∂Ω \
∑

are C2 surface with boundary which meet in C2 manifold dimension N − 2 and
0 ≤ u0 ∈ L∞((∂Ω \

∑
)T ∪ Ω × {0}). The author in [18], proved the local existence, uniqueness and the

blow-up at the finite time of the degenerate parabolic equations (A.1). Furthermore, the existence and
regularity of the solutions to the quasilinear parabolic systems under nonlinear boundary conditions is
discussed in detail by the studies [28, 29]

ut +A(t, u)u = F(t, u) in Ω × (s,T ),
β(t, u)u = r(t, u) in ∂Ω × (s,T ],
u(s) = u0 on Ω,

(A.2)

where s < t ≤ T and u0 ∈ Wτ,p(Ω,RN)(τ ∈ [0,∞)) and the definition of the operators A(t, u)u and
β(t, u)u are in [28]. Similarly, studies in [19, 20] showed the existence and regularity of the degenerate
parabolic equations with nonlinear boundary conditions and u0 ∈ L2(Ω) as an initial datum. Thus, we
point out that the difference between the previous works (A.1), (A.2) and our work is on the following
points; firstly, the initial value u0 ∈ M

+(Ω) (the nonnegative bounded Radon measure on Ω), secondly,
the assumptions of the functions ψ, g given by (I) and (A). Finally, the source term f is a solution to
the linear inhomogeneous heat equation under Neumann boundary conditions with measure data.

Furthermore, the study of the degenerate parabolic problem with forcing term has been intensively
investigated by many authors (see [31–33]). In particular, [31] deals with existence solutions in the
sense distributions of the nonlinear inhomogeneous porous medium type equations

ut − divA(x, t, u,Du) = µ in Q := Ω × (0,T ) (A.3)

where µ is a nonnegative Radon measure on Q with µ(Q) < ∞ and µ|RN+1\Q = 0. In last decade,
some authors studied the existence, uniqueness and qualitative properties of the Radon measure-
valued solutions to the nonlinear parabolic equations under zero Dirichlet or zero Neumann boundary
conditions with bounded Radon measure as initial data (e.g. [1, 6, 7, 9–13, 15, 25] and references
therein). Specially, [6] discuss the existence, uniqueness and the regularity of the Radon measure-
valued solutions for a class of nonlinear degenerate parabolic equations

ut = ∆θ(u) in Q,

θ(u) = 0 on S ,

u0(x, 0) = u0 on Ω,

(A.4)
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where u0 ∈ M
+(Ω) and the function θ fulfills the assumptions expressed in [6]. The difference between

the abovementioned studies and the problem (P) is the presence of the nonzero-Neumann boundary
conditions and the source term which is a solution of the linear inhomogeneous heat equations under
Neumann boundary conditions with measure data.

In general, the study of the partial differential equations through numerical methods is investigated
by several authors (e.g. [47–50]). In particular, there are some authors who deal with the computation
of the measure-valued solutions of the incompressible or compressible Euler equations (see [47,
48]). Mostly, the authors employ the numerical experiment corresponding to initial data of the
partial differential equations and prove that the resulting approximation converge to a weak solution.
For instance, in [50], the authors study numerical experiment to prove that the convergence of the
solution to the nonlinear degenerate parabolic equations is measure-valued. Similarly, [49] employs
the numerical method to show that the resulting approximation of a non-coercive elliptic equations
with measure data converges to a weak solution. Hence, the numerical experiments represent the
straightforward application of the theoretical study of the type of the problem (P).

To address the large-time behavior of the Radon measure-valued solutions of the problem (P), we
construct the steady-state problem as a nonlinear strongly degenerate elliptic equations given as follows−∆ψ(U) + U = u0 in Ω,

∂ψ(U)
∂η

= g(U) on ∂Ω,
(E)

where u0 ∈ M
+(Ω) and the function ψ and g satisfy the hypotheses (I) and (A) respectively.

We consider solutions of the problem (E) as maps from Ω to the cone of nonnegative bounded
Radon measure on Ω which satisfies (E) in the following sense: For a suitable class of test function ϕ,
there holds ∫

Ω

∇ψ(Ur)∇ϕdx +

∫
Ω

Uϕdx =

∫
Ω

ϕdu0(x) +

∫
∂Ω

g(Ur)ϕdH(x)

(see Definition 2.6), where Ur ∈ L1(Ω) denotes the density of the absolutely continuous part of U with
respect to the Lebesgue measure.

The nonlinear elliptic equations under Neumann boundary conditions with absorption term and a
source term has been intensively studied by several authors [26, 34, 38–40]. In these studies, the
authors dealt with the existence, uniqueness and regularity of the solutions. Furthermore, in [34], the
following problem is considered LU + B(U) = f2 in Ω,

∂U
∂η

+ C(U) = g2 on ∂Ω,
(A.5)

where B(U) ∈ L1(Ω), C(U) ∈ L1(∂Ω), f2 ∈ L1(Ω), g2 ∈ L1(∂Ω) and the expression of the differential
operator L in [34, Section 2]. The authors proved the existence, uniqueness and regularity of the
solutions U ∈ W1,1(Ω) to the problem (A.5) (see [34, Section 4, Theorem 22 and Corollary 21). The
difference between the previous studies mentioned above and (A.5) is that we study the nonlinear
strongly degenerate elliptic equations and the solutions obtained are Radon measure-valued. However,
the existence, uniqueness, and regularity of the Radon measure-valued solutions of the quasilinear
degenerate elliptic equations under zero Dirichlet boundary conditions are discussed in detail [13] by
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considering the following problem

−div(A(x,U)∇U) + U(x) = µ in Ω,

U(x) = 0 on ∂Ω,
(A.6)

where µ ∈ M(Ω) and A(x,U) satisfies the hypothesis in [13]. In this case, the difference between the
problem (E) and (A.4) is a boundary conditions with the assumptions on ψ.

In this paper, we study a class of nonlinear parabolic problems involving a forcing term and initial
data is a nonnegative Radon measure. In the recent years, there are different papers that investigate
these kind of problems in the setting in which the solution is a Radon measure for positive time.
This type of study was done for parabolic and hyperbolic equations. One of the main tool is to search a
solution by an approximation of the initial data and then try to pass to the limit in a very weak topology.
The innovative part of this work is mainly the study of the large time behavior of the solutions. In my
opinion, it is essential to highlight that the explicit examples of equations study in this work have not
already been dealt with in literature and the novelties of the techniques that they introduced in the
work. Finally, the study of the asymptotic behavior is a novelty.

The main difficulty to study the problem (P) is due to the presence of the forcing term which depends
on the property solutions of the inhomogeneous heat equation (H).

The main motivation of this study comes from the desire to deal with parabolic equations in which
the forcing term can be either Radon measure or Lp(Q) (1 ≤ p < ∞) functions. Whence, the idea to
consider the linear inhomogeneous heat equation solution with measure data as a forcing term.

To deal with the existence and the uniqueness of the weak solutions to the problem (P), we
use the definition of the Radon measure-valued solutions of the parabolic equations and the natural
approximation method. In particular, to show the uniqueness of the problem (P), we will distinguish
two cases for the forcing term f , either the function is in L2((0,T ),H1(Ω)) or the Radon measure on
Q. Notice that when the linear inhomogeneous heat equation (H) does not admit an unique solution,
the problem (P) has no unique solution as well.

Furthermore, we prove the necessary and sufficient condition between measure data and capacity in
order to deal with the existence of the weak solutions to the problem (P).

To establish the decay estimates of the Radon measure-valued solutions to the problem (P), we
construct the suitable function and we use it as a test function in the approximation of the problem (P).
Then we easily infer the decay estimates after the use of some measure properties.

To address the large-time behavior of the Radon measure-valued solutions of the problem (P), we
first show that the problem (E) has a Radon measure-valued solutions in Ω.

To the best of our knowledge no existing result of decay estimates and large-time behavior of Radon
measure-valued solutions obtained as limit of the approximation of the problem (P) are known in
the literature. Hence, this interesting case will be discussed in this paper. This paper is organized
as follows: In the next section, we state the main results, while in Section 3, we present important
preliminaries. In Section 4, we study the existence and uniqueness of the heat equation (H). Finally,
we prove the main results in the Sections 5–8.
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2. Statement of the main results

To study the weak solution of the problem (P), we refer to the following definition.
Definition 2.1. For any u0 ∈ M

+(Ω) and µ ∈ M+(Q), a measure u is called a weak solution of problem
(P), if u ∈ M+(Q) such that
(i) u ∈ L∞((0,T ),M+(Ω)),
(ii) ψ(ur) ∈ L2((0,T ),H1(Ω)),
(iii) g(ur) ∈ L1(S ),
(iv) for every ξ ∈ C1((0,T ),C1(Ω)), ξ(·,T ) = 0 in Ω, u satisfies the identity∫ T

0
〈u(·, t), ξt(·, t)〉Ωdt +

∫ T

0
h(t) 〈 f (·, t), ξ(·, t)〉Ω dt + 〈u0, ξ(·, 0)〉Ω +

+

∫ T

0
〈g(ur(·, t)), ξ〉∂Ω dt =

∫ T

0
〈∇ψ(ur),∇ξ〉Ω dxdt (2.1)

where ur is the nonnegative density of the absolutely continuous part of Radon-measure with respect to
the Lebesgue measure such that ur ∈ L∞((0,T ), L1(Ω)) and the function f is the solution of the problem
(H).

Throughout this paper, we assume that Ω is a strong C1,1 open subset of RN . Also, we assume that
there exists a finite open cover (B j) such that the set Ω ∩ B j epigraph of a C1,1 function ζ : RN−1 → R

that is
Ω ∩ B j =

{
x ∈ B j/ xN > ζ(x)

}
and ∂Ω ∩ B j =

{
x ∈ B j/ xN = ζ(x)

}
where x = (x, xN), the local coordinates with x = (x1, x2, . . . , xN−1). We denote ϑ = {x , x ∈ Ω ∩ B j} ⊆

RN−1, the projection of Ω ∩ B j onto the (N − 1) first components, and ϑς = {x , x ∈ supp(ς) ∩Ω}.
If a function φ is defined on S , we denote φS the function defined on (B j ∩ Q) × [0,T ] by ξS (x, t) =

ξ(x, ζ(x), t). Notice that the restriction of ξS to [0,T ) × ϑ.
The next definition of the trace is corresponding to the problem (P) adapts to the context of [36,

Theorem 2.1].
Definition 2.2 Let F ∈ [L2(Q)]N+1 be such that divF is a bounded Radon measure on Q. Then there
exists a linear functional Tη on W

1
2 ,2(S ) ∩ C(S ) which represents the normal traces F · ν on S in the

sense that the following Gauss-green formula holds:

(i) For all ξ ∈ C∞c (Q),

〈Tν, ξ〉 =

∫
Q
ξdivF +

∫
Q
∇ξ · F

where 〈Tν, ξ〉 depends only on ξS .
(ii) If (B j, ς, f ) is an above subsequence localization near boundary, then for all ξ ∈ C∞c ([0,T ) × Ω)
there holds

〈Tν, ξ〉 = − lim
s→0

1
s


∫ T

s

∫
ϑ

∫ ζ(x)+s

ζ(x)
F ·


−∇ζ(x)

1
0

 ξσdxNdxdt

− lim
s→0

1
s

∫ s

0

∫
Ω

F ·


0
0
1

 ξσdxdt (2.2)
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where the divergence of the fields,

F (x, t) =

(
u(x, t)

∇ψ(ur(x, t))

)
is a bounded Radon measure on Q.

The following result states the existence of the trace of the boundary condition to the problem (P).
Lemma 2.1 Let Ω is a strong C1,1 open subset ofRN . Then there exists an unique trace Tη : W1,1(Ω)→
L1(∂Ω) such that

〈Tη, ξ〉 =

∫
S

g(ur)ξdH(x)dt (2.3)

where the function g(ur) ∈ L1(S ) and ξ ∈ C∞c ([0,T ) ×Ω).
To prove the uniqueness of the solution to the problem (P), we define the notion very weak solution

of the problem (P) as follows.
Definition 2.3. For any µ ∈ M+(Q) and u0 ∈ M

+
d,2(Ω), a measure u is called a very weak solution to

problem (P) if u ∈ L∞((0,T ),M+(Ω)) such that∫ T

0
〈u(·, t), ξt(·, t)〉Ωdt +

∫
Q
ψ(ur)∆ξdxdt +

∫
Q

h(t) f (x, t)ξdxdt +

∫
S

g(u)ξdHdt + 〈u0, ξ(0)〉Ω = 0 (2.4)

for every ξ ∈ C2,1(Q), which vanishes on ∂Ω × [0,T ], for t = T .
To prove the uniqueness of the problem (P) when f lies inM+(Q), we consider the following every

weak solution gives below:
Definition 2.4 Let u0 ∈ M

+
d,2(Ω) and µ ∈ M+(Q) such that

u0 = f0 − divG0 , f0 ∈ L1(Ω) and G0 ∈
[
L2(Ω)

]N
.

A function u is called a very weak solutions obtained as limit of approximation, if

un
∗
⇀ u in M+(Q) (2.5)

where {un} ⊆ L∞(Q) ∩ L2((0,T ),H1(Ω)) is the sequences of weak solutions to problem (Pn) satisfies
u0n = f0n − F0n ∈ C∞c (Ω),
F0n → divG0 in (H1(Ω))∗,
f0n → f0 in L1(Ω).

(2.6)

We denote (H1(Ω))∗ the dual space of H1(Ω) and the embedding H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))∗ holds.
Definition 2.5 Let u0 ∈ M

+
d,2(Ω) and µ ∈ M+

d,2(Q) such that

u0 = f0 − divG0 , f0 ∈ L1(Ω) and G0 ∈
[
L2(Ω)

]N
.

µ = f1 − divG + ϕt , f1 ∈ L1(Q) , G ∈
[
L2(Q)

]N
and ϕ ∈ L2((0,T ),H1(Ω)).
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A measure f is called a very weak solutions obtained as limit of approximation, if

fn
∗
⇀ f in M+(Q) (2.7)

where {un} and { fn} ⊆ L∞(Q) ∩ L2((0,T ),H1(Ω)) are the sequences of weak solutions to problem (Pn)
and (Hn) respectively satisfy 

µn = f1n − Fn + gnt ∈ C∞c (Q),
u0n = f0n − F0n ∈ C∞c (Ω),
f1n → f1 in L1(Q),
Fn → divG in L2((0,T ), (H1(Ω))∗),
ϕn → ϕ in L2((0,T ),H1(Ω)),
F0n → divG0 in (H1(Ω))∗,
f0n → f0 in L1(Ω).

(2.8)

Then, the function u is very weak solutions of the problem (P) obtained as limit of approximation if the
function f is a very weak solutions of the problem (H) obtained as limit of approximation.

Notice that

un
∗
⇀ u in M+(Q) , µn

∗
⇀ µ in M+(Q) and u0n

∗
⇀ u0 in M+(Ω).

M+
d,2(Ω) denotes the set of nonnegative measures on Ω which are diffuse with respect to the Newtonian

capacity and the definition of the diffuse measure with respect to the parabolic capacityM+
d,2(Q) will

be recalled in the Section 3.
Before dealing with the existence of the problem (P), we first prove the existence and uniqueness

of the solutions to the problem (H) given by the following result.
Theorem 2.1. Assume that u0 ∈ M

+(Ω) and µ ∈ M+(Q) hold.
(i) Then, there exists a nonnegative Radon measure-valued solution to the problem (H) in the space
L∞((0,T ),M+(Ω)) such that

f (x, t) =

∫
Ω

GN(x−y, t)du0(y)+
∫ t

0

∫
Ω

GN(x−y, t−σ)dµ(y, σ)+
∫ t

0

∫
∂Ω

GN(x−y, t−σ)g( f (y, σ))dH(y)dσ

(2.9)
for almost every t ∈ (0,T ). Furthermore, the Radon measure-valued solution f satisfies the following
estimate

‖ f (·, t) ‖M+(Ω)≤ eCt (‖ µ ‖M+(Q) + ‖ u0 ‖M+(Ω)
)

(2.10)

for any C = C(T ) a positive constant.
(ii) Suppose that u0 ∈ M

+
d,2(Ω), µ ∈ M+

d,2(Q) and g( f ) = K almost everywhere on S (K is a positive
constant) are satisfied. Then, the nonnegative weak Radon measure-valued solution to the problem (H)
obtained as limit of the approximation is unique in L∞((0,T ),M+(Ω)).

We denote by GN(x − y, t − s) as the Green function of the heat equation under homogeneous
Neumann boundary conditions. By [4], the Green function satisfies the following properties

GN(x − y, t − s) ≥ 0 , x, y ∈ Ω , 0 ≤ s < t < T, (2.11)

AIMS Mathematics Volume 6, Issue 11, 12182–12224.
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Ω

GN(x − y, t − s)dx = 1 , y ∈ Ω , 0 ≤ s < t < T. (2.12)

There exist two positive constants τ1 and τ2 such that∣∣∣∣∣GN(x − y, t − s) −
1
| Ω |

∣∣∣∣∣ ≤ τ1e−τ2(t−s) , x, y ∈ Ω , 1 + s < t. (2.13)

lim
t→s

∫
Ω

GN(x − y, t − s)φ(y)dy = φ(x) (2.14)

for any φ ∈ Cc(Ω) and | Ω | is a Lebesgue measure of the set Ω.
Remark 2.1 (i) For any test function ξ ∈ C1((0,T ),C1(Ω)) such that ξ(·,T ) = 0 in Ω and ∂ξ

∂η
= 0 on S ,

the inner product 〈 f (·, t), ξ(·, t)〉Ω in (2.1) is given by the following expression

〈 f (·, t), ξ(·, t)〉Ω =

∫
Ω

∫
Ω

G(x − y, t)ξ(y, 0)du0(y)dx+

+

∫
Ω

∫ t

0

∫
Ω

GN(x − y, t − σ) ( f ξσ − 2∇ f∇ξ − f ∆ξ) dydσdx+

+

∫
Ω

∫ t

0

∫
Ω

GN(x − y, t − σ)ξ(y, σ)dµ(y, σ)dx+

+

∫
Ω

∫ t

0

∫
∂Ω

GN(x − y, t − σ)ξ(y, σ)g( f (y, σ))dH(y)dσdx (2.15)

where ξσ is a first derivative order of ξ with respect σ.
(ii) By the regularity properties of the Green function GN(x − y, t − σ) in [42], the solution of the
problem (H) given by (2.9), f ∈ L2((0,T ),H1(Ω)).
(iii) By virtue of the assumptions (J), (2.11) and (2.12), the term h(t) f (x, t) is well-defined at t = 0.
Indeed, the function t 7→

∫
Ω

GN(x− y, t−σ)h(σ)dµ(y, σ), t 7→
∫
∂Ω

GN(x− y, t−σ)h(σ)g( f (y, σ))dH(y)
and t 7→

∫
Ω

GN(x − y, t − σ) f (y, σ)h′(σ)dy are continuous in R+. Then there holds

lim
t→0+

h(t) f (x, t) = lim
t→0+

∫ t

0

∫
Ω

GN(x − y, t − σ) f (y, σ)h′(σ)dydσ+

+ lim
t→0+

∫ t

0

∫
∂Ω

GN(x − y, t − σ)h(σ)g( f )dH(y)dσ + lim
t→0+

∫ t

0

∫
Ω

GN(x − y, t − σ)h(σ)dµ(y, σ) = 0.

Hence we extend the function h(t) f (x, t) in [0,T] defining h(0) f (x, 0) = 0. Furthermore, the presence
of the function h is to well-defined the forcing term of the nonlinear parabolic problem (P).

In order to study the existence and uniqueness of the solutions to the problem (P), we give the
necessary and sufficient condition on the measures µ and u0 for the existence of the weak solutions to
the problem (P) with respect to the parabolic and Newtonian capacity respectively. This result is given
by the following theorem.
Theorem 2.2. Suppose that the hypotheses (I), (A), µ ∈ M+(Q) and u0 ∈ M

+(Ω) hold. For any
function h satisfying (J), there exists t ∈ (0,T ) such that

∫ t

0
h(σ)dσ = 1 and u is a weak solution to the

problem (P). Then µ and u0 are absolutely continuous measures with respect to the parabolic capacity.
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Notice that Newtonian and parabolic capacity are equivalent, then µ and u0 are absolutely
continuous measures with respect to C2-capacity as well.

In the next theorem, we present the result of the existence Radon measure-valued solutions to the
problem (P).
Theorem 2.3 Suppose that the assumptions (I), (J), (A) µ ∈ M+(Q) and u0 ∈ M

+(Ω) are satisfied.
Then there exists a weak solution u to problem (P) obtained as a limiting point of the sequence {un} of
solutions to problems (Pn) such that for every t ∈ (0,T ) \ H∗, there holds

‖ u(·, t) ‖M+(Ω)≤ C
(
‖ µ ‖M+(Q) + ‖ u0 ‖M+(Ω)

)
. (2.16)

The result of the uniqueness of the problem (P) is given by the following theorem:
Theorem 2.4 Assume that the hypotheses (I), (J) and (A), µ ∈ M+

d,2(Q) and u0 ∈ M
+
d,2(Ω) hold. Then

there exists a unique very weak solution obtained as the limit of approximation u of the problem (P), if
g(ur) = L almost everywhere in S , whenever L is a positive constant.

To establish the decay estimate of the solution to the problem (P), we recall two particular problems
of the problem (P). Now we consider the following problem.

vt = ∆ϑ(v) in Q,
∂ϑ(v)
∂η

= g1(v) on S ,

v(x, 0) = u0 in Ω,

(P0)

The functions ψ and g satisfy the assumption (I) and (A) respectively and have the same properties
with the functions ϑ and g1 given as follows

ϑ(s) = γ

[
1 −

1
(1 + s)m

]
(m > 0) and g1(s) =

1
(1 + s)m (2.17)

where m > 0 and s > 0. Therefore, by Theorem 2.3, the problem (P0) possesses a solution in the space
L∞((0,T ),M+(Ω)), such that

‖ v(·, t) ‖M+(Ω)≤ C ‖ u0 ‖M+(Ω)

for almost every t ∈ (0,T ).
Similarly, we consider the following problem

wt = ∆ψ(w) + h(t) f (x, t) in Q,
∂ψ(w)
∂η

= g(w) on S ,

w(x, 0) = 0 in Ω,

(P1)

By Theorem 2.3, the problem (P1) admits a solution in L∞((0,T ),M+(Ω)), such that

‖ w(·, t) ‖M+(Ω)≤ C ‖ µ ‖M+(Ω)

for almost every t ∈ (0,T ).
Now we state the decay estimates in the next theorem:

Theorem 2.5 Suppose that (I), (J), (A), µ ∈ M+(Q) and u0 ∈ M
+(Ω) are satisfied. The measure u is

the weak solution to the problem (P). According to Theorem 2.3, v is the weak solution to the problem
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(P0) and w is the weak solution to the problem (P1). Then for every t ∈ (0,T ) \H∗ with | H∗ |= 0, there
holds

‖ u(·, t) − v(·, t) ‖M+(Ω)≤
C

(T − t)α
(
‖ µ ‖M+(Q) + ‖ u0 ‖M+(Ω)

)
, (2.18)

‖ u(·, t) − w(·, t) ‖M+(Ω)≤ C
‖ u0 ‖M+(Ω)

(T − t)α
, (2.19)

and

‖ u(·, t) ‖M+(Ω)≤
C
tα

(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)) (2.20)

for any positive constant C and α > 1.
To deal with the large-time behavior of the Radon measure-valued solutions to the problem (P), we

first extend (0,T ) to (0,+∞), then we assume that the hypothesis

lim sup
t→+∞

‖ u(·, t) ‖M+(Ω)≤ C (2.21)

where C is a positive constant.
To analyze the large-time behavior of the Radon measure-valued solutions, we first study the

existence of the Radon measure-valued solutions corresponding to the steady state problem (E) by
considering the following definition.
Definition 2.6 Assume that the hypotheses (I), (A) and u0 ∈ M

+(Ω) are satisfied. A measure U is a
solution of the problem (E), if U ∈ M+(Ω) such that
(i) ψ(Ur) ∈ W1,1(Ω),
(ii) g(Ur) ∈ L1(∂Ω),
(iii) for every ϕ ∈ C1(Ω), the following assertion∫

Ω

∇ψ(Ur(x))∇ϕ(x)dx +

∫
Ω

U(x)ϕ(x)dx =

∫
Ω

ϕ(x)du0(x) +

∫
∂Ω

g(U(x))ϕ(x)dH(x) (2.22)

holds true.
The existence result of the problem (E) is given by the following theorem:

Theorem 2.6 Suppose that the hypotheses (I), (A) and u0 ∈ M
+(Ω) are satisfied. Then there exists

a weak solution U ∈ M+(Ω) of the problem (E) obtained as a limiting point of the sequence {Un} of
solutions to the approximation problem (En) such that

‖ U ‖M+(Ω)≤ C ‖ u0 ‖M+(Ω) (2.23)

where C > 0 is a constant.
The result of the large-time behavior of the Radon measure-valued solutions of the problem (P) is

given by the following theorem
Theorem 2.7. Suppose that the assumption (I), (A), (J), u0 ∈ M

+(Ω) and µ ∈ M+(Q). U is a Radon
measure-valued solutions of the steady-state problem (E) in sense of Theorem 2.6 and u is a Radon
measure-valued solutions in the sense of Theorem 2.3 such that (2.21) holds. Then there holds

u(·, t)→ U in M+(Ω) as t → ∞ (2.24)
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3. Preliminaries

In the following section, we define the truncation function for k > 0 and s ∈ R,

Tk(s) = min{| s |, k}sign(s).

To prove the main results from the previous section, we need to recall the preliminaries about
capacity and measure collected in [9–16]. Likewise, we recall some important notations as follows:

For any Borel set E ⊂ Ω, the C2-capacity of E in Ω is defined as

C2(E) = inf
{∫

Ω

(| u |2 + | ∇u |2)dx/u ∈ ZE
Ω

}
where ZE

Ω
denotes the set of u which belongs to H1(Ω) such that 0 ≤ u ≤ 1 almost everywhere in Ω,

and u = 1 almost everywhere in a neighborhood E.
Let W =

{
u ∈ L2((0,T ),H1(Ω)) and ut ∈ L2((0,T ), (H1(Ω))∗)

}
endowed with its natural norm ‖

u ‖W=‖ u ‖L2((0,T ),H1(Ω)) + ‖ ut ‖L2((0,T ),(H1(Ω))∗) a Banach space. For any open set U ⊂ Q, we define the
parabolic capacity as

Cap(U) = inf
{
‖ u ‖W /u ∈ VU

Q

}
where VU

Q denotes the set of u belongs to W such that 0 ≤ u ≤ 1 almost everywhere in Q, and u = 1
almost everywhere in a neighborhood U.

Let M(B) be the space of bounded Radon measures on B, and M+(B) ⊂ M(B) the cone of
nonnegative bounded Radon measures on B. For any µ ∈ M(B) a bounded Radon measure on B,
we set

‖ µ ‖M(Ω):=| µ | (B)

where | µ | stands for the total variation of µ.
The duality map 〈·, ·〉B between the spaceM(B) and Cc(B) is defined by

〈µ, ϕ〉B =

∫
B
ϕdµ.

M+
s (B) denotes the set of nonnegative measures singular with respect to the Lebesgue measure, namely

M+
s (B) :=

{
µ ∈ M+(Ω)/∃ a Borel set F ⊆ B such that | F |= 0 , µ = µxB

}
we will consider either | . | the Lebesgue measure on RN or RN+1. Similarly, M+

ac(B) the set of
nonnegative measures absolutely continuous with respect to the Lebesgue measure, namely

M+
ac(B) :=

{
µ ∈ M+(Ω)/µ(F) = 0, for every Borel set F ⊆ B such that | F |= 0

}
Let M+

c,2(B) be the set of nonnegative measures on B which are concentrated with respect to the
Newtonian capacity

M+
c,2(B) :=

{
µ ∈ M+(B)/∃ a Borel set F ⊆ B, such that µ = µxF and C(F) = 0

}
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M+
d,2(B) denotes the set of nonnegative measures on B which are diffuse with respect to the Newtonian

capacity

M+
d,2(B) :=

{
µ ∈ M+(B)/µ(F) = 0, for every Borel set F ⊆ B such that C(F) = 0

}
.

It is known that a measure µd,2 ∈ M
+
d,2(Ω) (resp. µd,2 ∈ M

+
d,2(Q)) if there exist f0 ∈ L1(Ω) and

G0 ∈
[
L2(B)

]N
(resp. if µd,2 ∈ M

+
d,2(Q), there exist f ∈ L1(Q), g ∈ L2((0,T ),H1(Ω)) and G ∈

[
L2(Q)

]N
)

such that
µd,2 = f0 − divG0 in D′(Ω) (resp. µd,2 = f − divG + gt in D′(Q)). (3.1)

For any λ ∈ M+(B), if there exists a unique couple λd,2 ∈ M
+
d,2(B), λc,2 ∈ M

+
c,2(B) such that

λ = λd,2 + λc,2. (3.2)

On the other hand, there exists a unique couple λac ∈ M
+
ac(B), λs ∈ M

+
s (B) such that

λ = λac + λs (3.3)

where either B = Ω, C(F) = C2(E) or B = Q, C(F) = Cap(U).
By L∞ ((0,T ),M+(Ω)), the set of nonnegative Radon measures u ∈ M+(Q) such that for every

t ∈ (0,T ), there exists a measure u(·, t) ∈ M+(Ω) such that
(i) for every ξ ∈ C(Q) the map

t 7→ 〈u(·, t), ξ(·, t)〉Ω is Lebesgue measurable

and

〈u(·, t), ξ(·, t)〉Ω =

∫ T

0
〈u(·, t), ξ(·, t)〉Ω dt

(ii) there exists a constant C > 0 such that

ess sup
t∈(0,T )

‖ u(·, t) ‖M+(Ω)≤ C

with the norm denotes
‖ u ‖L∞((0,T ),M+(Ω))= ess sup

t∈(0,T )
‖ u(·, t) ‖M+(Ω) . (3.4)

4. Existence and Uniqueness results of the problem (H)

In the literature, many authors dealt with the existence, uniqueness, blow-up at finite and infinite
time, decay estimates, stability properties and asymptotic behavior of the solutions to the heat equation
under Neumann boundary conditions with a source term and initial data, such as (see [2–5, 42, 43] and
references therein). Moreover, most of the authors employed the maximum principle theorem through
the monotonicity technique and semi-group method to show the existence, blow-up, stability properties
and asymptotic behavior of these solutions. Meanwhile, in this section we prove the existence and
uniqueness of the linear inhomogeneous heat equation (H) by using the fundamental solution of the
heat equation (see [2–4, 42]). Also, we use the definition of the Radon measure-valued solutions in
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[9] and some properties of the Radon measure provided in [24, 44]. Moreover, we consider for every
n ∈ N, the approximation of problem (H) such that

fnt = ∆ fn + µn in Q,
∂ fn
∂η

= g( fn) on S ,

fn(x, 0) = u0n(x) in Ω,

(Hn)

Since u0 ∈ M
+(Ω), the approximation of the Radon measure u0 is given by [9, Lemma 4.1] such

that {u0n} ⊆ C∞c (Ω) satisfies the following assumptions
u0n

∗
⇀ u0 in M+Ω),

u0n → u0r a.e in Ω,

‖ u0n ‖L1(Ω)≤‖ u0 ‖M+(Ω) .

(4.1)

Moreover µ ∈ M+(Q), the approximation of the Radon measure µ is given by [15] such that {µn} ⊆

C∞c (Q) fulfills the following hypotheses
µn

∗
⇀ µ in M+(Q),

µn → µr a.e in Q,

‖ µn ‖L1(Q)≤‖ µ ‖M+(Q),

(4.2)

for every n ∈ N. By [21, 22, 43], the approximation problem (Hn) has a unique solution fn in
C1((0,T ), L2(Ω)) ∩ L2((0,T ),H1(Ω)) ∩ L∞(Q).

In the next proposition, we establish the relationship between the approximation solution fn and
any test function in (Pn).

Proposition 4.1. Suppose that ξ ∈ C1
c (Q) such that ∂ξ

∂η
= 0 on S , the test function in (Hn) and

fn the approximation solution of the problem (Hn). Then, the following expression holds

fn(x, t)ξ(x, t) =

∫
Ω

GN (x − y, t) ξ(y, 0)u0n(y)dy+

∫ t

0

∫
Ω

GN(x−y, t−σ) { fnξσ − 2∇ fn∇ξ − fn∆ξ} dydσ+

+

∫ t

0

∫
Ω

GN(x−y, t−σ)ξ(y, σ)µn(y, σ)dydσ+

∫ t

0

∫
∂Ω

GN(x−y, t−σ)ξ(y, σ)g( f (y, σ))dH(y)dσ (4.3)

where ξσ is first-order derivative order of ξ with respect to σ.

Remark 4.2. Assume that the test function ξ = ρ ∈ C2
c (Ω), then we obtain

fn(x, t)ρ(x) =

∫
Ω

GN (x − y, t) ρ(y)u0n(y)dy −
∫ t

0

∫
Ω

GN(x − y, t − σ) {2∇ fn∇ρ + fn∆ρ} dydσ+

+

∫ t

0

∫
Ω

GN(x − y, t − σ)ρ(y)µn(y, σ)dydσ +

∫ t

0

∫
Ω

GN(x − y, t − σ)ρ(y)g( f (y, σ))dH(y)dσ. (4.4)
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On the other hand, we suppose that the test function ξ = θ(t) ∈ C1(0,T ) then (4.3) reads

fn(x, t)θ(t) =

∫
Ω

GN (x − y, t) θ(0)u0n(y)dy +

∫ t

0

∫
Ω

GN(x − y, t − σ) fn(y, σ)θ′(σ)dydσ+

+

∫ t

0

∫
Ω

GN(x − y, t − σ)θ(σ)µn(y, σ)dydσ +

∫ t

0

∫
Ω

GN(x − y, t − σ)θ(σ)g( f (y, σ))dH(y)dσ. (4.5)

Proof of Proposition 4.1. Assume that ξ ∈ C1((0,T ),C2
c (Ω)) such that ∂ξ

∂η
= 0 on S , a test function in

(Hn), then the following equation
( fnξ)t = ∆( fnξ) + fnξt − 2∇ fn∇ξ − fn∆ξ + µnξ in Ω × (0,T ),
∂( fnξ)
∂η

= g( fn)ξ on ∂Ω × (0,T ),

fn(x, 0)ξ(x, 0) = u0nξ(x, 0) in Ω,

(Hξ)

is well-defined. By [35, Chapter 20, Section 20.2], the problem (Hξ) admits a unique solution fnξ

expressed in (4.3). �
Proof of Theorem 2.1 (i) We argue this proof into two steps:
Step 1. We show that { fn(·, t)} is a Cauchy sequence in L1(Ω) a.e in (0,T ). To attain this, we use the
expression (4.3) to prove the Cauchy sequence. Indeed, for any m, n ∈ N there holds

fn(x, t) − fm(x, t) =

∫
Ω

GN(x − y, t)[u0n(y) − u0m(y)]dy+

+

∫ t

0

∫
Ω

GN(x − ξ, t − σ)[µn(ξ, σ) − µm(y, σ))]dyds+

+

∫ t

0

∫
∂Ω

GN(x − y, t − σ)[g( fn(ξ, σ)) − g( fm(ξ, s))]dH(y)ds. (4.6)

From the assumption (2.12), the Eq (4.6) yields∫
Ω

| fn(x, t) − fm(x, t) | dx ≤
∫

Ω

| u0n(y) − u0m(y) | dy +

∫ t

0

∫
Ω

| µn(y) − µm(y) | dydσ

+

∫ t

0

∫
∂Ω

GN(x − ξ, t − s)dH(ξ)
(∫

Ω

| g( fn(x, s)) − g( fm(x, s)) | dx
)

ds. (4.7)

Furthermore, by using the mean value theorem, we find that there exists a function θ(x, s) which is
continuous in QT1

such that α1 < θ(x, s) < α2, g( fn(x, s)) − g( fm(x, s)) = g′(θ(x, s))( fn(x, s) − fm(x, s)),
where g′(θ(x, s)) ∈ L∞(R+)(see assumption (I)-(i)) and 0 < α1 < α2 are constants, therefore we obtain∫

Ω

| fn(x, t) − fm(x, t) | dx ≤
∫

Ω

| u0n(y) − u0m(y) | dy +

∫ T

0

∫
Ω

| µn(y) − µm(y) | dy+

+C(T1)
∫ t

0

∫
Ω

| fn(x, σ) − fm(x, σ) | dxdσ, (4.8)

whenever C(T1) = sup(ξ,σ)∈QT1

∫
∂Ω

GN(x − ξ,T1)g′(θ(x, s))dH(ξ) > 0. By the property (2.13) of the
Green function GN(x − ξ, t − σ) of the heat equation with nonhomogeneous Neumann boundary and
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the fact that g′(θ(x, s)) ∈ L∞(R+), then C(T1) is a constant depending on T1. From the Gronwall’s
inquality, the inequality (4.8) yields

∫
Ω

| fn(x, t) − fm(x, t) | dx ≤ C(T,T1)
∫

Ω

| u0n(y) − u0m(y) | dy+

+C(T,T1)
∫

Ω

| µn(y, σ) − µm(y, σ) | dydσ (4.9)

for a.e 0 ≤ t < T1 < T and C(T,T1) = 1 + C(T1)TeC(T1)T > 0 a constant.
Since the sequences {u0n} and {u0m} are satisfying the assumption (4.1) and {µn} and {µm} are

verifying the assumption (4.2), then by passing to the limit as n and m go to infinity, there holds

lim
n,m→+∞

∫
Ω

| fn(x, t) − fm(x, t) | dx ≤ C(T,T1) lim sup
n→+∞

∫
Ω

| u0n(y) − u0r(y) | dy+

+C(T,T1) lim sup
m→+∞

∫
Ω

| u0m(y) − u0r(y) | dy+

+C(T,T1) lim sup
n→+∞

∫
Ω

| µn(y, σ) − µr(y, σ) | dydσ+

+C(T,T1) lim sup
m→+∞

∫
Ω

| µm(y, σ) − µr(y, σ) | dydσ ≤ 0. (4.10)

Hence the sequence { fn(·, t)} is Cauchy in L1(Ω) for almost every t ∈ (0,T ).
Step 2. We show that fn(·, t)

∗
⇀ f (·, t) inM+(Ω) a.e in (0,T ).

Since the function fn(x, t) is a solution of the approximation problem (Hn) and µn(x) ≥ 0 in Q,
u0n(x) ≥ 0 in Ω, g > 0 in R+, then we apply the maximum principal theorem in [22, 43] and then the
solution of the approximation problem (Hn) is nonnegative in Q. Likewise, we assume that ξ(x, t) ≡ 1,
then we obtain

fn(x, t) =

∫
Ω

GN(x − y, t − σ)u0n(y)dy +

∫ t

0

∫
Ω

GN(x − y, t − σ)µn(y, σ)dydσ+

+

∫ t

0

∫
∂Ω

GN(x − y, t − σ)g( f (y, σ))dH(y)dσ. (4.11)

By the assumptions (A), (2.12), (2.13), (4.1) and (4.2), we infer that∫
Ω

fn(x, t)dx ≤‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q) +C
∫ t

0

∫
Ω

fn(x, σ)dxdσ. (4.12)

By Gronwall’s inequality, we deduce that

‖ fn(·, t) ‖L1(Ω)≤ eCt (‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)
)
, (4.13)

for almost every t ∈ (0,T ).
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By Step 1, the sequence { fn(·, t)} is Cauchy in L1(Ω), then we infer that fn(·, t) → f (·, t) a.e in
(0,T ). Hereby we argue as in [9, Proposition 5.3], one proves that f (·, t) ∈ M+(Ω) and the following
convergence

fn(·, t)
∗
⇀ f (·, t) in M+(Ω) (4.14)

for almost every t ∈ (0,T ) holds.
From [44, Chapter 5, Section 5.2.1, Theorem 1], the estimate (4.13) yields

‖ f (·, t) ‖M+(Ω)≤ lim inf
n→+∞

∫
Ω

fn(·, t)dx ≤ eCt (‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)
)
.

The estimate (2.10) is achieved.
(ii) Now we show the uniqueness solutions to the problem (H).

To attain this, we consider f1 and f2 two every weak solutions of the problem (H) in sense of
Definition 2.5 with initial data u01 and u02 respectively.

Let { f1n}, { f2n} ⊆ L∞(Q)∩L2((0,T ),H1(Ω)) be two weak solutions given by the proof (i) of Theorem
2.1. Assume that {u01n}, {u02n} {µ1n}, {µ2n} are approximating Radon measures in sense of Definition
2.4 and f1n, f2n in (4.11) hold. Since we have assumed that g( f ) = K almost everywhere in S , thus
g( f1n) = g( f2n) = K on S . For any ξ ∈ C1

c (Q) such that ∂ξ

∂η
= 0 on S , there holds∫ T

0
[ f1n(y, t) − f2n(y, t)]ξ(y, t)dt =

∫
Q

[ f1n(x, t) − f2n(x, t)]δy(x)ξ(x, t)dxdt

=

∫ T

0

∫
Ω

GN (0, t) (u01n(y) − u02n(y))ξ(y, t)dydt+

+

∫ T

0

∫ t

0

∫
Ω

GN(0, t − σ)(µ1n(y, σ) − µ2n(y, σ))ξ(y, t)dydσ =: I1 + I2. (4.15)

Let us evaluate the limit of I1 and I2 when n→ ∞. To attain this, we begin with the expression I1:

I1 =

[∫
Ω

(u01n(y) − u01n(y))ξ(y, t)dy
] [∫ T

0
GN (0, t) dt

]
.

Taking ξ(y, t) = ρ(y)̃h(t) with ρ ∈ C2(Ω) such that ∂ρ

∂η
= 0 on ∂Ω and h̃ ∈ Cc(0,T ), then we have

I1 =

∫ T

0
h̃(t)GN (0, t) dt

∫
Ω

(u01n(y) − u02n(y))ρ(y)dy

=

∫ T

0
h̃(t)G (0, t) dt

[∫
Ω

( f01n(y) − f02n(y))ρ(y)dy −
∫

Ω

(F01n(y) − F02n(y))ρ(y)dy
]
.

Passing to the limit when n→ ∞, there holds

lim
n→∞

I1 = 0. (4.16)

Now we consider the expression I2,

I2 =

[∫ T

0

∫
Ω

(µ1n(y, t) − µ2n(y, t))ξ(y, t)dydt
] [∫ t

0
G(0, t − σ)dσ

]
.
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According to Definition 2.4, it is worth observing that

I2 =

[∫ t

0
G(0, t − σ)dσ

] [∫
Q

( f11n(y, t) − f12n(y, t))ξ(y, t)dydt
]
−

−

[∫ t

0
G(0, t − σ)dσ

] [∫
Q

(F1n(y, t) − F2n(y, t))ξ(y, t)dydt
]
+

+

[∫ t

0
G(0, t − σ)dσ

] [∫
Q

(ϕ1n(y, t) − ϕ2n(y, t))ξt(y, t)dydt
]
+

+

[∫ t

0
G(0, t − σ)dσ

] [∫
Ω

(ϕ1n(y, 0) − ϕ2n(y, 0))ξ(y, 0)dy
]
.

We pass to the limit when n goes to infinity, therefore

lim
n→∞

I2 = 0. (4.17)

By (4.16), (4.17) and Dominated Convergence theorem, we obtain∫
Q

( f1(x, t) − f2(x, t))ξ(x, t)dxdt = 0, (4.18)

which leads to
f1n

∗
⇀ f1 M

+(Q) and f2n
∗
⇀ f2 M

+(Q).

Hence f1 = f2 holds. �
Remark 4.1 (i) Since f ∈ M+(Q), then it is worthy observing that fn in (4.11) is a sequence of the
approximation Radon measure f satisfying the following properties

fn
∗
⇀ f in M+(Q),

fn → f a.e in Q,

‖ fn ‖L1(Q)≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)),
f is given in (2.9),

(4.19)

for every n ∈ N and C > 0 is a constant.
(ii) By (2.11)–(2.13) and the assumption (A), we deduce from the compactness theorem in [23] the
approximation problem (Hn) possesses a weak solution f in L2((0,T ),H1(Ω)) such that the properties

fn = Tn( f ),
fn → f a.e in Q,

| fn |≤| f |,

(4.20)

hold true.
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5. Existence results of the problem (P)

Proof of Lemma 2.1. To prove this result, we use Definition 2.2 and we recall the Gauss-green
formula given by the functional

〈Tν, ξ〉 =

∫
Q
ξdivF +

∫
Q
∇ξ · F (5.1)

Since there exists a linear continuous functional Tν on W
1
2 ,2(S )∩C(S ) which stands for F · ν, then we

define a notion of the normal trace of the flux ∇ψ(ur) · ν such that

〈Tη, ξ〉 = 〈Tν, ξ〉 +

∫
Ω

ξ(x, 0)du0(x) +

∫
Q

h(t) f (x, t)ξdxdt. (5.2)

The definition make sense because of the definition of the weak solution when we assume that the
value of the initial data

lim
s→0

1
s

∫ s

0

∫
Ω

u(x, t)ξ(x, t)dxdt =

∫
Ω

ξ(x, 0)du0 (5.3)

holds, for any s−t
s χ(0,s)(t)φ as a test function in (2.1). In particular 〈Tν, ξσ〉 depends only on ξS and from

(2.2), we infer the formula

〈Tν, ξ〉 = − lim
s→0

1
s

∫ T

s

∫
ϑ

∫ ζ(x)+s

ζ(x)
∇ψ(ur)

(
−∇ζ(x)

1

)
ξςdxNdxdt (5.4)

for any ξ ∈ C∞c ([0,T ) ×Ω). We denote {vδ} a boundary-layer sequence of C2(Ω) ∩C(Ω) such that

lim
δ→0+

vδ = 1 a.e in Ω, 0 ≤ vδ ≤ 1, vδ = 0 on ∂Ω. (5.5)

For more properties concerning the boundary-layer sequence {vδ} (see [37, Lemma 5.5 and Lemma
5.7]). If ξ ∈

(
H1(Ω)

)N
, then

lim
δ→0+

∫
Ω

ςξ∇vδ = − lim
δ→0+

∫
Ω

div(ςξ)vδ = −

∫
Ω

div(ςξ) = −

∫
∂Ω

ςξ · ηdH(x) (5.6)

The previous statement (5.6) explains that for any function-valued F : Ω → RN , then −F · ∇vδ
approaches the normal trace F · η. Let ξ ∈ C∞c ([0,T ) × Ω) and ξ = ξ(1 − vδ) on S , it implies that
〈Tν, ξς〉 = 〈Tν, ςξ(1 − vδ)〉. By Definition 2.2 and the equation (5.2), the Gauss-Green formula yields〈

Tη, ςξ
〉

= 〈Tν, ςξ(1 − vδ)〉 +
∫

Ω

ξ(x, 0)ς(1 − vδ)du0 +

∫
Q

h(t) f (x, t)ξ(x, t)ς(1 − vδ)dxdt

=

∫
Q
ξς(1 − vδ)divF +

∫
Q
∇(ξς(1 − vδ)) · F +

∫
Ω

ξ(x, 0)ς(1 − vδ)du0+

+

∫
Q

h(t) f (x, t)ξ(x, t)ς(1 − vδ)dxdt.
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Since 0 ≤ vδ ≤ 1 and vδ → 1 a.e in Ω as δ→ 0+, then Dominated Convergence Theorem ensures that

lim
δ→0+

∫
Q
ξς(1 − vδ)divF = 0 and

〈
Tη, ξς

〉
= − lim

δ→0+

∫
Q
∇ξ(ur)∇vδξςdxdt (5.7)

On the other hand, we consider ξς(1 − vδ) as a test function in the problem (P) then the following
expression holds

−

∫
Ω

φ(x, 0)ς(1 − vδ)du0 +

∫
Ω

u(x,T )ξ(x,T )ς(1 − vδ)dx −
∫

Q
u(x, t)ξt(x, t)ς(1 − vδ)dxdt

= −

∫
Q
∇ψ(ur)∇(ξς)(1 − vδ)dxdt +

∫
Q
∇ψ(ur)∇vδξςdxdt +

∫
S

g(ur)ξςdH(x)dt + .

+

∫
Q

h(t) f (x, t)ξ(x, t)ς(1 − vδ)dxdt.

Since 0 ≤ vδ ≤ 1 and vδ → 1 a.e in Ω as δ→ 0+, then Dominated Convergence Theorem yields∫
S

g(ur)ξςdH(x)dt = − lim
δ→0+

∫
Q
∇ψ(ur)∇vδξςdxdt. (5.8)

By combining the assertions (5.7) with (5.8), the statement (2.3) is satisfied. �
Proof of Theorem 2.2. Assume that for any compact set K = K0 × [0,T ] ⊂ Ω × (0,T ) ⊂ RN × R+

(resp. for any compact set K0 ⊂ Ω ⊂ RN) such that µ−(K) = 0 (resp. u−0 (K0) = 0) and Cap(K) = 0 (resp.
C2(K0) = 0). To show that µ and u0 are absolutely continuous measures with respect to the parabolic
capacity, it is enough to prove that µ+(K) = 0 (resp. u+

0 (K0) = 0). To this purpose Cap(K) = 0 (resp.
C2(K0) = 0), there exists a sequence {ϕn(t)} ⊂ C∞c (RN × R+) (resp. {ϕn(0)} ⊂ C∞c (RN)) such that
0 ≤ ϕn(t) ≤ 1 in Q (resp. 0 ≤ ϕn(0) ≤ 1 in Ω), ϕn(t) ≡ 1 in K (resp. ϕn(0) ≡ 1 in K0) and ϕn(t) → 0 in
W as n→ ∞ (resp. ϕn(0)→ 0 in H1(Ω) as n→ ∞). In particular ‖ ∆ϕn(t) ‖L1(Q)→ 0 as n→ ∞.

Let us consider the nonnegative function ϕn(t) ∈ C∞c (RN × R+) such that ϕn(T ) = 0 in Ω and
∂ϕn(t)
∂η

= 0 in S as a test function in the problem (P), then there holds∫
Ω

ϕn(0)du0 +

∫
Q

uϕnt(t)dxdt = −

∫
Q
ψ(ur)∆ϕn(t)dxdt −

∫
Q

h(t) f (x, t)ϕn(t)dxdt−

−

∫
S

g(ur)ϕn(t)dH(x)dt. (5.9)

By (4.3)(Probably n is large enough), the following statement holds∫
Q

f (x, t)h(t)ϕn(t)dxdt =

∫
Q

∫ t

0

∫
Ω

GN(x − y, t − σ) f (y, σ)(h(σ)ϕn(σ))σdydσdxdt

−

∫
Q

∫ t

0

∫
Ω

GN(x − y, t − σ)[2∇ f∇(h(σ)ϕn(σ)) + f ∆(h(σ)ϕn(σ))]dydσdxdt+

+

∫
Q

∫ t

0

∫
Ω

GN(x − y, t − σ)h(σ)ϕn(σ)dµ(y, σ)dxdt+
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+

∫
Q

∫ t

0

∫
∂Ω

GN(x − y, t − σ)h(σ)ϕn(σ)g( f (y, σ))dH(y)dσdxdt. (5.10)

Combining the Eq (5.9) with (5.10), we obtain∫
Q

∫
Ω

∫ t

0
GN(x − y, t − σ)h(σ)ϕn(σ)dµ(y, σ)dxdt +

∫
Ω

ϕn(0)du0 =

=

∫
Q

∫ t

0

∫
Ω

h(σ)GN(x − y, t − σ)[2∇ f∇ϕn(σ) + f ∆ϕn(σ)]dydσdxdt−

−

∫
Q

∫ t

0

∫
Ω

GN(x − y, t − σ) f (y, σ)(h(σ)ϕn(σ))σdydσdxdt−

−

∫
Q

∫ t

0

∫
∂Ω

GN(x − y, t − σ)h(σ)ϕn(σ)g( f (y, σ))dH(y)dσdxdt−

−

∫
S
ϕn(t)g(ur)dH(x)dt −

∫
Q
ψ(ur)∆ϕn(t)dxdt −

∫
Q

uϕnt(t)dxdt. (5.11)

By (2.14), f ∈ L2((0,T ),H1(Ω)) (see Remark 4.1-(ii)) and letting σ→ t,
∫ t

0
h(σ)dσ = 1 and dropping

down the nonnegative terms on the left hand-side of the previous equation. Therefore (5.11) yields∫
Q
ϕn(t)dµ(x, t) +

∫
Ω

ϕn(0)du0(x) ≤‖ u ‖L2((0,T ),H1(Ω))‖ ϕn(t) ‖W +

C(γ)
∫

Q
| ∆ϕn(t) | dxdt+ ‖ f ‖L2((0,T ),H1(Ω))‖ ϕn(t) ‖W . (5.12)

Since the following assertions are valid, then

µ+(K) ≤
∫

Q
ϕn(t)dµ(x, t) +

∫
Q
ϕn(t)dµ−(x, t) (5.13)

where µ+(K) = µ(K) + µ−(K) and

u+
0 (K0) ≤

∫
Ω

ϕn(0)du0(x) +

∫
Ω

ϕn(0)du−0 (x) (5.14)

with u+
0 (K0) = u0(K0) + u−0 (K0). In view of (5.13) and (5.14), the inequality (5.12) reads as

µ+(K) + u+
0 (K0) ≤‖ u ‖L2((0,T ),H1(Ω))‖ ϕn(t) ‖W +C(γ)

∫
Q
| ∆ϕn(t) | dxdt+

+ ‖ f ‖L2((0,T ),H1(Ω))‖ ϕn(t) ‖W +

∫
Q
ϕn(t)dµ−(x, t) +

∫
Ω

ϕn(0)du−0 (x). (5.15)

Since µ−(K) = 0 (resp. u−0 (K0) = 0), then for any ε > 0 one has∫
Q
ϕn(t)dµ−(x, t) <

ε

2

(
resp.

∫
Ω

ϕn(0)du−0 (x) <
ε

2

)
. (5.16)
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Then, the limit in (5.16) as n→ ∞, the following holds µ+(K) + u+
0 (K0) ≤ ε. Therefore, µ+(K) = 0 for

any compact set K ⊂ Q (resp. u+
0 (K0) = 0 for any compact set K0 ⊂ Ω). �

To prove the existence and decay estimates of the solutions, we consider the following problem
unt = ∆ψn(un) + h(t) fn(x, t) in Q,
∂ψn(un)
∂η

= g(un) on S ,

un(x, 0) = u0n in Ω,

(Pn)

where the sequence {u0n} ⊆ C∞c (Ω) satisfies the assumption (4.1) and the sequence { fn} ⊆ C∞c (Q) fulfills
the hypothesis (4.19). We set

ψn(s) = ψ(s) +
1
n

(5.17)

By [8, 18, 21, 22], the approximating problem (Pn) has a solution un in C((0,T ), L1(Ω))∩L∞(Q). Then,
the definition of the weak solution {un} ⊆ C∞(Q) of (Pn) satisfies the following expression∫ T

0
〈un(·, t), ξt(·, t)〉Ωdt +

∫ T

0
h(t) 〈 fn(·, t), ξ(·, t)〉Ω dt + 〈u0n, ξ(·, 0)〉Ω+

+

∫ T

0
〈g(un), ξ〉∂Ω dt =

∫ T

0
〈∇ψn(un),∇ξ〉Ω dxdt (5.18)

for every ξ in C1(Q) such that ξ(·,T ) = 0 in Ω and ∂ξ

∂η
= 0 on S .

Now we establish some technical estimates which will be used in the proof of the existing solution.
Lemma 5.2 Assume that (I), (J), (A), µ ∈ M+(Q) and u0 ∈ M

+(Ω) are satisfied. Let un be the solution
of the approximation problem (Pn), then

‖ un(·, t) ‖L1(Ω)≤ C
(
‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)

)
. (5.19)

‖ ∇ψn(un) ‖L2(Q) + ‖ ψn(un) ‖L2(Q)≤ C
(
‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)

)
. (5.20)

for almost every t ∈ (0,T ) and C is a positive constant.
The sequence {[ψn(un)]t} is bounded in L2((0,T ), (H1(Ω))∗) + L1(Q).

Proof of Lemma 5.2. To prove the estimate (5.19), we consider the approximation problem (Pn) such
that 

uns = ∆ψn(un) + h(s) fn(x, s) in Ω × (τ, τ + t),
∂ψn(un)
∂η

= g(un) on ∂Ω × (τ, τ + t),

un(x, τ) = u0n(x) in Ω × {τ},

(5.21)

where τ + t ≤ T and τ, t ∈ (0,T ).
Let us consider ξ ∈ C1,2(Ω × [τ, τ + t]) such that ∂ξ

∂η
= 0 on ∂Ω × (τ, τ + t) and ξ(·, τ + t) = 0 in Ω as

a test function in the above approximation problem (5.21), then we have∫
Ω×(τ,τ+t)

unξsdxds +

∫
Ω×(τ,τ+t)

ψn(un)∆ξdxds +

∫
∂Ω×(τ,τ+t)

g(un)ξdH(x)ds+

+

∫
Ω×(τ,τ+t)

h(s) fn(x, s)ξ(x, s)dxds +

∫
Ω

µn(x)ξ(x, τ)dx = 0. (5.22)
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By the mean value theorem and the assumption (I), the Eq (5.22) yields∫
Ω×(τ,τ+t)

un(ξs + θn∆ξ)dxds +

∫
∂Ω×(τ,τ+t)

g(un)ξdH(x)ds+

+

∫
Ω×(τ,τ+t)

h(s) fn(x, s)dxds +

∫
Ω

µn(x)ξ(x, τ)dx = 0, (5.23)

where θn(x, t) =
∫ 1

0
ψ′un

(αun)dα.
On the other hand, we consider the following backward parabolic equations

−φs − θε∆φ = 1
τ

in Qτ = Ω × (τ, τ + t),
∂φ

∂η
= 0 on S τ = ∂Ω × (τ, τ + t),

φ(·, τ + t) = 0 in Ω × {τ + t},

(5.24)

has an unique solution φ in C1,2(Qτ)∩C(Qτ) and 0 < φ ≤ C for any τ, t ∈ (0,T ) (see [18, Lemma 4.2]).
Then for ξ = φ, there holds

1
τ

∫ τ+t

τ

∫
Ω

un(x, s)dxds =

∫
Ω

µn(x)φ(x, τ)dx +

∫ τ+t

τ

∫
∂Ω

g(un)φdH(x)ds+

+

∫ τ+t

τ

∫
Ω

h(s) fn(x, s)φdxds (5.25)

By the assumptions (A), (J), (4.19) and (4.1), there exists a positive constant C such that the expression
below is satisfied

1
τ

∫ τ+t

τ

∫
Ω

un(x, s)dxds ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)). (5.26)

By letting τ → 0+, we obtain the estimate (5.19). Where C = C(h(T ), ‖ g(un) ‖L∞(R+), | S |) > 0. To
prove the estimate (5.20), we consider Tγ+1(ψn(un)) as a test function in the approximation problem
(Pn), then we have∫

{(x,t)∈QT /ψn(un)≤γ+1}
| ∇ψn(un) |2 dxdt =

∫
Ω

(∫ u0n(x)

0
Tγ+1(ψn(s))ds

)
dx−

−

∫
Ω

(∫ un(x,T )

0
Tγ+1(ψn(s))ds

)
dx +

∫ T

0

∫
∂Ω

g(un)Tγ+1(ψn(un))dH(x)dt+

+

∫ T

0

∫
Ω

Tγ+1(ψn(un))h(t) fn(x, t)dxdt (5.27)

where Tλ(s) = min{λ, s}. It follows that there exists a positive constant C such that∫
{(x,t)∈QT /ψn(un)≤γ+1}

| ∇ψn(un) |2 dxdt

≤ (γ + 1)
∫

Ω

µn(x)dx + C(γ + 1) ‖ g(un) ‖L∞(R+) +h(T )
∫

Q
fn(x, t)dxdt.
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For the suitable positive constant C = C(h(T ), γ, ‖ g(un) ‖L∞(R+), ‖ µ ‖M+(Ω), ‖ u0 ‖M+(Ω), | S |) > 0, the
following estimate holds ∫

{(x,t)∈QT /ψn(un)≤γ+1}
| ∇ψn(un) |2 dxdt ≤ C. (5.28)

On the other hand, we assume that Gλ(s) = max{λ, s} and we choose Gγ+1(ψn(un)) as a test function in
the approximation problem (Pn), then we have∫

{(x,t)∈QT /ψn(un)>γ+1}
| ∇ψn(un) |2 dxdt =

∫
Ω

(∫ u0n(x)

0
Gγ+1(ψn(s)))ds

)
dx−

−

∫
Ω

(∫ un(x,T )

0
Gγ+1(ψn(s))ds

)
dx +

∫ T

0

∫
∂Ω

g(un)Gγ+1(ψn(un))dH(x)dt+

+

∫ T

0

∫
Ω

h(t) fn(x, t)Gγ+1(ψn(un))dH(x)dt. (5.29)

It implies that ∫
{(x,t)∈Q/ψn(un)>γ+1}

| ∇ψn(un) |2 dxdt

≤ (γ + 1)
∫

Ω

µn(x)dx + (γ + 1)M ‖ g(un) ‖L∞(R+) +h(T )
∫

Q
fn(x, t)dxdt

It follows that ∫
{(x,t)∈Q/ψn(un)>γ+1}

| ∇ψn(un) |2 dxdt ≤ C. (5.30)

Combining the inequality (5.28) with (5.30), we deduce that∫
Q
| ∇ψn(un) |2 dxdt ≤ C (5.31)

By the assumption (I), then ψn(un) ∈ L2(Q), whence the estimate (5.20) holds.
To end the proof of this Lemma, we consider that for every ξ ∈ C1

c (Q) such that if we choose
φ = ψ′n(un)ξ arbitrary as a test function in problem (Pn), then the following stands true∫

Q
ξt[ψn(un)]dxdt = −

∫
Q
ξψ′n(un)div (∇ψn(un)) dxdt −

∫
Q

h(t) fn(x, t)ψ′n(un)ξdxdt (5.32)

It follows that ∫
Q
ξt[ψn(un)]dxdt =

∫
Q
ψ′n(un)∇ψn(un)∇ξdxdt −

∫
Q

h(t) fn(x, t)φdxdt−

−

∫
S

g(un)ψ′n(un)ξdH(x)dt +

∫
Q

ψ′′n (un)
ψ′n(un)

| ∇ψn(un) |
2
ξdxdt. (5.33)

Now we estimate each term in the right hand side of (5.33), we obtain∣∣∣∣∣∣
∫

Q
ψ′n(un)∇ψn(un)∇ξdxdt

∣∣∣∣∣∣ ≤‖ ψ′n ‖L∞(R+)

∫
Q
| ∇ξ || ∇ψn(un) | dxdt. (5.34)
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From Hölder’s inequality and (5.31), the inequality (5.34) reads as∣∣∣∣∣∣
∫

Q
ψ′n(un)∇ψn(un)∇ξdxdt

∣∣∣∣∣∣ ≤ C ‖ ∇ξ ‖L2(Q) . (5.35)

By the assumption (J) and (4.19), we deduce the estimate∣∣∣∣∣∣
∫

Q
h(t) fn(x, t)ξdxdt

∣∣∣∣∣∣ ≤ C ‖ ξ ‖L∞(Q) (5.36)

where C = C(h(T ), ‖ µ ‖M+(Ω), ‖ u0 ‖M+(Ω)) > 0 is a constant.
By the assumptions (A) and (I), there exists a positive constant C = C(‖ g(un) ‖L∞(R+), ‖

ψ′n(un) ‖L∞(R+)) > 0 such that ∫
S

g(un)ψ′n(un)ξdH(x)dt ≤ C ‖ ξ ‖L∞(S ) . (5.37)

Furthermore, one has∣∣∣∣∣∣
∫

Q

ψ′′n (un)
ψ′n(un)

| ∇ψn(un) |
2
ξdxdt

∣∣∣∣∣∣ ≤ κ ‖ ξ ‖L∞(Q)

∫
Q
| ∇ψn(un) |2 dxdt.

In view of (5.28), the expression below holds true∣∣∣∣∣∣
∫

Q

ψ′′n (un)
ψ′n(un)

| ∇ψn(un) |
2
ξdxdt

∣∣∣∣∣∣ ≤ C ‖ ξ ‖L∞(Q) (5.38)

where C = C(κ, ‖ u0 ‖M+(Ω), ‖ µ ‖M+(Q)) > 0. By (5.35)–(5.38) and (5.33), we infer that the sequence
{[ψn(un)]t} is bounded in L2((0,T ), (H1(Ω))∗) + L1(Q). �
Now we study the limit points of the sequences {un} and ψn(un) as n→ ∞.
Proposition 5.1 Suppose that the assumptions (I), (A) and (J) are satisfied. Let un be the solution of the
approximation problem (Pn). Then there exists a subsequence {unk} ⊆ {un} and v ∈ L2((0,T ),H1(Ω)) ∩
L∞(Q) such that

ψnk(unk)
∗
⇀ v in L∞(Q). (5.39)

ψnk(unk) ⇀ v in L2((0,T ),H1(Ω)). (5.40)

[ψnk(unk)]t ⇀ vt in L2((0,T ), (H1(Ω))∗). (5.41)

ψnk(unk)→ v a.e in Q, (5.42)

where vt ∈ L1(Q) and v ≤ γ.
Proof of Proposition 5.1. The convergences (5.39) and (5.40) are the consequence of assumption
(I)-(i) and estimate (5.20) respectively. By Lemma 5.1, the sequence {[ψn(un)]t} is bounded
in L2((0,T ), (H1(Ω))∗) + L1(Q). By [45], there exists a subsequence {unk} ⊆ {un} and v∗ ∈
L2((0,T ),H1(Ω)) ∩ L∞(Q) such that

ψnk(unk)→ v∗ a.e in Q.
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Furthermore, by [9, Proposition 5.1] and (5.41) holds true and we have

ψnk(unk)→ v a.e in Q

with v = v∗ which leads to (5.42) be satisfied. In view of the assumptions (I)-(i) and (5.17), we get

‖ ψnk(unk) − ψ(unk) ‖L∞(Q)=
1
nk
.

Therefore the following convergence ψ(unk)
∗
⇀ v in L∞(Q) holds true. �

Remark 5.1 For any subsequence {unk} ⊆ {un} and v the function given in Proposition 5.1, the following
assertions
ψ−1(v) ∈ L∞((0,T ), L1(Ω)), unk → ψ−1(v) a.e in Q and unk → g−1(v) a.e in S hold.
Proposition 5.2 Assume that the hypotheses (I), (J), (A), µ ∈ M+(Q) and u0 ∈ M

+(Ω) are satisfied.
Let {unk} be the subsequence and v the function mentioned in Proposition 5.1. Then there exist a
subsequence {unk(·, t)} ⊆ {un(·, t)} and ua , u(·, t) , ub(·, t) ∈ M+(Ω) such that

unk(·, t)
∗
⇀ u(·, t) := ua(·, t) + ub(·, t) in M+(Ω), (5.43)

ψnk(unk)(·, t)
∗
⇀ ψ(ub)(·, t) in M+(Ω), (5.44)

g(unk)(·, t)
∗
⇀ g(ub)(·, t) in L∞(∂Ω). (5.45)

Moreover, there hold

ub(·, t) = ur(·, t) a.e in Ω and ua(·, t) = us(·, t) in M+(Ω) (5.46)

for almost every t ∈ (0,T ). Furthermore u ∈ L∞((0,T ),M+(Ω)) and for almost every t ∈ (0,T ), there
holds

‖ u(·, t) ‖M+(Ω)≤ C(‖ µ ‖M+(Q) + ‖ u0 ‖M+(Ω)). (5.47)

Proof. By the assumption (I)-(i), ψnk(unk) ∈ L∞(Q) and using Hölder’s inequality, we have

∫
Q
| ∇ψnk(unk) | dxdt ≤

[∫
Q

| ∇ψnk(unk) |
2

(1 + ψnk(unk))2 dxdt
] 1

2
[∫

Q
(1 + ψnk(unk))

2dxdt
] 1

2

≤ C
[∫

Q
| ∇ψnk(unk) |

2 dxdt
] 1

2

.

From the estimate (5.20), there exists a positive constant C = C(‖ ψnk(unk) ‖L∞(R+), ‖ µ ‖M+(Q), ‖

u0 ‖M+(Ω)) > 0 such that ∫
Q
| ∇ψnk(unk) | dxdt ≤ C. (5.48)

According to Lemma 5.1, the assumption (I) and (5.48), we infer that

‖ ψnk(unk) ‖BV(Q)=‖ ψnk(unk) ‖L1(Q) + ‖ ∇ψnk(unk) ‖L1(Q) + ‖ [ψnk(unk)]t ‖L1(Q)≤ C. (5.49)
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By Fatou’s Lebesgue Lemma, we obtain∫ T

0
lim inf

k→∞

∫
Ω

{
| ψnk(unk) | + | ∇ψnk(unk) | + | [ψnk(unk)]t |

}
≤ C. (5.50)

Then there exists zero Lebesgue measure set N1 ⊂ (0,T ) such that

lim inf
k→∞

∫
Ω

{
| ψnk(unk) | + | ∇ψnk(unk) | + | [ψnk(unk)]t |

}
(x, t) ≤ C (5.51)

for every t ∈ (0,T )\N1. In view of (5.51), the sequence {ψnk(uk)(·, t)} ⊆ BV(Ω) for every t ∈ (0,T )\N1.
By [44, Chapter IV, Section 1.1, Proposition 5], there exists a subsequence {ψnk(unk)(·, t)} and v(·, t) ∈
M+(Ω) a.e in (0,T ) such that the convergence

ψnk(unk)(·, t)
∗
⇀ v(·, t) in M+(Ω) (5.52)

holds true. Furthermore, from the assertions (5.19), (5.52) and the Prohorov Theorem (see [44, Chapter
II, Section 2.6, Theorem 1] or [25, Proposition A.2] or [17, Proposition 1]), there exists a sequence
{̃τnk} of the Young measures associated with the sequence {unk} ⊆ {un} converges narrowly over Q×R to
a Young measure τ̃ which the disintegration µ(·,t) is the Dirac mass concentrated at the point ψ−1(v(·, t))
for a.e in Ω (see [17]). By [25, Proposition A.4], there exist sequences of measure sets Ak ⊆ Ω,
Ak ⊆ Ak+1 and | Ak |→ 0, such that

uk j(·, t)χΩ\Ak ⇀ ub(·, t) :=
∫

[0,+∞)
λdµ(·,t)(λ) in L1(Ω), (5.53)

where ub ∈ L∞((0,T ), L1(Ω)), ub ≥ 0 is a barycenter of the limiting Young measure µ(·,t) associated
with the subsequence {unk(·, t)} and suppµ(·,t) ⊆ [0,+∞) for almost every t ∈ (0,T ).

By (5.19) and the compactness result, the sequence {unkχΩ\A j} is uniformly bounded in L1(Ω).
Therefore, there exists a Radon measure ua(·, t) ∈ M+(Ω) such that unk(·, t)

∗
⇀ u(·, t) in M+(Ω).

Finally, the sequence unk is of unk(·, t) = unk(·, t)χAk + unk(·, t)χΩ\Ak

∗
⇀ ua(·, t) + ub(·, t) in M+(Ω).

Hence u(·, t) := ua(·, t) + ub(·, t) inM+(Ω) and the statement (5.43) is completed. By the assumption
(I)-(iii), there holds

lim
s→+∞

ψnk(s)
s

= 0. (5.54)

By the assertion (5.54) and [45, Proposition 5.2] or [25], we obtain

ψnk(uk)(·, t)
∗
⇀ ψ∗(·, t) in M+(Ω) (5.55)

where ψ∗(·, t) ∈ L1(Ω) and

ψ∗(·, t) =

∫
[0,+∞)

ψ(λ)dµ(·,t)(λ). (5.56)

Furthermore, we also obtain the next result via (5.55)

ψ∗(·, t) =

∫
[0,+∞)

ψ(λ)dµ(·,t)(λ) = ψ

(∫
[0,+∞)

λdµ(·,t)(λ)
)

= ψ(ub)(·, t).
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By combining the assertion (5.53) and the previous equality, we conclude that ψ(ub)(·, t) = v(·, t) a.e in
(0,T ), when the convergence (5.44) is satisfied.
By virtue of the convergence (5.53), the next convergence result

g(unk)→ g(ψ−1(v)) := g(ub) a.e in S (5.57)

holds true. Since the function g(unk) ∈ L∞(R+) (see assumption (H)-(i)) and from Fatou’s Lebesgue
Lemma, then there exists a positive constant C such that∫ T

0
lim inf

k→+∞

∫
∂Ω

g(unk)dxdt ≤ C. (5.58)

Therefore, there exists a zero Lebesgue measure set N2 ⊆ (0,T ) such that

lim inf
k→+∞

∫
∂Ω

g(unk)(x, t)dx ≤ C (5.59)

for every t ∈ (0,T )\N2. In view of (5.59) and (5.57), there exists a function z(·, t) := g(ub)(·, t) ∈
L∞(∂Ω) such that the convergence (5.45) is achieved.

To show (5.46), we consider the functions F , G : R+ → R+ defined by setting

Fε(s) =


0 if s ≤ 1

ε
,

(εs−1)2

2ε2 if 1
ε
≤ s ≤ 1

ε
+ 1,

s − 1
ε
− 1

2 if s ≥ 1
ε

+ 1,

and Gε(s) = s − Fε(s) for every ε > 0. It is worthy observing that F′ε(s) ≥ 0 in R+ and
0 ≤ F′′ε (s) ≤ χ{s≥ 1

ε }
(s). According to the above results, there exists a subsequence {unk} in Lemma

5.1 and Proposition 5.1. For any nonnegative function ρ ∈ C2(Ω), we choose F′ε(unk)ρ(x) as a test
function in the approximation problem (Pn), then we obtain the following identity∫

Ω

Fε(unk)(·, τ)ρ(x)dx ≤
∫

Ω

Fε(u0nk)ρ(x)dx −
∫ τ

0

∫
Ω

F′ε(unk)∇ψnk(unk)∇ρ(x)dxdt+

+

∫ τ

0

∫
∂Ω

g(unk)F
′
ε(unk)ρ(x)dH(x)dt +

∫ τ

0

∫
Ω

h(t) fnk(x, t)F′ε(unk)ρ(x)dxdt (5.60)

where τ ∈ (0,T ). Since the sequence {F′ε(unk)} is uniformly bounded in L∞(Q), then F′ε(unk) → 0
as ε → 0+ and Fε(unk) → 0 as ε → 0+. By Lemma 5.1 and Proposition 5.1, and by applying the
Dominated Convergence Theorem, results to

lim
k→+∞

∫ τ

0

∫
Ω

F′ε(unk)∇ψnk(unk)∇ρ(x)dxdt =

∫ τ

0

∫
Ω

F′ε(ψ
−1(v))∇v∇ρ(x)dxdt. (5.61)

Similary, we get

lim
k→+∞

∫ τ

0

∫
∂Ω

g(unk)F
′
ε(unk)ρ(x)dH(x)dydt =

∫ τ

0

∫
∂Ω

g(ψ−1(v))F′ε(ψ
−1(v))ρ(x)dH(x)dt, (5.62)
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By the statement (4.19) and Proposition 5.1, we have

lim
k→+∞

∫ τ

0

∫
Ω

h(t) fnk(x, t)F′ε(unk)ρ(x)dxdt =

∫ τ

0

∫
Ω

h(t) f (x, t)F′ε(ψ
−1(v))ρ(x)dH(x)dt. (5.63)

Given the properties of the sequence {Fε(unk)} and passing to limit in (5.61), (5.62) and (5.63) when
ε → 0+, then the following holds

lim
ε→0+

lim
k→+∞

∫ τ

0

∫
Ω

F′ε(unk)∇ψnk(unk)∇ρ(x)dxdt = 0. (5.64)

Similarly we obtain

lim
ε→0+

lim
k→+∞

∫ τ

0

∫
∂Ω

g(unk)F
′
ε(unk)ρ(x)dH(x)dt = 0. (5.65)

And

lim
ε→0+

lim
k→+∞

∫ τ

0

∫
Ω

h(t) fnk(x, t)F′ε(unk)ρ(x)dxdt = 0. (5.66)

On the other hand, we have

Fε(u0nk) = u0nk − Gε(u0nk) = u0rnk + u0snk − Gε(u0nk).

Since u0rnk → u0r in L1(Ω), u0snk

∗
⇀ u0s inM+(Ω) and the sequence {Gε(u0nk)} is uniformly bounded in

L∞(Ω), then we deduce that

u0rnk − Gε(u0nk)→ u0r − Gε(u0r) := Fε(u0r) in L1(Ω). (5.67)

According to the convergence statement (5.43), we have

Fε(unk)(·, t) = unk(·, t) − Gε(unk)(·, t)
∗
⇀ ua(·, t) + ψ−1(v) − Gε(ψ−1(v))(·, t) in M+(Ω) (5.68)

where Fε(ψ−1(v))(·, t) := ψ−1(v)(·, t) − Gε(ψ−1(v))(·, t).
Furthermore, from the Eqs (5.43) and (5.66) we obtain the following

lim
ε→0+

lim
k→+∞

∫
Ω

Fε(unk)(·, t)ρ(x)dx = 〈ua(·, t), ρ〉Ω + lim
ε→0+

∫
Ω

Fε(ψ−1(v))(·, t)ρ(x)dx. (5.69)

It follows that
lim
ε→0+

lim
k→+∞

∫
Ω

Fε(unk)(·, t)ρ(x)dx = 〈ua(·, t), ρ〉Ω . (5.70)

Likewise, from (5.67) one has

lim
ε→0+

lim
k→+∞

∫
Ω

Fε(u0nk)(·, t)ρ(x)dx = 〈u0s, ρ〉Ω + lim
ε→0+

∫
Ω

Fε(u0r)ρ(x)dx.

It implies that

lim
ε→0+

lim
k→+∞

∫
Ω

Fε(u0nk)ρ(x)dx = 〈u0s, ρ〉Ω . (5.71)
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Combining the statements (5.64)–(5.66), (5.70), (5,71) with (5.60) yields

〈ua(·, t), ρ〉Ω ≤ 〈u0s, ρ〉Ω .

Since ua(·, t) is a singular measure with respect to the Lebesgue measure ua(·, t) = [ua(·, t)]s = us(·, t)
for a suitable t ∈ (0,T ) \ H∗, where H∗ is zero Lebesgue measure in (0,T ). Hence the assertion (5.46)
is obtained.

From [44, Chapter 5, Section 5.2.1, Theorem 1], the estimate (5.19) yields

‖ u(·, t) ‖M+(Ω)≤ lim inf
k→+∞

∫
Ω

unk(·, t)dx ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)). (5.72)

The estimate (5.47) is completed. �
Proof of Theorem 2.2. By Proposition 5.1 and Proposition 5.2, we have ψ(ur) = v a.e in Q. Hence the
problem (P) has a weak Radon measure-valued solution u in L∞((0,T ),M+(Ω)). �
Remark 5.1 By Theorem 2.2, the result holds

[u(·, t)]s ≤ u0s in M+(Ω) (5.73)

for almost every t ∈ (0,T ). By (5.73), there exists zero Lebesgue measure set N3 ⊂ (0,T ) such that

[u(·, t)]c,2(E) ≤ [u0]c,2(E) in M+(Ω) (5.74)

for all Borel sets E ⊂ Ω, with C2(E) = 0 and t ∈ (0,T )\N3.
Proposition 5.3. Suppose that the assumptions (I) and (A) are fulfilled. Let {unk} be the subsequence
and v the function given in Proposition 5.1. Then the following sets

S =
{
(x, t) ∈ Q \ ψ(ur)(x, t) = γ

}
and N =

{
(x, t) ∈ Q \ g(ur)(x, t) = 0

}
have zero Lebesgue measure. Moreover S ⊆ N and B = S ∪N has zero Lebesgue measure.
Proof of Proposition 5.3. By [9, Proposition 5.2], the set S has zero Lebesgue measure. Assume that

A j =

{
(x, t) ∈ Q \ v(x, t) ≤

1
j

}
.

Then, it is worth observing that

A j+1 ⊇ A j , N =

∞⋃
j=1

A j , | N |= lim
j→+∞

| A j | (5.75)

To prove that | N |= 0, it is enough to show that | A j |→ 0 as j→ +∞.
Since the function g′ < 0 in R+ (see the assumption (A)-(i)), then we have

g(unk) ≤
2
j
⇔ unk ≥ g−1

(
2
j

)
((x, t) ∈ Q). (5.76)

It follows that

g−1
(
2
j

) ∫
{
(x,t)∈Q\v(x,t)≤ 1

j

} χ{
g(unk )≤ 2

j

}dxdt ≤
∫

Q
unk(x, t)dxdt. (5.77)
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By the estimate (5.19), we have

g−1
(
2
j

)
| A j |≤ CT ‖ µ ‖M+(Ω) . (5.78)

Since g−1
(

2
j

)
→ +∞ as j→ +∞, then (3.62) yields | A j |→ 0 as j→ +∞.

Assume that (x0, t0) ∈ S, then ψ(ur(x0, t0)) = γ for every γ ∈ (0,+∞). Since g(ur(x0, t0)) =
∂ψ(ur)
∂η

(x0, t0) = ∂
∂η

(γ) = 0. Therefore, (x0, t0)) ∈ N , that is S ⊆ N holds true. The fact that S ⊆ N , then
B = N . Consequently, B is zero Lebesgue measure set. �

6. Uniqueness results of the problem (P)

Proposition 6.1. Under assumptions (I), (A) and (J). Let u be a very weak Radon measure-valued
solution to the problem (P) and for every ρ ∈ C2(Ω) such that ∂ρ

∂η
= 0 on ∂Ω, there holds

ess lim
t→0+
〈u(·, t), ρ〉Ω = 〈u0, ρ〉Ω (6.1)

Proof of Proposition 6.1 Let us consider that for every τ > 0, the smooth function ητ ∈ C1
c (0,T ),

0 ≤ ητ ≤ 1 such that

ητ(t) =



0 if 0 ≤ t ≤ t1 − τ,
1
τ

(t + τ − t1) if t1 − τ ≤ t ≤ t1,

1 if t1 ≤ t ≤ t2,
1
τ

(−t + τ + t2) if t2 ≤ t ≤ t2 + τ,

0 if t2 + τ ≤ t ≤ T.

(6.2)

Let us choose ρ j(x)ητ(t) as a test function in (P), there holds∫ T

0

∫
Ω

{
−uρ j(x)η′τ(t) − ψ(ur)ητ(t)∆ρ j(x)

}
dxdt =

∫ T

0

∫
∂Ω

g(ur)ρ j(x)ητ(t)dH(x)dt +

∫ T

0

∫
Ω

h(t) fητ(t)ρ j(x)dxdt. (6.3)

It is worth observing that the first term on the left hand side of the equality (6.3) gives∫ T

0

∫
Ω

−uρ j(x)η′τ(t)dxdt = −
1
τ

∫ t1

t1−τ

∫
Ω

u(x, t)ρ j(x)dxdt+

+
1
τ

∫ t2+τ

t2

∫
Ω

u(x, t)ρ j(x)dxdt. (6.4)

Let us consider a zero Lebesgue measure set D j in (0,T ) such that for any t1, t2 ∈ (0,T ) \ D j, one has

lim
τ→0

∫ T

0

∫
Ω

−uρ j(x)η′τ(t)dxdt = −

∫
Ω

u(x, t1)ρ j(x)dx +

∫
Ω

u(x, t2)ρ j(x)dx. (6.5)
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We assume that a sequence {ρ j(x)} of test functions in Ω such that

ρ ∈ C2(Ω) , ρ j(x)→ ρ(x) with ρ(x) ∈ C2(Ω)

and
∆ρ j(x)→ ∆ρ(x) uniformly in Ω.

Then for every t ∈ (0,T ) \ D j, there holds∫
Ω

u(x, t)ρ j(x)dx −
∫

Ω

u0ρ j(x)dx =

∫ t

0

∫
Ω

ψ(ur)∆ρ j(x)dxds+

+

∫ t

0

∫
∂Ω

g(ur)ρ j(x)dH(x)dt +

∫ t

0

∫
Ω

h(t) fρ j(x)dxdt. (6.6)

By Dominated Convergence Theorem, we obtain∫
Ω

u(x, t)ρ(x)dx −
∫

Ω

u0ρ(x)dx =

∫ t

0

∫
Ω

ψ(ur)∆ρ(x)dxds+

+

∫ t

0

∫
∂Ω

g(ur)ρ(x)dH(x)dt +

∫ t

0

∫
Ω

h(t) fρ(x)dxdt (6.7)

for every t ∈ (0,T ) \ D with D =
⋃

j≥0 D j

Since ψ(ur) ∈ L∞(Q), for every ρ ∈ C2(Ω) and for every sequence {t j} ⊆ (0,T ) \ D, t j → 0+ as j → ∞
such that ∫

Ω

u(x, t j)ρ(x)dx −
∫

Ω

u0ρ(x)dx =

∫ t j

0

∫
Ω

ψ(ur)∆ρ(x)dxds+

+

∫ t j

0

∫
∂Ω

g(ur)ρ(x)dH(x)dt +

∫ t j

0

∫
Ω

h(t) fρ(x)dxdt (6.8)

holds true.
Since u ∈ L∞((0,T ),M+(Ω)), then we have

sup
j
‖ u(·, t j) ‖M+(Ω)≤ C. (6.9)

So that there exists a subsequence {t jm} ⊆ {t j} and a Radon measure µ0 ∈ M
+(Ω) such that

u(·, t jm)
∗
⇀ µ0 in M+(Ω) as jm → ∞. (6.10)

By the standard density arguments, one has

ess lim
jm→∞

〈
u(·, t jm), ρ

〉
Ω

= 〈u0, ρ〉Ω (6.11)

where µ0 = u0, hence (6.1) is obtained. �
Proof of Theorem 2.4 Let u1 , u2 be two very weak solutions obtained as limit of approximation of
(P) with initial data u01n and u02n respectively . Let {u1n}, {u2n} ⊆ L∞(Q) ∩ L2((0,T ),H1(Ω)) be two
approximating sequence solutions to the problem (Pn). We consider a test function ξ ∈ C2,1(Q) such
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that ξ(·,T ) = 0 in Ω and ∂ξ

∂η
= 0 on ∂Ω × (0,T ) in the approximation problem (Pn) in the sense of the

Definition 2.3, then there holds∫
Q

(u1n − u2n) ξtdxdt = −

∫
Q

(ψn(u1n) − ψn(u2n)) ∆ξdxdt−

−

∫
Q

h(t) ( f1n − f2n) ξdxdt −
∫

S
(g1n − g2n) ξdH(x)dt−∫

Ω

(u01n − u02n) ξ(x, 0)dx, (6.12)

where { f1n}, { f2n}, {u01n}, and {u02n} are two approximating functions.
By the assumption g(ur) = L a.e in S , then for any sequences {u1n}, {u2n} one has g(u1n = g(u2n) = L

on S . Consequently the third term on the right hand-side of the equation (6.12) vanishes.
For almost every (x, t) ∈ Q, we consider the function an(x, t) defined as

an(x, t) =

ψn(u1n(x,t))−ψn(u2n(x,t))
u1n(x,t)−u2n(x,t) if u1n(x, t) , u2n(x, t),

ψ′n(u1n(x, t)) if u1n(x, t) = u2n(x, t).
(6.13)

Obviously an ∈ L∞(Q) and for every n ∈ N there exists a positive constant Cn such that

ess inf
(x,t)∈Q

an(x, t) ≥ Cn > 0. (6.14)

This ensures that for every z ∈ C2
c (Q), the problem

ξnt + an∆ξn + z = 0 in Q,
∂ξn
∂η

= 0 on S ,

ξn(·,T ) = 0 in Ω,

(6.15)

has a unique solution ξn ∈ L∞((0,T ),H2(Ω)) ∩ L2((0,T ),H1(Ω)) with ξnt ∈ L2(Q) (see [18, 21]).
Moreover, it can be seen that

| ξn(x, t) |≤ (T − t) ‖ z ‖L∞(Q) . (6.16)

Let us consider the function β such that for any t1 + 1 < t2 and t1 , t2 ∈ (0,T )

β(t) =


0 if 0 ≤ t ≤ t1,

t − t1 if t1 < t < t2,

t2 − t1 if t ≥ t2.

(6.17)

Choosing β∆ξn as a test function in (6.15), then we obtain∫
Q
ξntβ(t)∆ξndxdt +

∫
Q
β(t)an(x, t)[∆ξn]2dxdt +

∫
Q

zβ(t)∆ξndxdt = 0. (6.18)

It follows that
1
2

∫
Q
| ∇ξn |

2 dxdt +

∫
Q

an(x, t)[∆ξn]2dxdt ≤ C0(T, z) (6.19)
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holds, for some constant C0(T, z) independent on n.
From (6.16) and (6.19), there exists a constant C1(T, z) such that

‖ ξn ‖L2((0,T ),H1(Ω)) + ‖
√

an∆ξn ‖L2(Q)≤ C1(T, z). (6.20)

On the other hand, multiplying (6.15) by ∆ξn and we obtain

−

∫
Q
∇ξn∇ξnt +

∫
Q

an[∆ξn]2dxdt = −

∫
Q
ξn∆zdxdt

which leads to
1
2

∫
Ω

| ∇ξn |
2 (x, 0)dx +

∫
Q

an[∆ξn]2dxdt ≤ C2(T, z), (6.21)

where C2(T, z) = C
(
‖ ξn ‖L∞(Q), ‖ z ‖C2(Q)

)
> 0. Therefore, we get

‖ ξn(·, 0) ‖H1(Ω) + ‖
√

an∆ξn ‖L2(Q)≤ C2(T, z). (6.22)

By standard density arguments, we can choose ξ = ξn as a test function in (6.15). It implies that (6.12)
yields ∫

Q
(u1n − u2n) zdxdt =

∫
Q

h(t) ( f1n − f2n) ξn(x, t)dxdt+

+

∫
Ω

(u01n − u02n) ξn(x, 0)dx. (6.23)

Letting n to infinity in (6.23). Then it enough to observe from (6.20), there exists ξn ∈

L∞((0,T ),H2(Ω))∩ L2((0,T ),H1(Ω)) which is obtained by extracting the subsequence of the {ξn} such
that

ξn(x, t)
∗
⇀ ξ(x, t) in L∞(Q). (6.24)

ξn(x, t) ⇀ ξ(x, t) in L2((0,T ),H1(Ω)). (6.25)

Since ξnt ∈ L2(Q) and the compactness theorem states in [21], we deduce that

ξnt(x, t)→ ξt(x, t) in L2((0,T ), (H1(Ω))∗), (6.26)

ξn(x, t)→ ξ(x, t) a.e in Q. (6.27)

By (6.16) and (6.22), there exists ξ(·, 0) ∈ L∞(Ω) ∩ H1(Ω) such that the following statements

ξn(x, 0)
∗
⇀ ξ(x, 0) in L∞(Ω), (6.28)

ξn(x, 0) ⇀ ξ(x, 0) in H1(Ω) (6.29)

holds true. By Theorem 2.1, the solutions of the problem (H) are unique inM+(Q). Therefore f1n
∗
⇀ f

inM+(Q) and f2n
∗
⇀ f inM+(Q). Furthermore, the sequences {u01n} and {u02n} satisfy the assumption

(2.6). By combining the above assumptions and Dominated Convergence Theorem, the Eq (6.23) reads∫
Q

(u1 − u2)z(x, t)dxdt = lim
n→+∞

∫
Q

[
h(t)( f1n − f2n)

]
ξ(x, t)dxdt+

+ lim
n→∞

∫
Ω

( f01n − f02n) ξ(x, 0)dxdt − lim
n→∞

∫
Ω

(F01n − F02n) ξ(x, 0)dx = 0

It follows that u1 = u2 inM+(Q). �
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7. Decay estimates solutions of the problem (P)

In this section, we prove the result of decay estimate solutions.
Proof of Theorem 2.5. We consider un and vn two solutions of the approximation problems (Pn) and
(P0n) respectively. For any ξ ∈ C1((0,T ),C1(Ω)) such that ξ(·,T ) = 0 in Ω and ∂ξ

∂η
= 0 on S as a test

function of the approximation problem (Pn) − (P0n), then there holds∫
Q

(un − vn)ξt(x, t)dxdt =

∫
Q
∇[ψ(un) − ϑ(vn)]∇ξdxdt −

∫
Q

h(t) fn(x, t)ξdxdt−

−

∫
S
(g(un) − g1(vn))ξdH(x)dt. (7.1)

For every ε > 0, we consider {zε} be a sequence of smooth functions such that ‖ zε ‖L1(0,T )≤ C and
zε(t)

∗
⇀ δt inM+(0,T ). Let us choose ξ(x, t) = sign(un(x, t) − vn(x, t))

∫ T

t
zε(s)(T − s)αds(α > 1) into

the Eq (7.1), then (7.1) reads[∫ T

0
zε(t)(T − t)αdt

] [∫
Ω

| un(·, t) − vn(·, t) | dx
]

= −

[∫ T

t
h(t)

(∫ T

0
zε(s)(T − s)αds

)
dt

] [∫
Ω

fnsign(un(x, t) − vn(x, t))dx
]
−

−

[∫ T

t

(∫ T

0
zε(s)(T − s)αds

)
dt

] [∫
∂Ω

(g(un) − g1(un))sign(un(x, t) − vn(x, t))dH(x)
]

(7.2)

Letting ε → 0+ in the previous equation and using the properties of the Dirac mass at t, then we have
the following expression

(T − t)α
∫

Ω

| un(·, t) − vn(·, t) | dx ≤ C
∫

Q
fn(x, t)(T − t)αdxdt (7.3)

for any t ∈ (0,T )\H∗ with | H∗ |= 0 and C = C(| S |, ‖ g(un) ‖L∞(R+), ‖ g1(vn) ‖L∞(R+),Tα) > 0 is a
constant. On the other hand, by (4.5) we have

fn(x, t)(T − t)α = Tα

∫
Ω

GN(x − y, t)u0n(y)dy +

∫ t

0

∫
∂Ω

GN(x − y, t − σ)g( fn)(T − σ)αdydσ+

+

∫ t

0

∫
Ω

GN(x − y, t − σ)
{
−α fn(T − σ)α−1 + µn(T − σ)α

}
dydσ.

By (2.11)–(2.13) and the properties of the Green function GN , we get the following result∫
Q

fn(x, t)(T − t)αdxdt ≤ Tα+1
∫

Ω

u0n(y)dy + α

∫ t

0

∫
Q

fn(y, σ)(T − σ)αdydσdt+

+

∫ t

0

∫
Q
µn(T − σ)αdydσdt +

∫ T

0

∫
S

g( fn)(T − σ)αdydσdt.
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By the assumptions (A), (4.1) and (4.2), there exists a positive constant C = C(Tα+1, ‖ g( fn) ‖L∞(R+), |

S |) > 0 such that∫
Q

fn(x, t)(T − t)αdxdt ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Ω)) + α

∫ t

0

(∫
Q

fn(x, σ)(T − σ)αdxdt
)

dσ. (7.4)

By Gronwall’s inequality, (7.4) yields∫
Q

fn(x, t)(T − t)αdxdt ≤ CeαT (‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Ω)) (7.5)

where C = C(Tα+1, ‖ g( fn) ‖L∞(R+), | S |, eαT ) > 0 is a constant. Combining (7.3) with (7.5), we deduce
that

(T − t)α
∫

Ω

| un(·, t) − vn(·, t) | dx ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)). (7.6)

By [24, Chapter V, Section 5.2.1, Theorem 1], the semi-continuity of the total variation yields,

(T − t)α ‖ u(·, t) − v(·, t) ‖M+(Ω)≤ (T − t)α lim inf
n→∞

∫
Ω

| un(·, t) − vn(·, t) | dx

≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)). (7.7)

Hence (2.18) holds.
We consider un and wn two solutions of the approximation problems (Pn) and (P1n) respectively.

For any ξ ∈ C1((0,T ),C1(Ω)) such that ξ(·,T ) = 0 in Ω and ∂ξ

∂η
= 0 on S as a test function of the

approximation problem (Pn) − (P1n). Therefore, we have the following equation∫
Q

(un − wn)ξt(x, t)dxdt =

∫
Q
∇[ψ(un) − ψ(wn)]∇ξdxdt −

∫
Ω

u0nξ(x, 0)dxdt (7.8)

Taking ξ(x, t) = sign(un(x, t)−wn(x, t))
∫ T

t
zε(s)(T − s)αds(α > 1) into the equality (7.8), then we obtain[∫ T

0
zε(t)(T − t)αdt

] [∫
Ω

| un(·, t) − wn(·, t) | dx
]

= −

[∫ T

0
zε(s)(T − s)αdt

] [∫
Ω

u0nsign(un(x, 0) − wn(x, 0))
]
.

Letting ε → 0+ in the previous equation and using the properties of the Dirac mass at t, then we have

(T − t)α
∫

Ω

| un(·, t) − wn(·, t) | dx ≤ Tα

∫
Ω

u0ndx. (7.9)

By (4.1), the above inequality (7.9) yields

(T − t)α
∫

Ω

| un(·, t) − wn(·, t) | dx ≤ C ‖ u0 ‖M+(Ω) . (7.10)

By [24, Chapter V, Section 5.2.1, Theorem 1], the semi-continuity of the total variation yields,

(T − t)α ‖ u(·, t) − w(·, t) ‖M+(Ω)≤ (T − t)α lim inf
n→∞

∫
Ω

| un(·, t) − wn(·, t) | dx
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≤ C ‖ u0 ‖M+(Ω)

where C = C(T, α) > 0 a constant. Hence (2.19) is achieved. Now we consider the auxiliary function
Wn such that

Wn(x, t) = tαun(x, t)sign(Wn) (7.11)

for every α > 1. The derivation of the expressionWn with respect to the variable t gives

Wnt(x, t) = αtα−1un(x, t)sign(Wn) + tαunt(x, t)sign(Wn). (7.12)

Since unt = ∆ψ(un) + h(t) fn(x, t) and we multiply the Eq (7.12) by the function sign(Wn) and then we
integrate the result over Ω × (0, t)(for any t ∈ (0,T )), then we obtain∫

Ω

| Wn | (x, t)dx = α

∫ t

0
sα−1

∫
Ω

un(x, s)dxds +

∫ t

0

∫
∂Ω

g(un)sαdH(x)ds +

∫ t

0

∫
Ω

sαh(s) fn(x, s)dxds.

(7.13)
By replacing the expression ofWn in (7.13), we deduce that

tα
∫

Ω

un(x, t)dx ≤ αTα

∫
Q

un(x, t)dxdt + Tα

∫
S

g(un)dH(x)dt + h(T )Tα

∫
Q

fn(x, t)dxdt. (7.14)

By assumptions (A), (J), (2.16) and (4.19), there exists a constant C = C(αTα+1, h(T )Tα, ‖ g(un) ‖L∞(R+)

) > 0 such that

tα
∫

Ω

un(x, t)dx ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)). (7.15)

According to [24, Chapter V, Section 5.2.1, Theorem 1], we conclude from the estimate (7.15), the
following estimate

tα ‖ u(·, t) ‖M+(Ω)≤ tα lim inf
n→∞

∫
Ω

un(·, t)dx ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)).

Hence the estimate (2.21) is completed. �

8. Asymptotic behavior solutions of the problem (P)

To show the existence of the problem (E), we employ the natural approximation method. Therefore,
the solution of the problem (P) is constructed by limiting point of a family {un} of solutions to the
approximation problem. To this purpose, we consider the function φ ∈ C∞c (Ω) such that 0 ≤ φ ≤ 1 and
φ = 1 in K0 (for any compact set K0 ⊂ Ω ⊂ RN), then we get

−∆(φψ(U)) + φU = φu0 + ε(φ) in D′(Ω)

where ε(φ) = −ψ(U)∆φ − 2∇φ∇ψ(U) and ε(φ) = 0 in K0 with ε(φ) ∈ L1(Ω).
Now we consider the approximation of problem (E)−∆ψ(Un) + Un = u0n in Ω,

∂ψ(Un)
∂η

= g(Un) on ∂Ω,
(En)
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where u0n = (φu0 + ε(φ)) ∗ ρn and {ρn} a sequence of standard mollifiers. Furthermore, the sequence
{u0n} ⊆ C∞(Ω) satisfies the assumption (4.1).

Then for every n ∈ N, there exists Un ∈ H1(Ω) ∩ L∞(Ω) solution of the approximation problem
(En).

In the next Lemma, we state the technical estimates important for the proof of the existing solutions.
Lemma 8.1 Assume that (I), (A) and u0 ∈ M

+(Ω) are satisfied. The sequence {Un} be a weak solution
of the approximation problem (En). Then, there holds

‖ Un ‖L1(Ω)≤ C ‖ u0 ‖M+(Ω), (8.1)

‖ ∇ψ(Un) ‖L2(Ω) + ‖ ψ(Un) ‖L2(Ω)≤ C, (8.2)

where C > 0 is a constant. Moreover, for every 1 ≤ p < N
N−1 there holds

‖ ∇ψ(Un) ‖Lp(Ω) + ‖ ψ(Un) ‖Lp(Ω)≤ C, (8.3)

where C = C(p) > 0 is a constant.
Proof of Lemma 8.1 We consider ϕ ∈ C1(Ω) as a test function in the approximation problem (En), then
we have ∫

Ω

∇ψ(Un)∇ϕdx +

∫
Ω

Unϕdx =

∫
Ω

u0nϕdx +

∫
∂Ω

g(Un)ϕdH(x) (8.4)

Assume that Ω− =
{
x ∈ Ω/ Un(x) ≤ 0 in the sense of L1(Ω)

}
and

ϕ(x) = infx∈Ω{Un(x), 0}. It is worth observing that ϕ(x) ∈ L1(Ω). To show that Un ≥ 0 in Ω, it is enough
to prove that ϕ(x) = 0 in Ω. Indeed, we choose ϕ(x) = sign(Un(x)), then we get∫

Ω−

| Un(x) | dx =

∫
Ω−

u0n(x)sign(Un(x))dx +

∫
∂Ω−

g(Un)sign(Un(x))dH(x) ≤ 0 (8.5)

where u0n ≥ 0 in Ω and g > 0 in R+ (see the assumption (A)). Therefore ϕ(x) = 0 a.e in Ω. Hence the
solution of the approximation problem (En), Un(x) ≥ 0 a.e x ∈ Ω.
Now we consider the regularizing sequence {Tε} ⊆ C1(R+) for every ε > 0 such that
(i) 0 ≤ Tε(s) ≤ 1 in R+, Tε(s) = 0, T ′ε ≥ 0 in R+,
(ii) Tε(s)→ 1 as ε → 0+ for every s , 0.

We choose Tε(Un) ∈ H1(Ω) ∩ L∞(Ω) as a test function in the approximation problem (En) and by
employing the assumptions (A) and (I), then we get∫

Ω

T ′ε (Un)ψ′(Un(x)) | ∇Un(x) |2 dx +

∫
Ω

Un(x)Tε(Un)dx ≤ C ‖ u0 ‖M+(Ω) (8.6)

where C = C(‖ g(Un) ‖L∞(R+), | ∂Ω |) > 0. Since T ′ε (Uk)ψ′(Un(x)) ≥ 0 in R+ (see the hypothesis (I)),
then (8.6) reads ∫

Ω

Un(x)Tε(Un)dx ≤ C ‖ u0 ‖M+(Ω) (8.7)

Again, by considering the limit when ε → 0+, the estimate (8.1) holds true. Now we consider another
regularizing sequence {Tε} ⊆ C1(R+) for every ε > 0 such that Tε(s) = 1 if 0 ≤ s ≤ 1

ε
, Tε(s) = εs if
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1
ε
≤ s ≤ 2

ε
, Tε(s) = 2 if s ≥ 2

ε
. It is obvious to see that 1 ≤ Tε(s) ≤ 2 in R+. We take the function

ϕ(s) =
∫ s

0
Tε(σ)dσ and we choose ϕ(ψ(Un)) as a test function in (En), then we obtain∫

Ω

| ∇ψ(Un) |2 Tε(ψ(Un))dx +

∫
Ω

Unϕ(ψ(Un))dx =

∫
Ω

ϕ(ψ(Un))u0ndx +

∫
∂Ω

g(Un)ϕ(ψ(Un))dH(x).

(8.8)
Since 1 ≤ Tε(ψ(Un)) ≤ 2 and ψ(Un) ≤ ϕ(ψ(Un)) ≤ 2ψ(Un), therefore there exists a positive constant C
such that ∫

Ω

| ∇ψ(Un) |2 dx ≤ C ‖ u0 ‖M+(Ω) (8.9)

where C = C(‖ ψ(Un) ‖L∞(R+), ‖ g(Un) ‖L∞(R+), | ∂Ω |) > 0. By the assumption (I), the statement
ψ(Un) ∈ L2(Ω) holds. Whence the estimate (8.2) is achieved.

Again, recalling the Hölder’s inequality, we get∫
Ω

| ∇ψ(Un) |p dx ≤
[∫

Ω

| ∇ψ(Un) |2

(1 + ψ(Un))2 dx
] 1

q
[∫

Ω

(1 + ψ(Un))q′dx
] 1

q′

where q := 2
p and q′ := 2

2−p . Therefore, there exists a positive constant C = C(p, ‖ ψ(Un) ‖L∞(R+)) > 0
such that ∫

Ω

| ∇ψ(Un) |p dx ≤ C (8.10)

By the assumption (I), the statement ψ(Un) ∈ Lp(Ω) holds. Hence the estimate (8.3) is achieved. �
Proof of Theorem 2.6. From the estimate (8.2) and assumption (A), we can extract from {ψ(Un)} a
subsequence {ψ(Unk)} such that

ψ(Unk)→ V in H1(Ω) and ψ(Unk)→ V a.e in Ω (8.11)

g(Unk)
∗
⇀ V L∞(∂Ω) and g(Unk)→ V a.e in ∂Ω (8.12)

By (8.3), the sequence {ψ(Unk)} ⊆ BV(Ω) and applying [44, Chapter IV, Section 1.1, Proposition 5],
there exists a subsequence {ψ(Unk)} and V1 ∈ M

+(Ω) such that the convergence

ψ(Unk)
∗
⇀ V1 in M+(Ω). (8.13)

By repeating the same method as in the Proposition 5.2, we deduce that

Unk

∗
⇀ U := ψ−1(V) + λ1 in M+(Ω) (8.14)

where Ur = ψ−1(V) a.e in Ω, Us = λ1 inM+(Ω) and Ur = g−1(V) a.e in ∂Ω.
By [24, Chapter V, Section 5.2.1, Theorem 1], the estimate (8.1) yields

‖ U ‖M+(Ω)≤ lim inf
n→∞

∫
Ω

Un(x)dx ≤ C ‖ u0 ‖M+(Ω) .

Hence the estimate (2.23) is completed. �
Remark 8.1 The sets

S0 =
{
x ∈ Ω \ ψ(Ur)(x) = γ

}
and N0 =

{
x ∈ Ω \ g(Ur)(x) = 0

}
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have zero Lebesgue measure. Moreover S0 ⊆ N0 and supp(Us) ⊆ S0.
Proof of Theorem 2.7. We choose ξ(x, t) = sign(un(x, t) − Un(x))

∫ T

t
zε(s)sαds(α > 1) as a test function

in the approximation problem (Pn) − (En), then we have∫
Ω

∫ T

0
| un(x, t) − Un(x) | zε(t)tαdt =

∫
Ω

∫ T

0
| u0n(x) − Un(x) | zε(t)tαdtdx+

+

∫
Ω

∫ T

0
[g(un) − g(Un)]sign(un(x, t) − Un(x))

∫ T

t
zε(s)sαdsdtdH(x)+

+

∫
Ω

∫ T

0
un(x, t) − Un(x)]sign(un(x, t) − Un(x))

∫ T

t
zε(s)sαdsdtdx+

+

∫
Ω

∫ T

0
h(t) fn(x, t)sign(un(x, t) − Un(x))

∫ T

t
zε(s)sαdsdtdx.

By the previous proof mentioned above, we deduce that∫
Ω

∫ T

0
| un(x, t) − Un(x) | zε(t)tαdt ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)) (8.15)

where C = C(αTα+1, h(T ),Tα, ‖ g(un) ‖L∞(R+), | S |) > 0 is a constant. By letting ε → 0+, then (8.15)
reads

tα
∫

Ω

| un(x, t) − Un(x) | dx ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)). (8.16)

By virtue of [24, Chapter V, Section 5.2.1, Theorem 1], then the semi-continuity of the total variation
yields

tα ‖ u(·, t) − U(·) ‖M+(Ω)≤ lim inf
n→+∞

tα
∫

Ω

| un(x, t) − Un(x) | dx ≤ C(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)) (8.17)

for almost every t ∈ (0,T ) and α > 1. By considering to the limit as t → +∞ in the following inequality

‖ u(·, t) − U(·) ‖M+(Ω)≤
C
tα

(‖ u0 ‖M+(Ω) + ‖ µ ‖M+(Q)).

Hence the statement (2.24) follows. �

9. Conclusions

In this paper, we study the existence, uniqueness, decay estimates, and the asymptotic behavior of
the Radon measure-valued solutions for a class of nonlinear parabolic equations with a source term
and nonzero Neumann boundary conditions. To attain this, we use the natural approximation method,
the definition of the weak solutions, and the properties of the Radon measure. Concerning the study
of the existence and uniqueness of the solutions to the problem (P), we first show that the source
term corresponding to the solution of the linear inhomogeneous heat equation with measure data is a
unique Radon measure-valued. Moreover, we establish the decay estimates of these solutions by using
the suitable test functions and the auxiliary functions. Finally, we analyze the asymptotic behavior of
these solutions by establishing the decay estimate of the difference between the solution to the problem
(P) and the solution to the steady state problem (E).
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