In this article, we introduce ideals and other special ideals on EQ-algebras, such as implicative ideals, primary ideals, prime ideals and maximal ideals. At first, we give the notion of ideal and its related properties on EQ-algebras, and give its equivalent characterizations. We discuss the relations between ideals and filters, and study the generating formula of ideals on EQ-algebras. Moreover, we study the properties of implicative ideals, primary ideals, prime ideals and maximal ideals and their relations. For example, we prove that every maximal ideal is prime and if prime ideals are implicative, then they are maximal in the EQ-algebra with the condition (DNP). Finally, we introduce the topological properties of prime ideals. We get that the set of all prime ideals is a compact T0 topological space. Also, we transferred the spectrum of EQ-algebras to bounded distributive lattices and given the ideal reticulation of EQ-algebras.
Citation: Jie Qiong Shi, Xiao Long Xin. Ideal theory on EQ-algebras[J]. AIMS Mathematics, 2021, 6(11): 11686-11707. doi: 10.3934/math.2021679
[1] | Chun Ge Hu, Xiao Guang Li, Xiao Long Xin . Dual ideal theory on L-algebras. AIMS Mathematics, 2024, 9(1): 122-139. doi: 10.3934/math.2024008 |
[2] | Abdul Razaq, Ghaliah Alhamzi . On Pythagorean fuzzy ideals of a classical ring. AIMS Mathematics, 2023, 8(2): 4280-4303. doi: 10.3934/math.2023213 |
[3] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[4] | Seok-Zun Song, Hee Sik Kim, Young Bae Jun . Commutative ideals of BCK-algebras and BCI-algebras based on soju structures. AIMS Mathematics, 2021, 6(8): 8567-8584. doi: 10.3934/math.2021497 |
[5] | Moin A. Ansari, Ali N. A. Koam, Azeem Haider . Intersection soft ideals and their quotients on KU-algebras. AIMS Mathematics, 2021, 6(11): 12077-12084. doi: 10.3934/math.2021700 |
[6] | Ali N. A. Koam, Azeem Haider, Moin A. Ansari . On an extension of KU-algebras. AIMS Mathematics, 2021, 6(2): 1249-1257. doi: 10.3934/math.2021077 |
[7] | Abdelaziz Alsubie, Anas Al-Masarwah . MBJ-neutrosophic hyper BCK-ideals in hyper BCK-algebras. AIMS Mathematics, 2021, 6(6): 6107-6121. doi: 10.3934/math.2021358 |
[8] | Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee . On n-ary ring congruences of n-ary semirings. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019 |
[9] | M. Mohseni Takallo, Rajab Ali Borzooei, Seok-Zun Song, Young Bae Jun . Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets. AIMS Mathematics, 2021, 6(10): 11029-11045. doi: 10.3934/math.2021640 |
[10] | Jayanta Ghosh, Dhananjoy Mandal, Tapas Kumar Samanta . Soft prime and semiprime int-ideals of a ring. AIMS Mathematics, 2020, 5(1): 732-745. doi: 10.3934/math.2020050 |
In this article, we introduce ideals and other special ideals on EQ-algebras, such as implicative ideals, primary ideals, prime ideals and maximal ideals. At first, we give the notion of ideal and its related properties on EQ-algebras, and give its equivalent characterizations. We discuss the relations between ideals and filters, and study the generating formula of ideals on EQ-algebras. Moreover, we study the properties of implicative ideals, primary ideals, prime ideals and maximal ideals and their relations. For example, we prove that every maximal ideal is prime and if prime ideals are implicative, then they are maximal in the EQ-algebra with the condition (DNP). Finally, we introduce the topological properties of prime ideals. We get that the set of all prime ideals is a compact T0 topological space. Also, we transferred the spectrum of EQ-algebras to bounded distributive lattices and given the ideal reticulation of EQ-algebras.
As we all know, logic is not only an important tool in mathematics and information science, but also a basic technology. Non-classical logic consists of fuzzy logic and multi-valued logic, they deal with uncertain information such as fuzziness and randomness. Therefore, all kinds of fuzzy logic algebras are widely introduced and studied, such as residuated lattices, BL-algebras, MV-algebras. The truth values in FTT were assumed to form either an IMTL-algebra, BL-algebra, or MV-algebra, all of them being special kinds of residuated lattices in which the basic operations are the monoidal operation (multiplication) and its residuum. The latter is a natural interpretation of implication in fuzzy logic; the equivalence is then interpreted by the biresiduum, a derived operation. The basic connective in FTT, however, is a fuzzy equality and, therefore, it is not natural to interpret it by a derived operation. In order to remove the defect, V. Novˊak [11] proposed EQ-algebra in 2006. EQ-algebras not only provide a wider structure of truth value algebras for fuzzy type theory, but also generalize residuated lattices. Higher order fuzzy logic [9,10] is relative to classical higher order logic [1]. In 2009, V. Novˊak [12] gave the new concept of EQ-algebras, studied their properties in detail and gave their different subclasses, such as separated EQ-algebras, good EQ-algebras, involutive EQ-algebras, residuated EQ-algebras and so on. Since the universality and characteristics of EQ-algebras as the algebraic structure of truth value of high-order fuzzy logic, EQ-algebras have absorbed many scholars. It is not only a meaningful research object, but also a very popular research object.
Ideal theory plays a very important role in logic algebras. The concept of ideal has been proposed in a lot of algebraic structures. The concept of ideal on residuated lattices was put forward by Yi Liu and Ya Qin [7], their properties and equivalent characterizations were obtained. And, Dana Piciu introduced the notion of minimal prime ideal in residuated lattices and related properties were investigated in [15]. Lele and Nganou[5] proposed the notion of ideal on BL-algebras, which is a natural generalization of that of ideal in MV-algebras. Then, Akbar Paad [13] proposed the concept of integral ideals and maximal ideals in BL-algebras. Furthermore, Wenjuan Chen [2] mainly investigated ideals and congruences in quasi-pseudo-MV algebras. Kologani and Borzoei [4] discussed the relationships among associative ideals, maximal ideals and prime ideals on hoops. Akbar Paada introduced ideals on bounded equality algebras in [14]. Also, the notions of prime and Boolean ideals in equality algebras were introduced. Hailing Niu and Xiaolong Xin[8] studied ideals on semihoop algebras. However, the notion of ideal on EQ-algebras is missing, which may make it difficult for us to study the algebraic structure of logical systems. Futhermore, in MV-algebras and Boolean algebras, filters and ideals are dual, but ideals and filters are not dual in semihoops. So we want to investigate whether they have a dual relation. For these reasons, we will introduce the ideals on EQ-algebras in this paper.
The papers is organized as follows: In section 2, we give some basic results on EQ-algebras, which will be used in the other sections. In section 3, we introduce the definition of ideal, its generating formula and its equivalent characterizations, and we discuss the relationships between ideals and filters. Moreover, we derive congruence relations from ideals. In section 4, we introduce some special ideals, such as implicative ideals, primary ideals, prime ideals and maximal ideals. We discuss some related properties and their relations. In section 5, we introduce the topological properties of prime ideals, we obtain that the set of all prime ideals IP(ε) is a compact T0 topological space, transfer the spectrum of EQ-algebras to bounded distributive lattices and give the ideal reticulation of EQ-algebras.
In the following, we give some basic results about EQ-algebras.
Definition 2.1 [12] An algebra ε = (E,∧,⊙,∼,1) of type (2,2,2,0) is said to be an EQ-algebra, if for each p,q,w,u∈E, it satisfies:
(E1) (E,∧,1) is a commutative idempotent monoid;
(E2) (E,⊙,1) is a commutative monoid and ⊙ is isotone w.r.t. "≤", where p≤q is defined by p∧q=p;
(E3) ((p∧q)∼w)⊙(u∼p)≤w∼(u∧q);
(E4) (p∼q)⊙(w∼u)≤(p∼w)∼(q∼u);
(E5) (p∧q∧w)∼p≤(p∧q)∼p;
(E6) (p∧q)∼p≤(p∧q∧w)∼(p∧w);
(E7) p⊙q≤p∼q.
Definition 2.2. [12] Let ε be an EQ-algebra. We call it is
(1) good if p∼1=p for each p∈E;
(2) separated if p∼q=1 implies p=q for each p,q∈E;
(3) residuated if for each p,q,w∈E, (p⊙q)∧w=(p⊙q) if and only if p∧((q∧w)∼q)=p.
Proposition 2.3. [3,12] Let ε be an EQ-algebra, define p→q:=(p∧q)∼p. Then for each p,q,w∈E, we have:
(1) w⊙(p∧q)≤(w⊙p)∧(w⊙q);
(2) p∼q≤p→q, p∼q=q∼p;
(3) if p≤q, then p→q=1;
(4) (p∼q)⊙(q∼w)≤p∼w, p∼q≤(p∧w)∼(q∧w);
(5) (p→q)⊙(q→w)≤p∼w≤p→w;
(6) p→q≤(w→p)→(w→q), p→q≤(q→w)→(p→w);
(7) if p≤q, then p∼q=q→p, w→p≤w→q and q→w≤p→w;
(8) w→(p∧q)≤(w→p)∧(w→q).
If ε is good, then
(9) p≤(p∼q)∼q and p≤(p→q)→q;
(10) p→(q→w)=q→(p→w).
Proposition 2.4. [3] Assume that ε is an EQ-algebra. Then ε is residuated if and only if ε is separated and (p⊙q)→w=p→(q→w) for every p,q,w∈E.
Definition 2.5. [12] Assume that G is a subset of an EQ-algebra. Then G is said to be a filter if for each p,q,u∈E it satisfies:
(F1) 1∈G;
(F2) p,q∈G imply p⊙q∈G;
(F3) p,p→q∈G imply q∈G;
(F4) p→q∈G imply (p⊙u)→(q⊙u)∈G.
Definition 2.6. [6] Let G be a filter of an EQ-algebra. Then G is called a positive implicative filter if (p⊙q)→u∈G and p→q∈G implies p→u∈G for each p,q,u∈E.
In this part, we introduce the definition of ideals, their generating formulas and their equivalent characterizations, and we discuss the relationships between them and filters. Moreover, we derive congruence relations from ideals.
Suppose that ε is an EQ-algebra. Define two binary operations on ε in the following:
(1) p⊕q=p−→q, where p−=p→0.
(2) p∨1q=((p→q)→q)∧((q→p)→p).
we can easily check that p∨1q is an upper bound of {p,q}. If p−−=p for every p∈E, we call that ε satisfies the double negation property (DNP, for short).
Proposition 3.1. Let ε be a residuated EQ-algebra with the operation ∨1, then for each p,q,u∈E, we have
(1) (∨1i∈Ipi)⊙q=∨1i∈I(pi⊙q);
(2) (∨1i∈Ipi)→q=∧i∈I(pi→q), q→(∧i∈Ipi)=∧i∈I(q→pi);
(3) For any n∈N, (p∨1q)n→u:=((p∨1q)⊙(p∨1q)⊙⋯⊙(p∨1q))→u=⋀{(a1⊙(a2⊙⋯an)→u∣ai∈{p,q}}.
Proof. (1) It is obvious that ∨1i∈I(pi⊙q)≤(∨1i∈Ipi)⊙q. Conversely, since (pi⊙q)≤∨1i∈I(pi⊙q), then pi≤q→∨1i∈I(pi⊙q) for each i∈I. Thus ∨1i∈Ipi≤q→∨1i∈I(pi⊙q), and so (∨1i∈Ipi)⊙q≤∨1i∈I(pi⊙q). Hence (∨1i∈Ipi)⊙q=∨1i∈I(pi⊙q).
(2) u≤(∨1i∈Ipi)→q iff (∨1i∈Ipi)⊙u≤q iff ∨1i∈I(pi⊙u)≤q iff pi⊙u≤q, for any i∈I iff u≤pi→q, for any i∈I iff u≤∧i∈I(pi→q), hence (∨1i∈Ipi)⊙q=∧i∈I(pi⊙q). Analogously, we can prove the second equation.
(3) If n=1, then (p∨1q)→u=(p→u)∧(q→u) by (2). Assume that the equality holds for n. Thus
(p∨1q)n+1→u
= (p∨1q)⊙(p∨1q)n→u
= (p∨1q)→((p∨1q)n→u) (by proposition 2.4)
= (p∨1q)→⋀{(a1⊙(a2⊙⋯an)→u∣ai∈{p,q}} (by assumption)
= (p→⋀{(a1⊙(a2⊙⋯an)→u∣ai∈{p,q}})∧(q→⋀{(a1⊙(a2⊙⋯an)→u∣ai∈{p,q}}) (by (2))
= ⋀{p→(a1⊙(a2⊙⋯an)→u)∣ai∈{p,q}}∧⋀{q→(a1⊙(a2⊙⋯an)→u)∣ai∈{p,q}} (by (2))
= ⋀{(p⊙a1⊙a2⊙⋯an)→u∣ai∈{p,q}}∧⋀{(q⊙a1⊙a2⊙⋯an)→u∣ai∈{p,q}} (by proposition 2.4)
= ⋀{(a1⊙(a2⊙⋯an⊙an+1)→u∣ai∈{p,q}}.
Therefore, the conclusion holds.
Proposition 3.2. Assume that ε is an EQ-algebra. Then for every p,q,u∈E:
(1) if p≤q, then p⊕u≤q⊕u;
(2) p,q≤p⊕q;
(3) p⊕p−=1, 0⊕p=p and p⊕0=p−−;
(4) p≤p−−, p−−−=p−;
(5) (p⊕q)⊕u≤p⊕(q⊕u);
If ε is residuated with (DNP), then
(6) p⊙p−=0, p⊕q=1 if and only if p−≤q;
(7) p−⊙q−=(p⊕q)−;
(8) p−⊕q−=(p⊙q)−;
(9) ⊕ is commutative and associative.
Proof. The proofs of (1)–(4) and (6) are easy and we omit them.
(5) (p⊕q)⊕u≤p⊕(q⊕u) iff (p−→q)−→u≤p−→(q−→u) iff p−⊙((p−→q)−→u)≤q−→u iff p−≤((p−→q)−→u)→(q−→u) iff p−→(((p−→q)−→u)→(q−→u))=1.
Now p−→(((p−→q)−→u)→(q−→u))≥p−→(q−→(p−→q)−)≥p−→((p−→q)→q)=1. Therefore, we have (p⊕q)⊕u≤p⊕(q⊕u).
(7) Since (p−⊙q−)→(p⊕q)−=p−→(q−→(p⊕q)−)≥p−→((p⊕q)→q)=p−→((p−→q)→q)≥p−→p−=1, then (p−⊙q−)→(p⊕q)−=1. Thus (p−⊙q−)≤(p⊕q)−. Conversely, (p⊕q)−≤(p−⊙q−) iff (p−⊙q−)−≤(p⊕q)−− iff p−→q−−≤p−→q iff p−→q≤p−→q. Hence, p−⊙q−=(p⊕q)−.
(8) Since (p−⊕q−)→(p⊙q)−=(p−−→q−)→(p→q−)≥p→p−−=1, then (p−⊕q−)→ (p⊙q)−=1, and so p−⊕q−≤(p⊙q)−. Conversely, (p⊙q)−≤p−⊕q− iff p→q−≤p−−→q− iff p→q−≤p→q−. It follows that p−⊕q−=(p⊙q)−.
(9) Since p⊕q=p−→q=p−→q−−=p−→(q−→0)=q−→(p−→0)=q−→p−−=q−→p=q⊕p for each p,q∈E, then ⊕ is commutative. Now, we prove the associativity, p⊕(q⊕u)= p⊕(q−→u)= p−→(q−→u)=(p−⊙q−)→u=(p−⊙q−)−− →u=(p−→q−−)−→u=(p−→q)−→ u=(p⊕q)⊕u.
Proposition 3.3. Suppose that ε is residuated, then for each a, pi∈E, i=1,2,⋯n, n∈N, a∧(p1⊕p2⊕⋯⊕pn)≤(a∧p1)⊕(a∧p2)⊕⋯⊕(a∧pn).
Proof. First, we show that a∧(p⊕q)≤(a∧p)⊕(a∧q) for each a,p,q∈E. Now, (a∧p)⊕(a∧q)=(a∧p)−→ (a∧q)=(a−∨p−)→(a∧q)=(a−→a∧q)∧(p−→ a∧q)=((a−→a)∧(a−→q)) ∧(p−→a)∧(p−→q)=(a⊕a)∧(a⊕q) ∧(p⊕a)∧(p⊕q). Since a≤(a⊕a)∧(a⊕q)∧(p⊕a), then a∧(p⊕q)≤(a⊕a)∧(a⊕q)∧(p⊕a) ∧(p⊕q)=(a∧p)⊕(a∧q).
Assume that the inequation holds for n. Thus, a∧(p1⊕p2⊕⋯⊕pn⊕pn+1)≤(a∧(p1⊕p2⊕⋯⊕pn))⊕(a∧pn+1)≤(a∧p1)⊕(a∧p2)⊕⋯⊕(a∧pn)⊕(a∧pn+1). Therefore, the conclusion holds.
Definition 3.4. Suppose that I is a nonempty subset of an EQ-algebra. Then I is called an ideal if:
(I1) For any p,q∈E, if p≤q and q∈I, then p∈I.
(I2) For any p,q∈I, p⊕q∈I.
Obviously, there are two trivial ideals, E and {0}. Let's denote the set of all ideals of ε by I(ε). If I≠E and I∈I(ε), I is said to be a proper ideal.
Example 3.5. [17] Suppose that E={0,p,q,x,y,1}, with 0<p<q<x<y<1. Define ⊙ and ∼ in the following:
![]() |
Then (E,∧,⊙,∼,1) is an EQ-algebra and I1={0,p} and I2={0,p,q} are the ideals.
Let {Iλ:λ∈Λ} be a family of ideals, then ∩λ∈ΛIλ is an ideal, but ∪λ∈ΛIλ is not an ideal generally.
Example 3.6 [17] Suppose E={0,p,q,x,y,e,f,1}, with 0<p<x<y<e<1 and 0<q<x<y<f<1. We can check that (E,∧,⊙,∼,1) is an EQ-algebra, where ⊙ and ∼ are given by the following table:
![]() |
Also, I1={0,p} and I2={0,q} are two ideals, but I1∪I2={0,p,q} is not an ideal as p⊕q=x∉I1∪I2.
Theorem 3.7. Suppose that ε is residuated and ∅≠I⊆E. Then I∈I(ε) if and only if 0∈I and p,p−⊙q∈I imply q∈I for each p,q∈E.
Proof. (⇒) Let I∈I(ε). Then 0∈I by I≠∅ and (I1). Assume that p, p−⊙q∈I, then q→(p⊕(p−⊙q))=q→(p−→(p−⊙q))=(q⊙p−)→(p−⊙q)=1. Hence, q≤p⊕(p−⊙q)∈I, and so q∈I.
(⇐) Suppose that p,q∈E satisfying q∈I and p≤q. Then q−≤p− and q−⊙p≤p−⊙p=0∈I. By assumption, we have p∈I. Now, let p,q∈I. Since p−⊙(p⊕q)=p−⊙(p−→q)≤q∈I, then p−⊙(p⊕q)∈I. Hence, p⊕q∈I, and so I∈I(ε).
Theorem 3.8. Suppose that ε is residuated and ∅≠I⊆E. Then I∈I(ε) if and only if 0∈I and p,(p−→q−)−∈I imply q∈I for each p,q∈E.
Proof. (⇒) Let I∈I(ε). It follows from (I1) and I≠∅ that 0∈I. Suppose that p,(p−→q−)−∈I, then p−⊙q−−∈I as p−⊙q−−≤(p−⊙q−−)−−=((p−⊙q−−)−)−=(p−→q−−−)−=(p−→q−)− and (I1). Since p−⊙q≤p−⊙q−−, then p−⊙q∈I. Hence, q∈I by Theorem 3.7.
(⇐) By the Theorem 3.7, we only need to show that p−⊙q∈I and p∈I imply q∈I for every p,q∈E. Setting q=p−−, then p−−∈I. Let p,q∈E satisfying p−⊙q∈I and p∈I, then (p−⊙q)−−∈I. Since (p−⊙q)−−=((p−⊙q)−)−=(p−→q−)−, then (p−→q−)−∈I, thus q∈I by assumption.
Corollary 3.9. Suppose that ε is residuated and I∈I(ε). Then
(1) p,q∈I if and only if p∨1q∈I;
(2) p∈I if and only if p−−∈I for each p∈E.
Proof. (1) (⇒) Suppose that p,q∈I, since p−⊙(p∨1q)=(p−⊙p)∨1(p−⊙q)=p−⊙q≤q, then p−⊙(p∨1q)∈I. Thus, (p∨1q)∈I by the Theorem 3.7.
(⇐) Clearly.
(2) Assume that p∈I, then p−−∈I by taking q=p−− in the Theorem 3.8 Conversely, since p≤p−−∈I and I∈I(ε), then p∈I.
Proposition 3.10. Assume that ε is residuated and 0∈I∈I(ε). Then the following assertions are equivalent:
(1) I∈I(ε);
(2) L(p,q)={u∈E:u⊙p−≤q}⊆I for each p,q∈I;
(3) if (u⊙p−)⊙q−=0, then u∈I for every u∈E and p,q∈I.
Proof. (1)⇒(2): For any a∈L(p,q), a⊙p−≤q for every p,q∈I. Since q∈I and I∈I(ε), then a⊙p−∈I. Thus, a∈I by the Theorem 3.7. Hence, L(p,q)⊆I.
(2)⇒(3) Suppose that p,q∈I satisfying (u⊙p−)⊙q−=0. Since (u⊙p−)⊙q−≤0 and 0,q∈I, then u⊙p−∈L(q,0)⊆I by (2). Thus, u⊙p−∈I. Also, since u⊙p−≤u⊙p− and u⊙p−,p∈I, then, u∈L(p,u⊙p−)⊆I by (2), and so u∈I.
(3)⇒(1) Now, let p,p−⊙q∈I. Since (q⊙p−)⊙(p−⊙q)−=0, then q∈I by (3). Thus, I∈I(ε) by Theorem 3.7.
Next, we learn the relationship between ideals and filters on EQ-algebras. For every ∅≠X⊆E, define X−={x∈E∣x−∈X}.
Proposition 3.11. Suppose that F is a filter of an EQ-algebra ε. Then F′ is an ideal, where F′={p∈E| there exists q∈F satisfying p−−≤q−}.
Proof. (I1) Assume that p,q∈E satisfying p≤q and q∈F′, then there is q0∈F satisfying q−−≤q−0. Since p−−≤q−−≤q−0, then p∈F′.
(I2) Assume that p,q∈F, then there are p0,q0∈F satisfying p−−≤p−0 and q−−≤q−0. Then p0⊙q0∈F as F is a filter. Since (p⊕q)−−=(p−⊙q−)−=p−→q−−≤p−→q−0≤p0→q−0=(p0⊙q0)−, thus p⊕q∈F′.
Proposition 3.12. Assume that ε is residuated and I∈I(ε). Then I∗ is a filter, where I∗={p∈E| there exists q∈I satisfying p−−≥q−}.
Proof. (F1) Since 1−−=1, then for each q∈I, q−≤1=1−−, thus 1∈I∗.
(F2) Assume p,q∈I∗, then there exist p0,q0∈I satisfying p−−≥p−0 and q−−≥q−0. Since p→q−≤q−−→p−≤q−0→p−≤p−−→q−−0≤p−0→q−−0=p0⊕q−−0, then (p⊙q)−−=(p→q−)−≥(p0⊕q−−0)−. Since p0,q0∈I and I∈I(ε), then p0,q−−0∈I and p0⊕q−−∈I, hence p⊙q∈I∗.
(F3) First we prove that if p,q∈E with p≤q and p∈I∗, then q∈I∗. Since p∈I∗, then there exists p0 satisfying p−−≥p−0, thus q−−≥p−−≥p−0, i.e. q∈I∗. Now, assume p,p→q∈I∗, then p⊙(p→q)∈I∗. Thus, q∈I∗ as p⊙(p→q)≤q.
(F4) Since ε is residuated, then for every p,q,u∈E, p→q≤(p⊙u)→(q⊙u). If p→q∈I∗, then (p⊙u)→(q⊙u)∈I∗.
To sum up, I∗ is a filter.
Proposition 3.13. Suppose that ε is residuated with (DNP), then I∈I(ε) if and only if I− is a filter.
Proof. (⇒) (F1) 1∈I− as 0∈I.
(F2) Suppose p,q∈I−, then p−,q−∈I, and so (p⊙q)−=p−⊕q−∈I. Thus, (p⊙q)∈I−.
(F3) Now, suppose p≤q and p∈I−, then p−∈I and q−≤p−, hence q−∈I. That is, q∈I−. If p,p→q∈I−, then p⊙(p→q)∈I−. It follows from p⊙(p→q)≤q that q∈I−.
(F4) Suppose p→q∈I−, since p→q≤(p⊙u)→(q⊙u), then (p⊙u)→(q⊙u)∈I−.
(⇐) (I1) Since 1∈I−, then 0∈I. Let p,q∈E with p≤q and q∈I. Then q−∈I− and q−≤p−, and thus p−∈I−. That is, p=p−−∈I.
(I2) Note that p−,q−∈I− and (p−⊙q−)∈I− for each p,q∈I. Then (p−⊙q−)→(p−→q)−=(p−→q)→((p−⊙q−)→0)=(p−→q)→((p−→q−−)=1 and (p−⊙q−)≤(p−→q)−. Thus, (p−→q)−∈I− and (p−→q)−−∈I. Hence, p⊕q=(p−→q)∈I.
Let A be a nonempty set of an EQ-algebra ε. The smallest ideal of ε including A is said to be the ideal generated by A and is marked by ⟨A⟩.
Theorem 3.14. Let X be a nonempty set of an EQ-algebra ε. Then ⟨X⟩={a∈E∣a≤(⋯((p1⊕p2)⊕p3)⋯⊕pn),pi∈X,i=1,2,⋯,n}.
Proof. Let A={a∈E∣a≤(⋯((p1⊕p2)⊕p3)⋯⊕pn),pi∈X,i=1,2,⋯,n}. Firstly, we check that A∈I(ε). Since 0∈A, then A is nonempty. Assume a,b∈E with a≤b and b∈A. Since b∈A, then there exist pi∈X,i=1,2,⋯,n with b≤(⋯((p1⊕p2)⊕p3)⋯⊕pn). It follows from a≤b that a≤(⋯((p1⊕p2)⊕p3)⋯⊕pn), and thus a∈A. Now, assume a,b∈A, then there are pi,qi∈X,i=1,2,⋯,n satisfying a≤(⋯((p1⊕p2)⊕p3)⋯⊕pn) and b≤(⋯((q1⊕q2)⊕q3)⋯⊕qn), thus (⋯((p1⊕p2)⊕p3)⋯⊕pn)−≤a−. Hence a⊕b=a−→b≤(⋯((p1⊕p2)⊕p3)⋯⊕pn)−→b≤(⋯((p1⊕p2)⊕p3)⋯⊕pn)−→(⋯((q1⊕q2)⊕q3)⋯⊕qn)=(⋯((p1⊕p2)⊕p3)⋯⊕pn)⊕(⋯((q1⊕q2)⊕q3)⋯⊕qn)≤(⋯(⋯((p1⊕p2)⊕p3)⋯⊕pn)⊕q1)⊕⋯⊕qn) by Proposition 3.2 (5), i.e. (a⊕b)∈A. Therefore, A∈I(ε).
Obviously, X⊆A. Hence we only need to show that for any ideal C satisfying X⊆C, we can obtain A⊆C. For any a∈A, then there are pi∈X,i=1,2,⋯,n with a≤(⋯((p1⊕p2)⊕p3)⋯⊕pn). Since X⊆C and C∈I(ε), then (⋯((p1⊕p2)⊕p3)⋯⊕pn)∈C and a∈C. Hence, A is the smallest ideal containing X.
Proposition 3.15. Suppose that ε is residuated and I∈I(ε), p∈E. Then ⟨I∪{p}⟩={a∈E∣a≤q1⊕(q2⋯⊕(qn⊕np)),qi∈I,i=1,2,⋯,n}∪{a∈E∣a≤p⊕(p⊕⋯⊕(p⊕q)),q∈I}.
Proof. Let A={a∈E∣a≤q1⊕(q2⋯⊕(qn⊕np)),qi∈I,i=1,2,⋯,n}∪{a∈E∣a≤p⊕(p⊕⋯⊕(p⊕q)),q∈I}. Obviously, (I∪{p})⊆A and 0∈A. Firstly, we prove that A is an ideal. Suppose that b,c∈E with b≤c and c∈A, then there are qi∈I,i=1,2,⋯,n and q∈I such that c≤q1⊕(q2⋯⊕(qn⊕np)) or c≤p⊕(p⊕⋯⊕(p⊕q)), thus b≤c≤q1⊕(q2⋯⊕(qn⊕np)) or b≤c≤p⊕(p⊕⋯⊕(p⊕q)), and so b∈A, i.e. (I1) holds. Assume b,c∈A, then there are qi,uj∈I,i=1,2,⋯,n,j=1,2,⋯,m and q,u∈I satisfying b≤q1⊕(q2⋯⊕(qn⊕np)) or b≤p⊕(p⊕⋯⊕(p⊕q)) and c≤u1⊕(u2⋯⊕(un⊕mp)) or c≤p⊕(p⊕⋯⊕(p⊕u)).
Case 1: If b≤q1⊕(q2⋯⊕(qn⊕np)) and c≤u1⊕(u2⋯⊕(un⊕mp)), then, by the Proposition 3.2 (5), we have
b⊕c
≤[q1⊕(q2⊕⋯⊕(qn⊕np))]⊕[u1⊕(u2⊕⋯⊕(un⊕mp))]
≤q1⊕{[q2⊕⋯⊕(qn⊕np)]⊕[u1⊕(u2⊕⋯⊕(un⊕mp))]}
≤q1⊕(q2⊕{[q3⊕⋯⊕(qn⊕np)]⊕[u1⊕(u2⋯⊕(un⊕mp))]}
≤⋯≤q1⊕(q2⊕(⋯(qn⊕(np⊕(u1⊕(⋯⊕(un⊕mp)⋯))))⋯))
Hence, b⊕c∈A.
Other cases are analogous to the Case 1, then we also get b⊕c∈A. Hence, A is an ideal.
Now, let B be any ideal with (I∪{p})⊆B, then for each b∈A, there are qi∈I,i=1,2,⋯,n and q∈I such that b≤q1⊕(q2⋯⊕(qn⊕np) or b≤p⊕(p⊕⋯⊕(p⊕q)). Since B is an ideal and (I∪{p})⊆B, then we have qi∈B(i=1,2,⋯,n), q,q1⊕(q2⋯⊕(qn⊕np),p⊕(p⊕⋯⊕(p⊕q))∈B. Hence b∈B, i.e. A⊆B. Therefore, the conclusion holds.
By Proposition 3.2 (8), if ε satisfies the condition (DNP), then the operation ⊕ is commutative and associative. So we have the following statement:
Remark 3.16. Note that nc≜. If \varepsilon satisfies the condition (DNP) , then nc = ((c^{-})^{n})^{-} .
Proposition 3.17. Suppose that I \in I(\varepsilon) and c \in E . Then
(1) \langle c\rangle = \{p \in E: \exists n \in N, s.t. p \leq nc\} ;
if \varepsilon satisfies the condition (DNP) ,
(2) \langle I\cup \{c\}\rangle = \{p\in E: \exists n \in N, q\in I, s.t. p \leq (nc)\oplus q\} = \{p\in E: \exists n \in N, s.t. p\odot(nc)^{-}\in I\} ;
(3) \langle I\cup \{p\}\rangle \cap \langle I\cup \{q\}\rangle = \langle I\cup \{p \wedge q\}\rangle ;
(4) \langle\langle p \rangle \cup\langle q \rangle\rangle = \langle p\oplus q\rangle ;
(5) \langle p\rangle\cap \langle q\rangle = \langle p^{--}\wedge q^{--}\rangle = \langle p\wedge q\rangle .
Proof. (1) By the Theorem 3.14.
(2) By the Theorem 3.14, we know that \langle I\cup \{c\}\rangle = \{p\in E: \exists n \in N, q\in I, s.t. p \leq (nc)\oplus q\} . The problem turns into proving that \{p\in E: \exists n \in N, q\in I, s.t. p \leq (nc)\oplus q\} = \{p\in E: \exists n \in N, s.t. p\odot(nc)^{-}\in I\} . Since p \leq (nc)\oplus q \Leftrightarrow p\odot(nc)^{-}\leq q\in I , it follows that p\odot(nc)^{-}\in I , which implies \{p\in E: \exists n \in N, q\in I, s.t. p \leq (nc)\oplus q\}\subseteq\{p\in E: \exists n \in N, s.t. p\odot(nc)^{-}\in I\} . Conversely, we just take q = p\odot(nc)^{-} . Hence, the conclusion holds.
(3) For each c \in \langle I \cup \{p \wedge q\}\rangle , there is n \in N satisfying c \odot (n(p \wedge q))^{-} \in I . Since c \odot (np)^{-} = c \odot (p^{-})^{n} , then c\odot (n(p\wedge q))^{-} = c\odot((p\wedge q)^{-})^{n} \geq c\odot(p^{-})^{n} , thus c\odot (np)^{-}\in I . Similarly, we have c\odot (mq)^{-}\in I . Thus c \in \langle I\cup\{p\}\rangle\cap \langle I\cup\{q\}\rangle , and so \langle I\cup \{p\wedge q\} \rangle \subseteq \langle I\cup{p}\rangle\cap \langle I\cup\{q\}\rangle . Conversely, let c \in \langle I\cup{p}\rangle\cap \langle I\cup\{q\}\rangle . Then there are n, m \in N satisfying c \odot (np)^{-} and c\odot(mq)^{-} \in I , and so c\odot(p^{-})^{n} and c\odot(q^{-})^{m} \in I . Let Y_{1} = c\odot(p^{-})^{n} and Y_{2} = c\odot(q^{-})^{m} . Then Y_{1}^{-} = (c \odot (p^{-})^{n})^{-} = (p^{-})^{n} \rightarrow c^{-} and Y_{2}^{-} = (c \odot (q^{-})^{m})^{-} = (q^{-})^{m} \rightarrow c^{-} . Thus, (p^{-})^{n} \rightarrow (Y_{2}^{-} \rightarrow (Y_{1}^{-} \rightarrow c^{-})) = 1 and (q^{-})^{m} \rightarrow (Y_{2}^{-} \rightarrow (Y_{1}^{-} \rightarrow c^{-})) = 1 . By Proposition 3.1 (3), there is p \in N satisfying [(p \wedge q)^{-}]^{p} \rightarrow (Y_{2}^{-} \rightarrow (Y_{1}^{-} \rightarrow c^{-})) = (p^{-}\vee q^{-})^{p} \rightarrow (Y_{2}^{-} \rightarrow (Y_{1}^{-} \rightarrow c^{-})) = \bigwedge\{(c_{1} \odot... \odot c_{p}) \rightarrow (Y_{2}^{-} \rightarrow (Y_{1}^{-} \rightarrow c^{-})) : c_{i} \in \{p^{-}, q^{-}\}\} = 1 . Hence, c \in \langle I\cup \{p\wedge q\}\rangle .
(4) Since \langle p\rangle, \langle q\rangle\subseteq \langle p\oplus q\rangle , then \langle p\rangle\cup\langle q\rangle\subseteq \langle p\oplus q\rangle , and so \langle\langle p\rangle\cup\langle q\rangle\rangle\subseteq \langle p\oplus q\rangle . Now, let w\in \langle p\oplus q\rangle , then w\leq n(p\oplus q)\leq(np)\oplus(nq) for some n\in N^{+} . It follows that from np\in \langle p\rangle and nq\in \langle q\rangle that w\in\langle\langle p\rangle\cup\langle q\rangle\rangle . Hence, \langle\langle p \rangle \cup\langle q \rangle\rangle = \langle p\oplus q\rangle .
(5) By p\in \langle p\rangle and q\in \langle q\rangle , we know that p^{--}\in \langle p\rangle and q^{--}\in \langle q\rangle by Corollary 3.9 (2). Then p^{--}\wedge q^{--}\in \langle p\rangle\cap \langle q\rangle , and so \langle p^{--}\wedge q^{--}\rangle\subseteq \langle p\rangle\cap \langle q\rangle . Conversely, let w\in \langle p\rangle\cap \langle q\rangle , then w\leq np and w\leq mq for some n, m\in N^{+} . Thus, w\leq(np)\wedge(mq)\leq nm(p^{--}\wedge q^{--}) , that is, w\in\langle p^{--}\wedge q^{--}\rangle . Since \varepsilon satisfies the condition (DNP) , then, \langle p\rangle\cap \langle q\rangle = \langle p^{--}\wedge q^{--}\rangle = \langle p\wedge q\rangle holds.
Proposition 3.18. Let \varepsilon be an EQ-algebra. Then (I(\varepsilon), \vee, \wedge) is a frame, where \vee_{i\in I}I_{i} = \langle \cup_{i\in I}I_{i}\rangle , \wedge_{i\in I}I_{i} = \cap_{i\in I}I_{i} for each I_{i}\in I(\varepsilon) , i\in I .
Proof. It's obvious that (I(\varepsilon), \vee, \wedge) is a complete lattice. Next, we show that I\wedge(\vee_{i\in I}I_{i}) = \vee_{i\in I}(I\wedge I_{i}) , that is, I\cap\langle\cup_{i\in I}I_{i}\rangle = \langle\cup_{i\in I}(I\cap I_{i})\rangle . Obviously, \langle\cup_{i\in I}(I\cap I_{i})\rangle\subseteq I\cap\langle\cup_{i\in I}I_{i}\rangle holds. On the other hand, for each p\in I\cap\langle\cup_{i\in I}I_{i}\rangle . Then p\in I and p\leq p_{i_{1}}\oplus p_{i_{2}}\oplus\cdots \oplus p_{i_{n}} for some i_{1}, i_{2}, \cdots, i_{n}\in I and p_{i_{j}}\in I_{i_{j}}(1\leq j\leq n) . Hence, p = p\wedge(p_{i_{1}}\oplus p_{i_{2}}\oplus\cdots \oplus p_{i_{n}})\leq (p\wedge p_{i_{1}})\oplus(p\wedge p_{i_{2}})\oplus\cdots\oplus(p\wedge p_{i_{n}}) by Proposition 3.3. Since p\wedge p_{i_{j}}\in I\wedge I_{i_{j}} for each 1\leq j\leq n , then p\in \langle\cup_{i\in I}(I\cap I_{i})\rangle . It follows that I\cap\langle\cup_{i\in I}I_{i}\rangle = \langle\cup_{i\in I}(I\cap I_{i})\rangle , and so the conclusion holds.
Theorem 3.19. Given a residuated EQ-algebra with (DNP) . Define I_{1}\rightarrow I_{2}: = \{p\in E\mid \langle p\rangle\cap I_{1}\subseteq I_{2}\} for each I_{1}, I_{2}\in I(\varepsilon) . Then
(1) I_{1}\rightarrow I_{2}\in I(\varepsilon) ;
(2) I_{1}\cap I\subseteq I_{2} if and only if I\subseteq I_{1}\rightarrow I_{2} , where I\in I(\varepsilon) .
Proof. (1) Since \langle 0\rangle\cap I_{1}\subseteq I_{2} , then 0\in I_{1}\rightarrow I_{2} . Let p, q\in E with p\leq q and q\in I_{1}\rightarrow I_{2} , then \langle q\rangle\cap I_{1}\subseteq I_{2} . It follows from \langle p\rangle\cap I_{1}\subseteq\langle q\rangle\cap I_{1}\subseteq I_{2} that p\in I_{1}\rightarrow I_{2} , that is (I1) holds.
As for (I2) , we first show that \langle p\oplus q\rangle\subseteq\langle p\rangle\vee \langle q\rangle . For each w\in \langle p\oplus q\rangle , then w\leq n(p\oplus q) = (np)\oplus(nq) for some n\in N by Proposition 3.17 (1) . Since (np)\in \langle p\rangle and (nq)\in \langle q\rangle , then w\in \langle p\rangle\vee \langle q\rangle . Now, let p, q\in I_{1}\rightarrow I_{2} . Then \langle p\rangle\cap I_{1}\subseteq I_{2} and \langle q\rangle\cap I_{1}\subseteq I_{2} , and so ((\langle p\rangle\cap I_{1})\vee(\langle q\rangle\cap I_{1}))\subseteq I_{2} . Hence, \langle p\oplus q\rangle\cap I_{1}\subseteq (\langle p\rangle\vee\langle q\rangle)\cap I_{1}\subseteq I_{2} , that is, p\oplus q\in I_{1}\rightarrow I_{2} . Therefore, I_{1}\rightarrow I_{2}\in I(\varepsilon) .
(2) Assume that I_{1}\cap I\subseteq I_{2} and p\in I , then \langle p\rangle\cap I_{1}\subseteq I_{2} . Hence p\in I_{1}\rightarrow I_{2} , and so I\subseteq I_{1}\rightarrow I_{2} . Conversely, if I\subseteq I_{1}\rightarrow I_{2} and p\in I_{1}\cap I , then p\in I\subseteq I_{1}\rightarrow I_{2} . Thus, p\in \langle p\rangle\cap I_{1}\subseteq I_{2} , that is, I_{1}\cap I\subseteq I_{2} .
Corollary 3.20. Suppose that \varepsilon is residuated with (DNP) , then (I(\varepsilon), \vee, \wedge, \rightarrow, \{0\}) is a Heyting-algebra, where I^{-} = I\rightarrow \{0\} = \{p\in E\mid \langle p\rangle\cap I = \{0\}\} for each I\in I(\varepsilon) .
Proposition 3.21. Given a residuated EQ-algebra with (DNP) . Then
(1) For each I\in I(\varepsilon) , I^{-} = \{p\in E\mid p\wedge a = 0 for each a\in I\} ;
(2) For each p\in E , \langle p\rangle^{-} = \{q\in E\mid p\wedge q = 0\} .
Proof. (1) For each p\in I^{-} , then \langle p\rangle\cap I = \{0\} . It follows from Proposition 3.17 (5) that p\wedge a\in \langle p\rangle\cap I for each a\in I , and so p\wedge a = 0 for each a\in I . Conversely, assume p\in E with p\wedge a = 0 for each a\in I . Let w\in \langle p\rangle\cap I , then w\leq np for some n\in N^{+} and w\in I . Thus, p\wedge w = 0 and w = w\wedge np\leq n(p\wedge w) = 0 . Thus, \langle p\rangle\cap I = \{0\} . Hence, I^{-} = I\rightarrow \{0\} = \{p\in E\mid \langle p\rangle\cap I = \{0\}\} = \{p\in E\mid p\wedge a = 0 for each a\in I\} .
(2) By (1) , we get that \langle p\rangle^{-} = \{q\in E\mid q\wedge a = 0 for each a\in\langle p\rangle\} . For each q\in \langle p\rangle^{-} , then q\wedge a = 0 for each a\in \langle p\rangle . Since p\in \langle p\rangle , then q\wedge p = 0 , that is, \langle p\rangle^{-}\subseteq \{q\in E\mid p\wedge q = 0\} . On the other hand, let q\in \{q\in E\mid p\wedge q = 0\} and a\in \langle p\rangle . Then a\leq np for some n\in N^{+} . Now, q\wedge a\leq q\wedge(np)\leq n(p\wedge q) = 0 , thus q\wedge a = 0 , that is, \{q\in E\mid p\wedge q = 0\}\subseteq \langle p\rangle^{-} . Hence, the conclusion holds.
Theorem 3.22. Given a residuated EQ-algebra with (DNP) . Then the following statements are equivalent:
(1) (I(\varepsilon), \vee, \wedge, ^{-}, \{0\}, E) is a Boolean algebra;
(2) Each ideal of E is principal and for each p\in E , there is n\in N^{+} satisfying p\wedge (np)^{-} = 0 .
Proof. (1) \Rightarrow (2) By assumption, I\vee I^{-} = E for each I\in I(\varepsilon) , thus 1\in I\vee I^{-} . Hence, there are u\in I and v\in I^{-} satisfying u\oplus v = 1 . By Proposition 3.21 (1), we have p\wedge v = 0 for each p\in I . Now p\odot v\leq p\wedge v = 0 , then p\odot v = 0 , and so p\rightarrow v^{-} = (p\odot v)^{-} = 1 . Hence, p\leq v^{-} . Since u\oplus v = 1 , then (nu)^{-}\rightarrow v = (nu)\oplus v = 1 for each n\in N^{+} , thus (nu)^{-}\leq v , and so v^{-}\leq (nu)^{--} = (nu) . Hence, p\leq v^{-}\leq nu for each p\in I , that is, I = \langle u\rangle .
For each p\in E , it follows from I(\varepsilon) is a Boolean algebra that E = \langle p\rangle \vee \langle p\rangle^{-} = \langle \langle p\rangle^{-}\cup \{p\}\rangle = \{a\in E\mid \exists n\in N^{+}, q\in \langle p\rangle^{-}, \; s.t. \; a\leq np\oplus q\} . Since 1\in E , then there are n\in N^{+} and q\in \langle p\rangle^{-} satisfying np\oplus q = 1 . By q\in \langle p\rangle^{-} , we have q\wedge p = 0 . Since (np)^{-}\rightarrow q = np\oplus q = 1 , then (np)^{-}\leq q , thus (np)^{-}\wedge p\leq q\wedge p = 0 . Hence, (np)^{-}\wedge p = 0 .
(2)\Rightarrow (1) By Corollary 3.20, we obtain that I(\varepsilon) is a Heyting algebra, then it suffices to show that I^{-} = \{0\} only for I = E . By assumption, I = \langle p\rangle for some p\in E and p\wedge (np)^{-} = 0 . By Proposition 3.21 (2), we have (np)^{-}\in \langle p\rangle^{-} = \{0\} , thus (np)^{-} = 0 , and so (np)^{--} = 1 . It follows that 1\in \langle p\rangle = I , and so I = E .
Proposition 3.22. Let \xi: A \rightarrow B be a homomorphism of EQ-algebras. Then
(1) if I\in I(B) , then \xi^{-1}(I)\in I(A) ;
(2) if \xi is surjective and I\in I(A) , then \xi(I)\in I(B) ;
(3) if ker(\xi) = \{x\in A\mid \xi(x) = 0\} , then ker(\xi)\in I(A) .
Proof. (1) Since \xi(0) = 0\in I , then 0\in \xi^{-1}(I) . It follows from p\leq q and q\in \xi^{-1}(I) that \xi(q)\in I . Since p\rightarrow q = 1 and \xi is a homomorphism, then \xi(p)\leq \xi(q) , and so \xi(p)\in I and p \in \xi^{-1}(I) . Assume that p, q \in \xi^{-1}(I) . Then \xi(p), \xi(q) \in I and \xi(p^{-}\rightarrow q) = \xi(p)^{-}\rightarrow \xi(q) \in I as I\in I(B) . Thus, p^{-}\rightarrow q \in \xi^{-1}(I) and \xi^{-1}(I)\in I(A) .
(2) Obviously, 0\in \xi(I) . Assume that p\leq q and q \in \xi(I) . Then, there is a\in I satisfying \xi(a) = q . Since p = \xi(b)\leq \xi(a) = q , where b\in A , then \xi(1) = 1 = \xi(b) \rightarrow \xi(a) = \xi(b\rightarrow a) , thus b\leq a . Moreover, because a\in I and I\in I(A) , so b\in I and p = \xi(b)\in \xi(I) . Now, let p, q\in \xi(I) . Then there are a, b\in I with \xi(a) = p and \xi(b) = q . Since I\in I(A) , a^{-}\rightarrow b\in I , then p^{-}\rightarrow q = \xi(a)^{-} \rightarrow \xi(b)\in \xi(I) . Hence, \xi(I)\in I(B) .
(3) ker(\xi)\neq \emptyset as \xi(0) = 0 . Let p, q\in ker(\xi) . Then \xi(p) = \xi(q) = 0 and \xi(p^{-} \rightarrow q) = \xi(p)^{-} \rightarrow \xi(q) = 0^{-} \rightarrow 0 = 0 . Hence, p^{-}\rightarrow q\in ker\xi . Assume that p\leq q and q\in ker(\xi) . Since \xi is monotone, \xi(p)\leq \xi(q) = 0 . Then \xi(p) = 0 and so p\in ker(\xi) . Hence, ker(\xi)\in I(A) .
Proposition 3.24. Suppose that \varepsilon is residuated with (DNP) and I\in I(\varepsilon) . Define a binary operation \approx_{I} in the following:
p\approx_{I}q iff (p\thicksim q)^{-}\in I |
Then \approx_{I} is a congruence relation on \varepsilon .
Proof. Firstly, we prove that \approx_{I} is an equivalence relation. Since (p\thicksim p)^{-} = 0\in I , then p\approx_{I}p , i.e. \approx_{I} is reflexivity. Assume p\approx_{I}q , then (p\thicksim q)^{-}\in I , and so (q\thicksim p)^{-}\in I , i.e. q\approx_{I}p , hence \approx_{I} is symmetry. If p\approx_{I}q and q\approx_{I}u , then (p\thicksim q)^{-}\in I and (q\thicksim u)^{-}\in I , thus p\thicksim q, q\thicksim u\in I^{-} and (p\thicksim q)\odot(q\thicksim u)\in I . Since (p\thicksim q)\odot(q\thicksim u)\leq p\thicksim u , then p\thicksim u\in I , and so (p\thicksim u)^{-}\in I , i.e. \approx_{I} is transitive.
Now, assume p \approx_{I}q , then (p\thicksim q)^{-}\in I . Since p\thicksim q\leq (p\wedge u)\thicksim(q\wedge u) , then ((p\wedge u)\thicksim(q\wedge u))^{-}\leq(p\thicksim q)^{-} , hence ((p\wedge u)\thicksim(q\wedge u))^{-}\in I , i.e. (p\wedge u)\approx_{I}(q\wedge u) .
Assume p \approx_{I}q , then (p\thicksim q)^{-}\in I , and so p\thicksim q\in I^{-} . Since p\thicksim q\leq p\rightarrow q, q\rightarrow p , then p\rightarrow q, q\rightarrow p\in I^{-} . Hence (p\odot u)\rightarrow (q\odot u), (q\odot u)\rightarrow (p\odot u)\in I^{-} and ((p\odot u)\rightarrow (q\odot u))\odot ((q\odot u)\rightarrow (p\odot u))\in I^{-} . Since ((p\odot u)\rightarrow (q\odot u))\odot ((q\odot u)\rightarrow (p\odot u))\leq (p\odot u)\thicksim(q\odot u) , then (p\odot u)\thicksim(q\odot u)\in I^{-} . Thus, ((p\odot u)\thicksim(q\odot u))^{-}\in I , i.e. (p\odot u)\approx_{I}(q\odot u) .
Assume p \approx_{I}q , z \approx_{I}w , then (p\thicksim q)^{-}\in I and (z\thicksim w)^{-}\in I , and so (p\thicksim q)\in I^{-} and (z\thicksim w)\in I^{-} . Thus, (p\thicksim q)\odot(z\thicksim w) \in I^{-} . Since (p\thicksim q)\odot(z\thicksim w)\leq (p\thicksim z)\sim(q\thicksim w) , then ((p\thicksim z)\thicksim(q\thicksim w))^{-}\leq((p\thicksim q)\odot(z\thicksim w))^{-}\in I , hence ((p\thicksim z)\thicksim(q\thicksim w))^{-}\in I , i.e. (p\thicksim z) \approx_{I}(q\thicksim w) .
Therefore, the conclusion holds.
Define \varepsilon/I = \{[v]\mid v\in E\} , where [v] = \{y\in E\mid v\approx_{I}y\} . Define binary operations \wedge_{I} , \odot_{I} , \thicksim_{I} as follows: For all v, y\in E
[v]\wedge_{I}[y] = [v\wedge y], [v]\odot_{I}[y] = [v\odot y], [v]\thicksim_{I}[y] = [v\thicksim y]. |
Then, (E/I, \wedge_{I}, \odot_{I}, \thicksim_{I}, 1) is an EQ-algebra.
Theorem 3.25. Let I\in I(\varepsilon) , then I = [0] .
Proof. At first, we show that [0] is an ideal. Obviously, 0\in [0] . Assume that p, q\in E with p, (p^{-}\odot q)\in [0] , then p \approx_{I} 0 and (p^{-}\odot q) \approx_{I} 0 . Since p^{-} = (p\rightarrow 0) \approx_{I} (0\rightarrow 0) = 1 , then (p^{-}\odot q) \approx_{I} (1\odot q) = q . Thus, q \approx_{I} 0 and q\in [0] by symmetry and transitivity. Hence, by the Theorem 3.7, we know that [0] is an ideal.
Now we show that I = [0] . For each p\in I , we have (p\thicksim 0)^{-} = (p\rightarrow 0)^{-} = p^{--}\in I and (0\thicksim p)^{-} = 0\in I , then p \approx_{I} 0 and p \in [0] . Conversely, for any p \in [0] , then p \approx_{I} 0 , and so p^{--}\in I . Thus, p \in I as p\leq p^{--} . Hence I = [0] .
In this part, we will introduce some special ideals, such as implicative ideals, primary ideals, prime ideals and maximal ideals. Also, We discuss some related properties and their relations.
Definition 4.1. Assume that I is a non-void subset of an EQ-algebra, then I is called an implicative ideal if the following hold for each p, q, u\in E :
(IM1) 0\in I ;
(IM2) If p, q\in I , then p\oplus q\in I ;
(IM3) If p\odot q^{-}\odot u^{-}\in I and q \odot u^{-}\in I , then p\odot u^{-}\in I .
Let's denote the set of all implicative ideals of \varepsilon by IM(\varepsilon) .
Example 4.2. In Example 3.5, we can show that I = \{0, p, q\}\in IM(\varepsilon) .
Proposition 4.3. If \varepsilon is residuated with (DNP) , then I\in IM(\varepsilon) if and only if I^{-}\triangleq F is a positive implicative filter of \varepsilon .
Proof. By Proposition 3.13, we obtain that I\in I(\varepsilon) if and only if I^{-} is a filter.
(\Rightarrow) Assume that (p\odot q)\rightarrow u\in I^{-} and p\rightarrow q\in I^{-} . Then, there are t_{1}, t_{2}\in I satisfying ((p\odot q)\rightarrow u)^{-} = t_{1}\in I and (p\rightarrow q)^{-} = t_{2}\in I . That is, p\odot q\odot u^{-} = t_{1}\in I and p\odot q^{-} = t_{2}\in I . By the commutativity and (DNP) , we have u^{-}\odot (q^{-})^{-}\odot (p^{-})^{-} = t_{1}\in I and q^{-}\odot (p^{-})^{-} = t_{2}\in I . By (IM3) , we get that (p \rightarrow u)^{-} = u^{-}\odot p = u^{-}\odot (p^{-})^{-} . Hence, p \rightarrow u \in I^{-} .
(\Leftarrow) Similarly, suppose that p\odot q^{-}\odot u^{-}\in I and q\odot u^{-}\in I , then u^{-}\odot q^{-}\odot (p^{-})^{-}\in I and u^{-}\odot (q^{-})^{-}\in I . That is, (u^{-}\odot q^{-}\rightarrow p^{-})^{-}\in I and (u^{-}\rightarrow q^{-})^{-}\in I . It follows that u^{-}\odot q^{-}\rightarrow p^{-}\in I^{-} and u^{-}\rightarrow q^{-}\in I^{-} . By Definition 2.6, we have u^{-}\rightarrow p^{-}\in I^{-} . Hence, (u^{-}\rightarrow p^{-})^{-}\in I , and so u^{-}\odot p\in I .
Proposition 4.4. Each implicative ideal of \varepsilon is an ideal.
Proof. Assume that I\in IM(\varepsilon) and p, q\in E satisfying p\leq q and q\in I , then p\rightarrow q = 1 . Since p\rightarrow q\leq p\rightarrow q^{--} = (p\odot q^{-})^{-} , then (p\odot q^{-})^{-} = 1 and (p\odot q^{-})^{--} = 0\in I . Thus, p\odot q^{-} = 0\in I as p\odot q^{-} \leq (p\odot q^{-})^{--} . Taking u = 0 , then p\odot q^{-}\odot u^{-} = p\odot q^{-} = 0\in I and q\odot u^{-} = q\in I . Hence, p = p\odot u^{-}\in I as I\in IM(\varepsilon) . Therefore, I\in I(\varepsilon) .
Example 4.5. In Example 3.5, we know that I = \{0, p\}\in I(\varepsilon) , but I\notin IM(\varepsilon) as 1\odot x^{-}\odot q^{-} = 0\in I and x \odot q^{-} = 0\in I , but 1\odot q^{-} = q \notin I . Therefore, this example implies the converse of the Proposition 4.4 is not true generally.
Proposition 4.6. Suppose that \varepsilon is residuated with (DNP) and I\in I(\varepsilon) . Then the following assertions are equivalent:
(1) I\in IM(\varepsilon) ;
(2) If p\odot v\odot v\in I , then p\odot v\in I for each p, v\in E ;
(3) If p^{2}\in I , then p \in I for each p\in E ;
(4) \{p\in E\mid p^{2} = 0\}\subseteq I for each p\in E .
Proof. (1)\Rightarrow (2) Let p\odot v\odot v\in I . Then, p\odot v^{--}\odot v^{--}\in I . Since v^{-}\odot v^{--} = 0 and I\in IM(\varepsilon) , then we have p \odot v^{--}\in I . It follows that p \odot v\in I .
(2)\Rightarrow (1) Assume that p\odot v^{-}\odot u^{-}\in I and v \odot u^{-}\in I . Since (p\odot u^{-}\odot u^{-})\odot (v\odot u^{-})^{-} = (p\odot u^{-}\odot u^{-})\odot (u^{-}\rightarrow v^{-})\leq p\odot u^{-}\odot v^{-} and I\in I(\varepsilon) , then (p\odot u^{-}\odot u^{-})\odot (v\odot u^{-})^{-}\in I , thus p\odot u^{-} \odot u^{-}\in I by the Theorem 3.7. Hence, p\odot u^{-}\in I by (2) . Therefore, I\in IM(\varepsilon) .
(2)\Rightarrow (3) Since I\in I(\varepsilon) , then (p^{2})^{--} \in I by the Corollary 3.9. By the Proposition 2.3 (6) , Proposition 2.4, Proposition 3.2 (4) ,
(p^{--}\odot p^{--})\rightarrow (p^{2})^{--}
= (p^{--}\odot p^{--})\rightarrow ((p^{2})^{-}\rightarrow 0)
= p^{--}\rightarrow (p^{--}\rightarrow ((p^{2})^{-}\rightarrow 0))
= p^{--}\rightarrow ((p^{2})^{-}\rightarrow p^{---})
= p^{--}\rightarrow ((p^{2})^{-}\rightarrow p^{-})
= (p^{2})^{-}\rightarrow (p^{--}\rightarrow p^{-})
= (p^{2})^{-}\rightarrow (p\rightarrow p^{-})
= p\rightarrow ((p^{2})^{-}\rightarrow p^{-})
= p\rightarrow (p\rightarrow (p^{2})^{--})
= p^{2}\rightarrow (p^{2})^{--} = 1
Hence, p^{--}\odot p^{--}\leq (p^{2})^{--} . Since (p^{2})^{--}\in I and I\in I(\varepsilon) . Then 1\odot p^{--} \odot p^{--} = p^{--} \odot p^{--}\in I . Hence, 1\odot p = p\in I by (2) .
(3)\Rightarrow (2) Let p\odot v\odot v \in I for each p, v \in E . Since p^{2}\leq p , then (p\odot v)^{2} = p^{2} \odot v^{2} \leq p \odot v \odot v . Thus, p\odot v\in I by (3) .
(3)\Rightarrow (4) Let a\in \{p\in E\mid p^{2} = 0\} . Then a^{2} = 0 , and so a\in I . Hence, \{p\in E\mid p^{2} = 0\}\subseteq I .
(4)\Rightarrow (3) Let p^{2}\in I for every p\in E . Then p^{2}/I = 0/I . Since \{0/I\}\in I(\varepsilon/I) , then p/I\in \{0/I\} . Hence, p\in I .
Corollary 4.7. Assume that I\in IM(\varepsilon) and J\in I(\varepsilon) with I\subseteq J , then J\in IM(\varepsilon) .
Proof. If I\subseteq J and I\in IM(\varepsilon) , then \{p\in E\mid p^{2} = 0\}\subseteq I\subseteq J by the Proposition 4.6. Since J\in I(\varepsilon) , then J\in IM(\varepsilon) .
Corollary 4.8. If I\in IM(\varepsilon) , then for each p\in E , p^{-}\wedge p\in I .
Proof. Since p^{-}\wedge p\leq p, p^{-} , then (p^{-}\wedge p)^{2}\leq p\odot p^{-} = 0 and (p^{-}\wedge p)^{2} = 0 . Hence p^{-}\wedge p\in I by the Proposition 4.6.
Proposition 4.9. Suppose that \varepsilon is residuated with p^{--} \odot q \odot t^{-} \in I , p \odot q^{-} \in I and I\in IM(\varepsilon) , then p \odot t^{-} \in I .
Proof. Let p^{--} \odot q \odot t^{-} \in I and p \odot q^{-} \in I for each p, q, t \in E . Then by the Proposition 3.2 (4) ,
(p^{--} \odot q \odot t^{-})^{-} \odot (p^{--} \odot q^{--} \odot t^{-})
= ((q \odot t^{-}) \rightarrow p^{---}) \odot (p^{--} \odot q^{--} \odot t^{-})
= ((q \odot t^{-}) \rightarrow p^{-}) \odot (p^{--} \odot q^{--} \odot t^{-})
= t^{-} \odot(t^{-} \rightarrow (q \rightarrow p^{-})) \odot p^{--} \odot q^{--}
\leq (q \rightarrow p^{-}) \odot p^{--} \odot q^{--}
= (q \rightarrow p^{-}) \odot (p^{-} \rightarrow 0) \odot q^{--}
\leq q^{-} \odot q^{--} = 0 \in I .
Since I\in I(\varepsilon) , (p^{--} \odot q \odot t^{-})^{-} \odot (p^{--} \odot q^{--} \odot t^{-}) \in I , then, by the Theorem 3.7, p^{--} \odot q^{--} \odot t^{-} \in I . From (p \odot q^{-})^{-} \odot (q^{-} \odot p^{--}) = q^{-} \odot (q^{-} \rightarrow p^{-}) \odot p^{--} \leq p^{-} \odot p^{--} = 0 \in I and I \in I(\varepsilon) , (p \odot q^{-})^{-} \odot (q^{-} \odot p^{--}) \in I . Hence, q^{-} \odot p^{--} \in I as p \odot q^{-} \in I . It follows that t^{-} \odot p^{--} \in I as I\in IM(\varepsilon) . Since t^{-} \odot p \leq t^{-} \odot p^{--} , then p \odot t^{-} \in I .
Proposition 4.10. Assume that \emptyset\neq I\subseteq E . Then the following assertions are equivalent:
(1) I\in IM(\varepsilon) ;
(2) I \in I(\varepsilon) and if p \odot (q^{-})^{2}\in I , then p \odot q^{-} \in I for each p, q \in E ;
(3) I \in I(\varepsilon) and if (p \odot q^{-}) \odot t^{-} \in I , then (p \odot t^{-}) \odot (q \odot t^{-})^{-} \in I for each p, q, t \in E ;
(4) 0 \in I and if (p \odot (q^{-})^{2})\odot t^{-} \in I and t \in I , then p \odot q^{-}\in I for each p, q, t \in E .
Proof. (1)\Rightarrow (2) : By Proposition 4.4, I\in I(\varepsilon) . Suppose that (p \odot q^{-}) \odot q^{-} = p \odot (q^{-})^{2} \in I . Since q \odot q^{-} = 0 \in I , then p \odot q^{-} \in I by (IM3) .
(2)\Rightarrow (3) Let (p \odot q^{-}) \odot t^{-} \in I . Since p \odot (q \odot t^{-})^{-} \odot t^{-} \odot t^{-} = p \odot t^{-} \odot t^{-} \odot (t^{-} \rightarrow q^{-}) \leq (p \odot q^{-}) \odot t^{-} \in I and I \in I(\varepsilon) , thus, p \odot (q \odot t^{-})^{-} \odot t^{-} \odot t^{-} \in I . By (2) , we get that (p \odot t^{-}) \odot (q \odot t^{-})^{-} = p \odot (q \odot t^{-})^{-} \odot t^{-} \in I .
(3)\Rightarrow (1) Assume that (p \odot q^{-}) \odot t^{-} \in I and q \odot t^{-} \in I . Then, (p \odot t^{-}) \odot (q \odot t^{-})^{-} \in I by (3) . Since q \odot t^{-} \in I and I \in I(\varepsilon) , then p \odot t^{-} \in I by the Theorem 3.7. Hence, I\in IM(\varepsilon) .
(2)\Rightarrow (4) Let (p \odot (q^{-})^{2}) \odot t^{-} \in I and t \in I . Then, 0 \in I and p \odot (q^{-})^{2} \in I as I \in I(\varepsilon) . Hence, p \odot q^{-} \in I by (2) .
(4)\Rightarrow (2) It's easy by taking t = 0 in (4) .
Proposition 4.11. Let \xi: A\rightarrow B be a homomorphism of EQ-algebras. Then
(1) If I\in IM(B) , then \xi^{-1}(I)\in IM(A) .
(2) If \xi is surjective and I\in IM(A) , then \xi(I)\in IM(B) .
Proof. The proof is analogous to that of the Proposition 3.23.
Proposition 4.12. Let I \in I(\varepsilon) . Then I\in IM(\varepsilon) iff \langle I\cup \{u\}\rangle = I_{u} , where I_{u} = \{p \in E: p\odot u^{-} \in I\} and u \in E .
Proof. (\Rightarrow) For any u \in E , I_{u} \neq \emptyset as 0\in I_{u} . Let p^{-} \odot q, p \in I_{u} . Then (p^{-} \odot q) \odot u^{-} \in I and p \odot u^{-} \in I . Since I\in IM(\varepsilon) , then q \odot u^{-} \in I , and so q \in I_{u} . Hence, I_{u}\in I(\varepsilon) by the Theorem 3.7. Also, u \in I_{u} as u \odot u^{-} = 0 \in I . Let p\in I . Since p \odot u^{-} \leq p , then p \odot u^{-} \in I , and so p \in I_{u} . Hence, I \subseteq I_{u} . Now, assume there is J \in I(\varepsilon) satisfying I\cup \{u\}\subseteq J . For any p \in I_{u} , then p\odot u^{-} \in I \subseteq J , and so p\odot u^{-} \in J . Since u \in J and J \in I(\varepsilon) , then p \in J , and so I_{u} \subseteq J . Hence, the conclusion holds.
(\Leftarrow) Let I \in I(\varepsilon) , p\odot q^{-} \odot t^{-} \in I and q \odot t^{-} \in I for every p, q, t \in E . Then, p \odot q^{-} \in I_{t} and q \in I_{t} by definition. Since I_{t} \in I(\varepsilon) , then p \in I_{t} , and so p \odot t^{-} \in I . Hence, I\in IM(\varepsilon) .
Proposition 4.13. Let I, J\in I(\varepsilon) . Then
(1) I_{u_{1}} = I iff u_{1} \in I ;
(2) if u_{1} \leq u_{2} , then I_{u_{1}} \subseteq I_{u_{2}} ;
(3) if I\subseteq J , then I_{u_{1}} \subseteq J_{u_{1}} ;
(4) (I\cap J)_{u_{1}} = I_{u_{1}} \cap J_{u_{1}} and (I\cup J)_{u_{1}} = I_{u_{1}}\cup J_{u_{1}} ;
(5) I_{u_{1}\oplus u_{2}}\subseteq (I_{u_{1}})_{u_{2}} .
Proof. (1) Since I \cup \{u_{1}\} \subseteq I_{u_{1}} = I , then u_{1} \in I . Conversely, if u_{1} \in I , since I_{u_{1}} = \langle I\cup \{u_{1}\}\rangle and I \in I(\varepsilon) , then I_{u_{1}} = I .
(2) Suppose that p \in I_{u_{1}} and u_{1} \leq u_{2} , then p \odot u_{1}^{-} \in I . Since u_{1} \leq u_{2} , then u_{2}^{-} \leq u_{1}^{-} , and so p \odot u_{2}^{-} \leq p \odot u_{1}^{-} , hence p \odot u_{2}^{-} \in I and p \in I_{u_{2}} . Thus, I_{u_{1}} \subseteq I_{u_{2}} .
(3) Let I, J \in I(\varepsilon) and I \subseteq J . If p \in I_{u_{1}} , then p \odot u_{1}^{-} \in I , and so p \odot u_{1}^{-} \in J . Hence, p\in J_{u_{1}} and I_{u_{1}} \subseteq J_{u_{1}} .
(4) Since I\cap J \subseteq I, J , then, (I\cap J)_{u_{1}} \subseteq I_{u_{1}}\cap J_{u_{1}} by (3) . Suppose that p \in I_{u_{1}} \cap J_{u_{1}} . Then p\odot u_{1}^{-} \in I and p \odot u_{1}^{-} \in J , and so p \odot u_{1}^{-}\in I \cap J . Hence, p \in (I \cap J)_{u_{1}} . Analogously, we can prove that (I\cup J)_{u_{1}} = I_{u_{1}}\cup J_{u_{1}} .
(5) Let p \in I_{u_{1}\oplus u_{2}} , then p \odot (u_{1}\oplus u_{2})^{-} = p \odot (u_{1}^{-} \rightarrow u_{2})^{-} \in I . Since (u_{1}^{-} \odot u_{2}^{-}) \rightarrow (u_{1}^{-} \rightarrow u_{2})^{-} = (u_{1}^{-} \rightarrow u_{2}) \rightarrow ((u_{1}^{-}\odot u_{2}^{-}) \rightarrow 0) = (u_{1}^{-} \rightarrow u_{2}) \rightarrow (u_{1}^{-} \rightarrow u_{2}^{--}) = 1 . Thus, (u_{1}^{-}\odot u_{2}^{-}) \leq (u_{1}^{-} \rightarrow u_{2})^{-} , and so p\odot (u_{1}^{-}\odot u_{2}^{-})\leq p\odot (u_{1}^{-}\rightarrow u_{2})^{-} \in I . Since I\in I(\varepsilon) , p \odot (u_{1}^{-} \odot u_{2}^{-})\in I . Hence, p\in (I_{u_{1}})_{u_{2}} .
Proposition 4.14. Let \varepsilon be an EQ-algebra with (DNP) , then the assertions are equivalent:
(1) If I \in I(\varepsilon) , then I \in IM(\varepsilon) ;
(2) \{0\}\in IM(\varepsilon) ;
(3) For each a\in E , the set E(a) = \{p\in E\mid p\odot a^{-} = 0\}\in I(\varepsilon) .
Proof. (1)\Rightarrow (2) Since \{0\}\in I(\varepsilon) , then \{0\}\in IM(\varepsilon) .
(2)\Rightarrow (3) (I1) E(a)\neq \emptyset as 0\in E(a) . Assume that p\leq q and q\in E(a) , then p\odot a^{-}\leq q\odot a^{-} = 0 , thus p\odot a^{-} = 0 , hence p\in E(a) .
(I2) Assume p, q\in E(a) , then p\odot a^{-} = 0 , q\odot a^{-} = 0 . Since (p^{-}\rightarrow q)\odot q^{-}\odot a^{-} = (p^{-}\rightarrow q)\odot (q\rightarrow 0)\odot a^{-}\leq p^{--}\odot a^{-} = p \odot a^{-} = 0 by the Proposition 2.3 (5) , then (p^{-}\rightarrow q)\odot q^{-}\odot a^{-} = 0\in\{0\} . Since q\odot a^{-} = 0\in\{0\} and \{0\}\in IM(\varepsilon) , then (p^{-}\rightarrow q)\odot a^{-} = 0 , and so (p^{-}\rightarrow q)\in E(a) .
(3)\Rightarrow (1) Let I\in I(\varepsilon) with p\odot q^{-}\odot z^{-}\in I and q\odot z^{-}\in I for each p, q, z\in E . For any a/I\in \varepsilon/I , (\varepsilon/I)(a/I)\in I(\varepsilon/I) . Then (p\odot q^{-})/I\odot z^{-}/I = 0 and q/I\odot z^{-}/I = 0 . Thus, (p\odot q^{-})/I\in (\varepsilon/I)(z/I) and q/I \in (\varepsilon/I)(z/I) , and so q/I \in (\varepsilon/I)(z/I) as (\varepsilon/I)(z/I) \in I(\varepsilon/I) . Hence p/I\odot z^{-}/I = 0 , and then p\odot z^{-}\in I . Therefore, I\in IM(\varepsilon) .
Definition 4.15. Assume that P is a proper ideal of an EQ-algebra \varepsilon . If p\odot q\in P implies p^{n}\in P or q^{n}\in P for some n\in N and each p, q\in E , then P is said to be a primary ideal.
Example 4.16 In Example 3.5, we can check that I = \{0, p\} is a primary ideal.
Proposition 4.17. Suppose that P is a proper ideal of \varepsilon with (DNP) . Then P is a primary ideal iff [u]\odot_{p} [v] = [0] implies [u]^{n} = [0] or [v]^{n} = [0] for some n\in N and each [u], [v]\in \varepsilon/P .
Proof. (\Rightarrow) Assume P is a primary ideal and [u]\odot_{p} [v] = [0] , then [u\odot v] = [u]\odot_{p} [v] = [0] , thus (u\odot v)^{--} = ((u\odot v)\rightarrow 0)^{-}\in P , and so (u\odot v)\in P . Hence, u^{n}\in P or v^{n}\in P for some n\in N by definition. Assume u^{n}\in P , then (u^{n}\rightarrow 0)^{-} = (u^{n})^{--} = u^{n}\in P . Also (0\rightarrow u^{n})^{-} = 0\in P , i.e. [u]^{n} = [0] . If we assume v^{n}\in P , we can get [v]^{n} = [0] .
(\Leftarrow) Assume u\odot v\in P , then ((u\odot v)\rightarrow 0)^{-} = (u\odot v)^{--}\in P . Since (0\rightarrow (u\odot v))^{-} = 0\in P , then [u]\odot_{p} [v] = [u\odot v] = [0] . Hence, [u]^{n} = [0] or [v]^{n} = [0] for some n\in N . If [u]^{n} = [0] , then u^{n} = (u^{n})^{--} = (u^{n}\rightarrow 0)^{-}\in P . If [v]^{n} = [0] , we can obtain (v^{n})\in P . Hence, the conclusion holds.
Definition 4.18. Let P be a proper ideal of an EQ-algebra \varepsilon . P is said to be a prime ideal of \varepsilon if p\wedge y \in P implies p \in P or y \in P for each p, y \in E . Let's denote the set of all prime ideals of \varepsilon by I_{p}(\varepsilon) .
Example 4.19. In Example 3.5, we can check that both I_{1} = \{0, p\}\in I_{p}(\varepsilon) and I_{2} = \{0, p, q\}\in I_{p}(\varepsilon) .
Proposition 4.20. If \varepsilon is residuated with (DNP) , then I\in I_{p}(\varepsilon) if and only if I^{-} = F is a prime filter of \varepsilon .
Proof. The proof is analogous to that of Proposition 3.13.
Proposition 4.21. Assume that \varepsilon satisfies (DNP) and P is a proper ideal of \varepsilon . Then P\in I_{p}(\varepsilon) iff I\cap J \subseteq P implies I \subseteq P or J \subseteq P for each I, J \in I(\varepsilon) .
Proof. (\Rightarrow) Let I, J \in I(\varepsilon) with I \cap J \subseteq P , but I\nsubseteq P and J\nsubseteq P , then there are p \in I - P and q \in J - P . Since p\wedge q \leq p, q and I, J \in I(\varepsilon) , then p\wedge q \in I \cap J \subseteq P and p\wedge q \in P . Thus, p \in P or q \in P as P \in I_{p}(\varepsilon) , which generates a contradiction. Hence, I \subseteq P or J \subseteq P .
(\Leftarrow) Let P \in I(\varepsilon) with p\wedge q \in P for each p, q \in E . If p, q \notin P , then \langle P\cup \{p\}\rangle \cap \langle P \cup \{q\}\rangle = \langle P \cup \{p \wedge q\}\rangle = P by Proposition 3.17. Thus, \langle P\cup \{p\}\rangle \subseteq P or \langle P \cup \{q\}\rangle \subseteq P , and so p \in P or q \in P , which generates a contradiction. Hence, P \in I_{p}(\varepsilon) .
Proposition 4.22. Let \xi : E_{1}\rightarrow E_{2} be a homomorphism of EQ-algebras. Then
(1) if P \in I_{p}(E_{2}) , then \xi^{-1}(P) \in I_{p}(E_{1}) ;
(2) if \xi is surjective and P \in I_{p}(E_{1}) with P \neq E_{2} , then \xi(P) \in I_{p}(E_{2}) .
Proof. The proof is similar to the Proposition 3.23.
Proposition 4.23. Assume that \varepsilon is an EQ-algebra. If p^{2} = p for each p\in E , then every primary ideal is prime.
Proof. Assume P is a primary ideal and p\wedge q\in P , since (p\odot q)\leq (p\wedge q) , then p\odot q\in P , and so p^{n}\in P or q^{n}\in P for some n\in N by definition. If p^{n}\in P , then p^{n} = p\in P as p^{2} = p . If q^{n}\in P , we get that q \in P . Hence P is prime.
Definition 4.24. Let M be a proper ideal of \varepsilon . If there is no proper ideal strictly contains M , then M is called a maximal ideal. Let us denote the set of all maximal ideals by I_{M}(\varepsilon) .
Proposition 4.25. Let I be a proper ideal of an EQ-algebra \varepsilon . Then I\in I_{M}(\varepsilon) if and only if \langle I\cup \{p\} \rangle = E for each p\in E\setminus I .
Proof. (\Rightarrow) If p\notin I , then I\subsetneqq \langle I\cup \{p\} \rangle\subseteq E . Hence, \langle I\cup \{p\} \rangle = E by definition.
(\Leftarrow) Assume G is an ideal with I\subsetneqq G\subseteq E . Then there exists p\in G but p\notin I . Thus E = \langle I\cup \{p\} \rangle\subseteq G , and so E = G . Therefore, I\in I_{M}(\varepsilon) .
Proposition 4.26. Suppose that \varepsilon is residuated with (DNP) and I\in I_{M}(\varepsilon) . Then p\in E\setminus I if and only if (np)^{-}\in I for some n\in N .
Proof. (\Rightarrow) If p\notin I , then \langle I\cup \{p\} \rangle = E by the Proposition 4.25, and so 1\in \langle I\cup \{p\} \rangle . By the Proposition 3.17 (2) , there are n\in N and q\in I satisfying 1\leq q\oplus(np) = q^{-}\rightarrow (np) , hence q^{-}\leq (np) , and so (np)^{-}\leq q^{--} = q\in I . Therefore (np)^{-}\in I .
(\Leftarrow) Let p\in I and (np)^{-}\in I . Then (np) \in I and (np)\oplus (np)^{-} = 1\in I . But I is a proper ideal, which generates a contradiction. Hence, p\notin I .
Proposition 4.27. Given an EQ-algebra \varepsilon with (DNP) , then every maximal ideal is prime.
Proof. Let M \in Max(\varepsilon) and p\wedge q \in M for any p, q \in E . If p\notin M , then M\subsetneqq \langle M \cup \{p\}\rangle . Since M \in Max(\varepsilon) , we get \langle M \cup \{p\}\rangle = E . In a similar way, if q\notin M , then \langle M \cup \{q\}\rangle = E . By the Proposition 3.17, we have E = \langle M \cup \{p\}\rangle\cap \langle M \cup \{q\}\rangle = \langle M \cup \{p\wedge q\}\rangle = M , which is a contradiction. Therefore, M \in I_{p}(\varepsilon) .
Proposition 4.28. Let \xi : E_{1}\rightarrow E_{2} be a homomorphism of EQ-algebras. Then
(1) if M \in I_{M}(E_{2}) , then \xi^{-1}(M) \in I_{M}(E_{1}) ;
(2) if \xi is surjective and M \in I_{M}(E_{1}) such that \xi(M)\neq E_{2} , then \xi(M) \in I_{M}(E_{2}) .
Proof. The proof is similar to the Proposition 3.23.
Theorem 4.29. Let I be a prime ideal of an EQ-algebra with (DNP) . If I is an implicative ideal, then it is maximal.
Proof. Assume that I \notin I_{M}(\varepsilon) . Then there is J \in I(\varepsilon) satisfying I\subsetneqq J\subsetneqq E , and so there is an element p \in J-I . Since (p^{-}\wedge p)\odot p^{-}\leq p^{-}\odot p = 0 \in I , then (p^{-}\wedge p)\odot p^{-}\in \langle I\cup \{p\} \rangle , thus p\wedge p^{-} \in \langle I\cup \{p\} \rangle \subseteq J . If p\wedge p^{-} \in I , then p^{-} \in I as I \in I_{p}(\varepsilon) , and so p^{-} \in J . Since J \in I(\varepsilon) , p\oplus p^{-} = 1 \in J , which generates a contradiction. Hence p\wedge p^{-} = p , then p\leq p^{-} , and so p^{2} = 0\in I . Because I is an implicative ideal, so p \in I by Proposition 4.6, which is a contradiction. Hence, I \in I_{M}(\varepsilon) .
In this part, we give the topological properties of prime ideals.
Proposition 5.1. Let P\in I_{p}(\varepsilon) . Then
(1) if P_{1} is a proper ideal and P\subseteq P_{1} , then P_{1}\in I_{p}(\varepsilon) ;
(2) if \{P_{i}\}_{i\in I} is a family of ideals and P\subseteq \cap_{i\in I}P_{i} , then \{P_{i}\}_{i\in I} is a chain.
Proof. (1) For each x, y\in E with x\wedge y\in P\subseteq P_{1} , since P is prime, then either x\in P\subseteq P_{1} or y\in P\subseteq P_{1} , hence P_{1}\in I_{p}(\varepsilon) .
(2) For each P_{1}, P_{2} \in\{P_{i}\}_{i\in I} . If P_{1} = E or P_{2} = E , then the conclusion holds. Now, we suppose that P_{1}\neq E , P_{2}\neq E and P_{1}\nsubseteq P_{2} , P_{2}\nsubseteq P_{1} , then there are x, y\in E satisfying x\in P_{1}-P_{2} and y\in P_{2}-P_{1} . Since P\subseteq \cap_{i\in I}P_{i}\subseteq P_{1}\cap P_{2} , then P_{1}\cap P_{2} is prime by (1) . Also since \langle x \rangle\in P_{1} and \langle y \rangle\in P_{2} , then \langle x \rangle \cap \langle y \rangle\subseteq P_{1}\cap P_{2} . Thus x\in \langle x \rangle \subseteq P_{1}\cap P_{2} or y\in \langle y \rangle \subseteq P_{1}\cap P_{2} , which is a contradiction. It follows that P_{1}\subseteq P_{2} or P_{2}\subseteq P_{1} , hence \{P_{i}\}_{i\in I} is a chain.
Proposition 5.2. Assume that I is a proper ideal of an EQ-algebra with (DNP) and \emptyset \neq S\subseteq E satisfying I\cap S = \emptyset . Then there exists P\in I_{p}(\varepsilon) satisfying I\subseteq P and P\cap S = \emptyset .
Proof. Let \Sigma = \{J \in I(\varepsilon)\mid I \subseteq J and J\cap S = \emptyset \} . Then \Sigma \neq \emptyset as I \in \Sigma . If \{J_{\lambda}\}_{\lambda\in\Delta} is a chain of ideals that are in \Sigma , then by Zorn's lemma we have P = \cup_{\lambda\in\Delta}J_{\lambda} is a maximal element of \Sigma . So, it only need to prove that P is an ideal. Then, we know that P\in I_{p}(\varepsilon) by Proposition 4.27. Assume that x\leq y and y\in P . Then there exists \lambda_{0}\in\Delta with y\in J_{\lambda_{0}} . Since J_{\lambda_{0}} is an ideal, then x\in J_{\lambda_{0}}\subseteq P , i.e. (I1) holds. Let x, y\in P . Then there are \lambda\in\Delta and \mu\in\Delta satisfying x\in J_{\lambda} and y\in J_{\mu} . Since \{J_{\lambda}\}_{\lambda\in\Delta} is a chain, then either J_{\lambda}\subseteq J_{\mu} or J_{\mu}\subseteq J_{\lambda} . Assume J_{\lambda}\subseteq J_{\mu} , then x, y\in J_{\mu} . Hence x\oplus y\in J_{\mu}\subseteq P , i.e. (I2) holds. Therefore P is an ideal. Hence, the conclusion holds.
Corollary 5.3. Assume that \varepsilon is an EQ-algebra with (DNP) . Then for any proper ideal I of \varepsilon with x\notin I , there is P\in I_{p}(\varepsilon) satisfying I\subseteq P and x\notin P .
Proof. Since I is proper, then there is x\in E-I . Let S = \{x\} in the Proposition 5.2, the proof is clear.
Next we discuss the topological properties of prime ideals. For each X\subseteq E , we denote that S(X) = \{P\in I_{P}(\varepsilon)\mid X\nsubseteq P\} .
Proposition 5.4. Suppose that \varepsilon is an EQ-algebra, then
(1) X_{1}\subseteq X_{2}\subseteq E implies S(X_{1})\subseteq S(X_{2}) ;
(2) S(X_{1}) = \emptyset if and only if X_{1} = \emptyset or X_{1} = \{0\} ;
(3) S(X_{1}) = I_{P}(\varepsilon) if and only if \langle X_{1}\rangle = E ;
(4) S(X_{1}) = S(\langle X_{1}\rangle) ;
(5) If X_{1}, X_{2}\subseteq E , then \langle X_{1}\rangle = \langle X_{2}\rangle if and only if S(X_{1}) = S(X_{2}) ;
(6) If S(X_{1})\subseteq S(X_{2}) , then \langle X_{1}\rangle \subseteq \langle X_{2}\rangle .
Proof. (1) For any P\in S(X_{1}) , then X_{1}\nsubseteq P . Since X_{1}\subseteq X_{2} , then X_{2}\nsubseteq P and X_{2}\in S(X_{2}) . Hence, S(X_{1})\subseteq S(X_{2}) .
(2) (\Rightarrow) Assume that S(X_{1}) = \emptyset but X_{1}\neq\emptyset and X_{1}\neq\{0\} , then there are 0\neq a\in X_{1} and P\in I_{p}(\varepsilon) such that a\notin P by Corollary 5.3, i.e. X_{1}\nsubseteq P , and so P\in S(X_{1}) , which is contradiction. Hence, either X_{1} = \emptyset or X_{1} = \{0\} .
(\Leftarrow) If X_{1} = \emptyset , then for each P\in I_{P}(\varepsilon) , we have \emptyset \subseteq P , i.e. P\notin S(\emptyset) , hence S(\emptyset) = \emptyset . Also, If X_{1} = \{0\} , we can obtain S(\{0\}) = \emptyset .
(3) (\Rightarrow) Assume S(X_{1}) = I_{P}(\varepsilon) but \langle X_{1}\rangle\neq E . Then \langle X_{1}\rangle is proper. By Corollary 5.3, there is P\in I_{p}(\varepsilon) satisfying \langle X_{1}\rangle\subseteq P . Then, X_{1}\subseteq \langle X_{1}\rangle\subseteq P , i.e. P\notin S(X_{1}) , which generates a contradiction. Hence \langle X_{1}\rangle = E .
(\Leftarrow) If \langle X_{1}\rangle = E , then E is the smallest ideal including X_{1} . Hence X_{1}\nsubseteq P for any P\in I_{P}(\varepsilon) , and so I_{P}(\varepsilon)\subseteq S(X_{1}) . Therefore, S(X_{1}) = I_{P}(\varepsilon) .
(4) Since X_{1}\subseteq \langle X_{1}\rangle , then S(X_{1})\subseteq S(\langle X_{1}\rangle) by (1) . Conversely, for any P\in S(\langle X_{1}\rangle) , we have \langle X_{1}\rangle\nsubseteq P . Hence X_{1}\nsubseteq P , i.e. P\in S(X_{1}) . Therefore S(X_{1}) = S(\langle X_{1}\rangle) .
(5) If \langle X_{1}\rangle = \langle X_{2}\rangle , then S(X_{1}) = S(\langle X_{1}\rangle) = S(\langle X_{2}\rangle) = S(X_{2}) . Conversely, assume S(X_{1}) = S(X_{2}) , but \langle X_{1}\rangle\neq\langle X_{2}\rangle , then there is P\in I_{p}(\varepsilon) satisfying \langle X_{1}\rangle\subseteq P , \langle X_{2}\rangle\nsubseteq P by Proposition 5.2. Thus P\notin S(X_{1}) , P\in S(X_{2}) , which is a contradiction. Hence \langle X_{1}\rangle = \langle X_{2}\rangle .
(6) For any P\in I_{P}(\varepsilon) , if X_{2}\subseteq P , then P\notin S(X_{2}) , and so P\notin S(X_{1}) . Hence X_{1}\subseteq P . Therefore \langle X_{1}\rangle \subseteq \langle X_{2}\rangle .
Proposition 5.5. Suppose that \varepsilon is an EQ-algebra, then
(1) If \{X_{i}\}_{i\in I} is a family of subset of E , then S(\cup_{i\in I}X_{i}) = \cup_{i\in I}S(X_{i}) ;
(2) For each Z_{1}, Z_{2}\in E , S(Z_{1})\cap S(Z_{2}) = S(\langle Z_{1}\rangle \cap \langle Z_{2}\rangle) .
Proof. (1) For each i\in I , X_{i}\subseteq \cup_{i\in I}X_{i} , then S(X_{i})\subseteq S(\cup_{i\in I}X_{i}) for any i\in I . Thus \cup_{i\in I}S(X_{i})\subseteq S(\cup_{i\in I}X_{i}) . Conversely, for any P\in S(\cup_{i\in I}X_{i}) , then \cup_{i\in I}X_{i}\nsubseteq P . Hence, there exists i_{0}\in I satisfying X_{i_{0}}\nsubseteq P , hence P\in S(X_{i_{0}})\subseteq\cup_{i\in I}S(X_{i}) , and so S(\cup_{i\in I}X_{i})\subseteq\cup_{i\in I}S(X_{i}) . Hence, S(\cup_{i\in I}X_{i}) = \cup_{i\in I}S(X_{i}) .
(2) On one hand, if P\in S(Z_{1})\cap S(Z_{2}) , then Z_{1}\nsubseteq P and Z_{2}\nsubseteq P . Hence \langle Z_{1}\rangle\nsubseteq P and \langle Z_{2}\rangle\nsubseteq P . If \langle Z_{1}\rangle\cap \langle Z_{2}\rangle\subseteq P , then \langle Z_{1}\rangle\subseteq P or \langle Z_{2}\rangle\subseteq P , which generates a contradiction, hence \langle Z_{1}\rangle\cap \langle Z_{2}\rangle\nsubseteq P , i.e. P\in S(\langle Z_{1}\rangle \cap \langle Z_{2}\rangle) , and so S(Z_{1})\cap S(Z_{2})\subseteq S(\langle Z_{1}\rangle \cap \langle Z_{2}\rangle) . On the other hand, assume P\in S(\langle Z_{1}\rangle \cap \langle Z_{2}\rangle) , then \langle Z_{1}\rangle\nsubseteq P , \langle Z_{2}\rangle\nsubseteq P . Thus Z_{1}\nsubseteq P and Z_{2}\nsubseteq P . Hence P\in S(Z_{1})\cap S(Z_{2}) , i.e. S(\langle Z_{1}\rangle \cap \langle Z_{2}\rangle)\subseteq S(Z_{1})\cap S(Z_{2}) . Hence, S(Z_{1})\cap S(Z_{2}) = S(\langle Z_{1}\rangle \cap \langle Z_{2}\rangle) .
Let \varepsilon be an EQ-algebra, if X = \{a\} , then we denote that S(a) = \{P\in I_{P}(\varepsilon)\mid a\notin P\} .
Proposition 5.6. Assume that \varepsilon is an EQ-algebra, then
(1) S(0) = \emptyset and S(1) = I_{P}(\varepsilon) ;
(2) if a\leq b , then S(a)\subseteq S(b) ;
(3) S(a) = S(b) if and only if \langle a\rangle = \langle b\rangle ;
(4) S(a)\cap S(b) = S(a\wedge b) ;
(5) S(a)\cup S(b) = S(a\oplus b) .
Proof. (1) For any P\in I_{P}(\varepsilon) , 0\in P , then S(0) = \emptyset . Since P is proper, then 1\notin P . Thus P\in S(1) , and so S(1) = I_{P}(\varepsilon) .
(2)-(3) The proof is analogous to that of the Proposition 5.4 (1) and (5) .
(4) For any P\in I_{P}(\varepsilon) , a\wedge b\notin P iff a\notin P and b\notin P , hence P\in S(a\wedge b) iff a\wedge b\notin P iff a\notin P and b\notin P iff P\in S(a) and P\in S(b) iff P\in S(a)\cap S(b) .
(5) We can check that for each ideal I of \varepsilon , a\notin I or b\notin I iff a\oplus b \notin I by using the proof by contradiction. Then for any P\in I_{P}(\varepsilon) , we have a\notin P or b\notin P iff a\oplus b \notin P , it follows that P\in S(a)\cup S(b) iff P\in S(a\oplus b) .
Definition 5.7. Let \varepsilon be an EQ-algebra and \Im = \{S(X)\mid X\subseteq E\} , then by the Proposition 5.4 and 5.5 we have
(1) \emptyset , I_{P}(\varepsilon)\in \Im ;
(2) if S(X) , S(Y)\in \Im , then S(X)\cap S(Y)\in \Im ;
(3) if S(X_{i})_{i\in I}\in \Im , then \cup_{i\in I}S(X_{i})\in \Im .
Hence, \Im is a topology on I_{P}(\varepsilon) and (I_{P}(\varepsilon), \Im) is a topological space of prime ideals.
Proposition 5.8. Suppose that \varepsilon is an EQ-algebra, then \{S(a)\}_{a\in E} is a topological base of \Im .
Proof. For any S(X)\in \Im , then, by the Proposition 5.5, we have S(X) = S(\cup_{a\in X}\{a\}) = \cup_{a\in X}S(\{a\}) . It follows that every member in \Im can be expressed as the union of elements in subset of \{S(a)\}_{a\in E} . Hence, the conclusion holds.
Proposition 5.9. Let \varepsilon be an EQ-algebra, then S(a) is compact in (I_{P}(\varepsilon), \Im) for any a\in E .
Proof. We only need to prove that each open covering of S(a) has a finite open covering. Assume S(a) = \cup_{i\in I}S(a_{i}) = S(\cup_{i\in I}\{a_{i}\}) , then \langle a\rangle = \langle \cup_{i\in I}\{a_{i}\}\rangle by the Proposition 5.4 (5) , thus a\in \langle \cup_{i\in I}\{a_{i}\}\rangle and there are n\in N and i_{1}, i_{2}, \cdots, i_{n}\in I satisfying a\leq a_{i_{1}}\oplus a_{i_{2}} \oplus \cdots \oplus a_{i_{n}} . By the Proposition 5.6 (2) and (5) , we have S(a)\subseteq S(a_{i_{1}}\oplus a_{i_{2}} \oplus \cdots \oplus a_{i_{n}}) = S(a_{i_{1}})\cup\cdots \cup S(a_{i_{n}}) . Conversely, S(a_{i_{1}})\cup\cdots \cup S(a_{i_{n}})\subseteq \cup_{i\in I}S(a_{i}) = S(a) . Hence, S(a) = S(a_{i_{1}})\cup\cdots \cup S(a_{i_{n}}) .
Proposition 5.10. Suppose that \varepsilon is an EQ-algebra, Then (I_{P}(\varepsilon), \Im) is a compact T_{0} topological space.
Proof. Since I_{P}(\varepsilon) = S(1) , then I_{P}(\varepsilon) is compact by the Proposition 5.9. Now we show that I_{P}(\varepsilon) is a T_{0} topological space. For every P, Q\in I_{P}(\varepsilon) and P\neq Q , then P\nsubseteq Q or Q\nsubseteq P . If P\nsubseteq Q , then there exists a satisfying a\in P but a\notin Q . Let U = S(a) , then Q\in U , P\notin U . If Q\nsubseteq P , the proof is similar. Hence, the conclusion holds.
From the above discussions, we know that the topological space I_{p}(E) is a prime spectrum [16]. Next, we study the reticulation of EQ-algebras.
Definition 5.11. Given an EQ-algebra \varepsilon , a bounded distributive lattice L , and a map \lambda: E\rightarrow L . We call the pair (L, \lambda) an ideal reticulation, if it satisfies the following properties:
(R1) \lambda(a\oplus b) = \lambda(a)\vee\lambda(b) ;
(R2) \lambda(a\wedge b) = \lambda(a)\wedge\lambda(b) ;
(R3) \lambda(0) = 0, \lambda(1) = 1 ;
(R4) \lambda is surjective;
(R5) \lambda(a)\leq \lambda(b) iff na\leq b for some n\in N^{+} .
Example 5.12. Let L be the set of all principal ideals and \lambda: a\rightarrow \langle a\rangle , where a\in E . Then, we can check that (L, \lambda) be an ideal reticulation by Proposition 3.17.
Proposition 5.13. Given an ideal I of EQ-algebra \varepsilon and a, b\in E . Then
(1) If \lambda(a) = \lambda(b) , then a\in I if and only if b\in I .
(2) \lambda(a) = \lambda(b) if and only if \langle a\rangle = \langle b\rangle .
(3) \lambda(a)\in\lambda(I) if and only if a\in I .
(4) If I is prime of E , then \lambda(I) is a prime ideal of L .
Proof. (1) Assume that a\in I , since \lambda(b)\leq \lambda(a) , then nb\leq a for some n\in N^{+} . Thus, b\in I . Similarly, we can prove that b\in I implies that a\in I .
(2) Let \lambda(a) = \lambda(b) . Now, \lambda(a)\leq\lambda(b) \Leftrightarrow a\leq nb \Leftrightarrow a\in \langle b\rangle , it follows that \langle a\rangle\subseteq\langle b\rangle . Analogously, we have \langle b\rangle\subseteq\langle a\rangle .
(3) If \lambda(a)\in\lambda(I) , then there is b\in I such that \lambda(a) = \lambda(b) . It follows that a\in I by (1) .
(4) Since 0\in I\neq \emptyset , then \lambda(0)\in \lambda(I)\neq \emptyset . Assume that \lambda(a), \lambda(b)\in L with \lambda(a)\leq\lambda(b) , then na\leq b . Thus, na\in I and so a\in I . Hence, \lambda(a)\in \lambda(I) , that is, (I1) holds. Let \lambda(a), \lambda(b)\in \lambda(I) . Then, a, b\in I by (3) . Hence, a\oplus b\in I , and so \lambda(a\oplus b)\in \lambda(I) . That is, \lambda(a)\vee \lambda(b)\in \lambda(I) . Hence, \lambda(I) is an ideal.
Since I\neq E , then there is a\in E but a\notin I . Thus, \lambda(a)\notin\lambda(I) by (3) . Hence, \lambda(I) is proper. Assume that \lambda(a)\wedge\lambda(b)\in \lambda(I) , then \lambda(a\wedge b)\in \lambda(I) . Thus, a\in I or b\in I , it follows that \lambda(a)\in \lambda(I) or \lambda(b)\in \lambda(I) . Hence, \lambda(I) is prime.
Proposition 5.14. The map \lambda:E\rightarrow L is surjective if and only if \lambda^{*}: \mathcal{P}(L)\rightarrow \mathcal{P}(E) is injective.
Proof. Let \lambda be surjective. If \lambda^{*}(X) = \lambda^{*}(Y) for some X, Y\in \mathcal{P}(L) , then \lambda\lambda ^{*}(X) = \lambda\lambda ^{*}(Y) . It follows that X = \lambda\lambda ^{*}(X) = \lambda\lambda ^{*}(Y) = Y , that is, \lambda^{*} is injective. Conversely, for each y\in Y , \lambda^{*}(\{y\})\neq \emptyset . Otherwise, if \lambda^{*}(\{y\}) = \emptyset for some y_{0}\in Y . Then, \lambda^{*}(Y) = \lambda^{*}(Y\setminus \{y_{0}\}) , but Y\neq Y\setminus\{y_{0}\} , which is a contradiction. Now, we define the restriction \lambda^{*}: I_{p}(L)\rightarrow I_{p}(E) by \lambda^{*}(I) = \lambda^{-1}(I) for each I\in I_{p}(L) .
Proposition 5.15. If I\in I_{p}(L) , then \lambda^{*}(I)\in I_{p}(E) .
Proof. First, we show that \lambda^{*}(I) is an ideal of E . Let a, b\in E such that a\leq b and b\in \lambda^{*} . Then \lambda(a)\leq \lambda(b)\in I . Thus, \lambda(a)\in I , it follows that a\in \lambda^{*}(I) . That is, (I1) holds. Now, assume a, b\in \lambda^{*} , then \lambda(a), \lambda(b)\in I , and so \lambda(a)\vee \lambda(b)\in I . That is \lambda(a\oplus b)\in I , it follows that a\oplus b\in \lambda^{*}(E) .
Since I\neq L and \lambda^{*} is injective, then \lambda^{*}(I)\neq E . Assume that a\wedge b\in \lambda^{*}(I) , then \lambda(a)\wedge \lambda(b) = \lambda(a\wedge b)\in I . Thus, \lambda(a)\in I or \lambda(b)\in I , it follows that a\in \lambda^{*}(I) or b\in \lambda^{*}(I) . Hence, \lambda^{*}(I)\in I_{p}(E) .
Theorem 5.16. Given an ideal I of EQ-algebra \varepsilon . Then
(1) \lambda^{*}\lambda(I) = I .
(2) The map \lambda^{*} is surjective.
Proof. (1) By Proposition 5.13 (3) , we have a \in I \Leftrightarrow \lambda(a)\in\lambda(I) iff a\in \lambda^{*}\lambda(I) .
(2) Let I\in I_{p}(E) , \lambda(I)\in I_{p}(L) by Proposition 5.13 (4) . By (1) , we know that \lambda^{*}\lambda(I) = I , then \lambda^{*} is surjective.
In this article, we firstly introduced ideals and other special ideals in EQ-algebras, such as implicative ideals, primary ideals, prime ideals and maximal ideals. We discuss their properties and the relationships among them, for example, we proved that every maximal ideal is prime and if prime ideals are implicative, then they are maximal in the EQ-algebras with the condition (DNP) . And each primary ideal is prime under certain condition. Also, we gave the generation formula of ideals and their equivalent characterizations. By studying the relationship between ideals and filters, we obtain that filters and ideals are not dual notions in EQ-algebra. But we prove that they are dual in a residuated EQ-algebra with the condition (DNP) . Also, We gave an equivalent condition for I(\varepsilon) to become a Boolean algebra. Finally, we introduced the topological properties of prime ideals. We got that the set of all prime ideals is a compact T_{0} topological space. Also, we transferred the spectrum of EQ-algebras to bounded distributive lattices and given the ideal reticulation of EQ-algebras.
As we all know, fuzzy ideals are the generalization of ideals. An ideal can uniquely determine a fuzzy ideal, but given a fuzzy ideal, we can get more than one ideals. So the study of fuzzy ideals is more extensive than that of ideals, and more algebraic structure information can be obtained. Therefore, we will devote ourselves to the study of fuzzy ideals on EQ-algebras in the future work.
This research is supported by a grant of National Natural Science Foundation of China (11971384).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | P. B. Andrews, An introduction to mathmatical logic and type theory: To truth through proof, Kluwer Academic Publisher, Dordrecht, The Netherlands, 2002. |
[2] |
W. J. Chen, W. A. Dudek, Ideals and congruences in quasi-pseudo-MV algebras, Soft Comput., 22 (2018), 3879–3889. doi: 10.1007/s00500-017-2854-6
![]() |
[3] |
M. El-Zekey, Representable good EQ-algebras, Soft Comput., 14 (2010), 1011–1023. doi: 10.1007/s00500-009-0491-4
![]() |
[4] | M. A. Kologani, R. A. Borzooei, On ideal theory of hoops, Math. Bohem., 145 (2019), 141–162. |
[5] |
C. Lele, J. B. Nganou, MV-algebras derived from ideals in BL-algebas, Fuzzy Sets Syst., 218 (2013), 103–113. doi: 10.1016/j.fss.2012.09.014
![]() |
[6] |
L. Z. Liu, X. Y. Zhang, Implicative and positive implicative prefilters of EQ-algebras, J. Intell. Fuzzy Syst., 26 (2014), 2087–2097. doi: 10.3233/IFS-130884
![]() |
[7] |
Y. Liu, Y. Qin, X. Y. Qin, Y. Xu, Ideals and fuzzy ideals on residuated lattices, Int. J. Mach. Learn. Cyb., 8 (2017), 239–253. doi: 10.1007/s13042-014-0317-2
![]() |
[8] | H. L. Niu, X. L. Xin, J. T. Wang, Ideal theory on bounded semihoops, Ital. J. Pure Appl. Math., 26 (2020), 911–925. |
[9] | V. Nov\acute{a}k, On fuzzy type theory, Fuzzy Sets Syst., 149 (2005), 235–273. |
[10] | V. Nov\acute{a}k, Fuzzy type theory as higher-order fuzzy logic, In: Proceeding of the 6th international conference on intelligent technologies, Bangkok, Thailand, 2005. |
[11] | V. Nov\acute{a}k, EQ-algebras: Primary concepts and properties, In: Proceedings of the Czech-Japan seminar, ninth meeting, Kitakyushu and Nagassaki, 2006,219–223. |
[12] | V. Nov\acute{a}k, B. De Baets, EQ-algebra, Fuzzy Sets Syst., 160 (2009), 2956–2978. |
[13] | A. Paad, Integral ideals and maximal ideals in BL-algebras, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 43 (2016), 231–242. |
[14] |
A. Paada, Ideals in bounded equality algebras, Filomat, 33 (2019), 2113–2123. doi: 10.2298/FIL1907113P
![]() |
[15] |
D. Piciu, Prime, minimal prime and maximal ideals spaces in residuated lattices, Fuzzy Sets Syst., 405 (2021), 47–64. doi: 10.1016/j.fss.2020.04.009
![]() |
[16] |
X. W. Zhang, J. Yang, The spectra and reticulation of EQ-algebras, Soft Comput., 25 (2021), 8085–8093. doi: 10.1007/s00500-021-05917-9
![]() |
[17] |
W. Wang, X. L. Xin, J. T. Wang, EQ-algebras with internal states, Soft Comput., 22 (2018), 2825–2841. doi: 10.1007/s00500-017-2754-9
![]() |
1. | Batoul Ganji Saffar, 2022, On P-torsion EQ-modules and P-cyclic EQ-modules, 978-1-6654-7872-4, 1, 10.1109/CFIS54774.2022.9756460 | |
2. | Jieqiong Shi, Bin Zhao, Prefilters and fuzzy prefilters on pseudo EQ-algebras, 2024, 15, 1868-8071, 2457, 10.1007/s13042-023-02042-x |