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Abstract: In this article, we introduce ideals and other special ideals on EQ-algebras, such as
implicative ideals, primary ideals, prime ideals and maximal ideals. At first, we give the notion of
ideal and its related properties on EQ-algebras, and give its equivalent characterizations. We discuss
the relations between ideals and filters, and study the generating formula of ideals on EQ-algebras.
Moreover, we study the properties of implicative ideals, primary ideals, prime ideals and maximal
ideals and their relations. For example, we prove that every maximal ideal is prime and if prime
ideals are implicative, then they are maximal in the EQ-algebra with the condition (DNP). Finally, we
introduce the topological properties of prime ideals. We get that the set of all prime ideals is a compact
T0 topological space. Also, we transferred the spectrum of EQ-algebras to bounded distributive lattices
and given the ideal reticulation of EQ-algebras.
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1. Introduction

As we all know, logic is not only an important tool in mathematics and information science, but
also a basic technology. Non-classical logic consists of fuzzy logic and multi-valued logic, they deal
with uncertain information such as fuzziness and randomness. Therefore, all kinds of fuzzy logic
algebras are widely introduced and studied, such as residuated lattices, BL-algebras, MV-algebras.
The truth values in FTT were assumed to form either an IMTL-algebra, BL-algebra, or MV-algebra,
all of them being special kinds of residuated lattices in which the basic operations are the monoidal
operation (multiplication) and its residuum. The latter is a natural interpretation of implication in
fuzzy logic; the equivalence is then interpreted by the biresiduum, a derived operation. The basic
connective in FTT, however, is a fuzzy equality and, therefore, it is not natural to interpret it by a
derived operation. In order to remove the defect, V. Novák [11] proposed EQ-algebra in 2006. EQ-
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algebras not only provide a wider structure of truth value algebras for fuzzy type theory, but also
generalize residuated lattices. Higher order fuzzy logic [9, 10] is relative to classical higher order
logic [1]. In 2009, V. Novák [12] gave the new concept of EQ-algebras, studied their properties in
detail and gave their different subclasses, such as separated EQ-algebras, good EQ-algebras, involutive
EQ-algebras, residuated EQ-algebras and so on. Since the universality and characteristics of EQ-
algebras as the algebraic structure of truth value of high-order fuzzy logic, EQ-algebras have absorbed
many scholars. It is not only a meaningful research object, but also a very popular research object.

Ideal theory plays a very important role in logic algebras. The concept of ideal has been proposed
in a lot of algebraic structures. The concept of ideal on residuated lattices was put forward by Yi
Liu and Ya Qin [7], their properties and equivalent characterizations were obtained. And, Dana
Piciu introduced the notion of minimal prime ideal in residuated lattices and related properties were
investigated in [15]. Lele and Nganou[5] proposed the notion of ideal on BL-algebras, which is
a natural generalization of that of ideal in MV-algebras. Then, Akbar Paad [13] proposed the
concept of integral ideals and maximal ideals in BL-algebras. Furthermore, Wenjuan Chen [2] mainly
investigated ideals and congruences in quasi-pseudo-MV algebras. Kologani and Borzoei [4] discussed
the relationships among associative ideals, maximal ideals and prime ideals on hoops. Akbar Paada
introduced ideals on bounded equality algebras in [14]. Also, the notions of prime and Boolean ideals
in equality algebras were introduced. Hailing Niu and Xiaolong Xin[8] studied ideals on semihoop
algebras. However, the notion of ideal on EQ-algebras is missing, which may make it difficult for us
to study the algebraic structure of logical systems. Futhermore, in MV-algebras and Boolean algebras,
filters and ideals are dual, but ideals and filters are not dual in semihoops. So we want to investigate
whether they have a dual relation. For these reasons, we will introduce the ideals on EQ-algebras in
this paper.

The papers is organized as follows: In section 2, we give some basic results on EQ-algebras, which
will be used in the other sections. In section 3, we introduce the definition of ideal, its generating
formula and its equivalent characterizations, and we discuss the relationships between ideals and filters.
Moreover, we derive congruence relations from ideals. In section 4, we introduce some special ideals,
such as implicative ideals, primary ideals, prime ideals and maximal ideals. We discuss some related
properties and their relations. In section 5, we introduce the topological properties of prime ideals, we
obtain that the set of all prime ideals IP(ε) is a compact T0 topological space, transfer the spectrum of
EQ-algebras to bounded distributive lattices and give the ideal reticulation of EQ-algebras.

2. Preliminaries

In the following, we give some basic results about EQ-algebras.

Definition 2.1. [12] An algebra ε = (E,∧,⊙,∼, 1) of type (2, 2, 2, 0) is said to be an EQ-algebra, if for
each p, q,w, u ∈ E, it satisfies:
(E1) (E,∧, 1) is a commutative idempotent monoid;
(E2) (E,⊙, 1) is a commutative monoid and ⊙ is isotone w.r.t. ” ≤ ”, where p ≤ q is defined by
p ∧ q = p;
(E3) ((p ∧ q) ∼ w) ⊙ (u ∼ p) ≤ w ∼ (u ∧ q);
(E4) (p ∼ q) ⊙ (w ∼ u) ≤ (p ∼ w) ∼ (q ∼ u);
(E5) (p ∧ q ∧ w) ∼ p ≤ (p ∧ q) ∼ p;
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(E6) (p ∧ q) ∼ p ≤ (p ∧ q ∧ w) ∼ (p ∧ w);
(E7) p ⊙ q ≤ p ∼ q.

Definition 2.2. [12] Let ε be an EQ-algebra. We call it is
(1) good if p ∼ 1 = p for each p ∈ E;
(2) separated if p ∼ q = 1 implies p = q for each p, q ∈ E;
(3) residuated if for each p, q,w ∈ E, (p ⊙ q) ∧ w = (p ⊙ q) if and only if p ∧ ((q ∧ w) ∼ q) = p.

Proposition 2.3. [3, 12] Let ε be an EQ-algebra, define p → q := (p ∧ q) ∼ p. Then for each
p, q,w ∈ E, we have:
(1) w ⊙ (p ∧ q) ≤ (w ⊙ p) ∧ (w ⊙ q);
(2) p ∼ q ≤ p→ q, p ∼ q = q ∼ p;
(3) if p ≤ q, then p→ q = 1;
(4) (p ∼ q) ⊙ (q ∼ w) ≤ p ∼ w, p ∼ q ≤ (p ∧ w) ∼ (q ∧ w);
(5) (p→ q) ⊙ (q→ w) ≤ p ∼ w ≤ p→ w;
(6) p→ q ≤ (w→ p)→ (w→ q), p→ q ≤ (q→ w)→ (p→ w);
(7) if p ≤ q, then p ∼ q = q→ p, w→ p ≤ w→ q and q→ w ≤ p→ w;
(8) w→ (p ∧ q) ≤ (w→ p) ∧ (w→ q).
If ε is good, then
(9) p ≤ (p ∼ q) ∼ q and p ≤ (p→ q)→ q;
(10) p→ (q→ w) = q→ (p→ w).

Proposition 2.4. [3] Assume that ε is an EQ-algebra. Then ε is residuated if and only if ε is separated
and (p ⊙ q)→ w = p→ (q→ w) for every p, q,w ∈ E.

Definition 2.5. [12] Assume that G is a subset of an EQ-algebra. Then G is said to be a filter if for
each p, q, u ∈ E it satisfies:
(F1) 1 ∈ G;
(F2) p, q ∈ G imply p ⊙ q ∈ G;
(F3) p, p→ q ∈ G imply q ∈ G;
(F4) p→ q ∈ G imply (p ⊙ u)→ (q ⊙ u) ∈ G.

Definition 2.6. [6] Let G be a filter of an EQ-algebra. Then G is called a positive implicative filter if
(p ⊙ q)→ u ∈ G and p→ q ∈ G implies p→ u ∈ G for each p, q, u ∈ E.

3. Ideals on EQ-algebras

In this part, we introduce the definition of ideals, their generating formulas and their equivalent
characterizations, and we discuss the relationships between them and filters. Moreover, we derive
congruence relations from ideals.

Suppose that ε is an EQ-algebra. Define two binary operations on ε in the following:
(1) p ⊕ q = p− → q, where p− = p→ 0.
(2) p ∨1 q = ((p→ q)→ q) ∧ ((q→ p)→ p).

we can easily check that p ∨1 q is an upper bound of {p, q}. If p−− = p for every p ∈ E, we call that
ε satisfies the double negation property (DNP, for short).
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Proposition 3.1. Let ε be a residuated EQ-algebra with the operation ∨1, then for each p, q, u ∈ E,
we have
(1) (∨1i∈I pi) ⊙ q = ∨1i∈I(pi ⊙ q);
(2) (∨1i∈I pi)→ q = ∧i∈I(pi → q), q→ (∧i∈I pi) = ∧i∈I(q→ pi);
(3) For any n ∈ N, (p∨1 q)n → u := ((p∨1 q)⊙ (p∨1 q)⊙ · · · ⊙ (p∨1 q))→ u =

∧
{(a1 ⊙ (a2 ⊙ · · · an)→

u | ai ∈ {p, q}}.

Proof. (1) It is obvious that ∨1i∈I(pi ⊙ q) ≤ (∨1i∈I pi)⊙ q. Conversely, since (pi ⊙ q) ≤ ∨1i∈I(pi ⊙ q), then
pi ≤ q→ ∨1i∈I(pi⊙q) for each i ∈ I. Thus ∨1i∈I pi ≤ q→ ∨1i∈I(pi⊙q), and so (∨1i∈I pi)⊙q ≤ ∨1i∈I(pi⊙q).
Hence (∨1i∈I pi) ⊙ q = ∨1i∈I(pi ⊙ q).
(2) u ≤ (∨1i∈I pi)→ q iff (∨1i∈I pi)⊙ u ≤ q iff ∨1i∈I(pi ⊙ u) ≤ q iff pi ⊙ u ≤ q, for any i ∈ I iff u ≤ pi → q,
for any i ∈ I iff u ≤ ∧i∈I(pi → q), hence (∨1i∈I pi) ⊙ q = ∧i∈I(pi ⊙ q). Analogously, we can prove the
second equation.
(3) If n = 1, then (p∨1 q)→ u = (p→ u)∧ (q→ u) by (2). Assume that the equality holds for n. Thus
(p ∨1 q)n+1 → u
=(p ∨1 q) ⊙ (p ∨1 q)n → u
=(p ∨1 q)→ ((p ∨1 q)n → u) (by proposition 2.4)
=(p ∨1 q)→

∧
{(a1 ⊙ (a2 ⊙ · · · an)→ u | ai ∈ {p, q}} (by assumption)

=(p→
∧
{(a1 ⊙ (a2 ⊙ · · · an)→ u | ai ∈ {p, q}})∧ (q→

∧
{(a1 ⊙ (a2 ⊙ · · · an)→ u | ai ∈ {p, q}}) (by (2))

=
∧
{p→ (a1 ⊙ (a2 ⊙ · · · an)→ u) | ai ∈ {p, q}} ∧

∧
{q→ (a1 ⊙ (a2 ⊙ · · · an)→ u) | ai ∈ {p, q}} (by (2))

=
∧
{(p⊙a1⊙a2⊙· · · an)→ u | ai ∈ {p, q}}∧

∧
{(q⊙a1⊙a2⊙· · · an)→ u | ai ∈ {p, q}} (by proposition 2.4)

=
∧
{(a1 ⊙ (a2 ⊙ · · · an ⊙ an+1)→ u | ai ∈ {p, q}}.

Therefore, the conclusion holds. □

Proposition 3.2. Assume that ε is an EQ-algebra. Then for every p, q, u ∈ E :
(1) if p ≤ q, then p ⊕ u ≤ q ⊕ u;
(2) p, q ≤ p ⊕ q;
(3) p ⊕ p− = 1, 0 ⊕ p = p and p ⊕ 0 = p−−;
(4) p ≤ p−−, p−−− = p−;
(5) (p ⊕ q) ⊕ u ≤ p ⊕ (q ⊕ u);
If ε is residuated with (DNP), then
(6) p ⊙ p− = 0, p ⊕ q = 1 if and only if p− ≤ q;
(7) p− ⊙ q− = (p ⊕ q)−;
(8) p− ⊕ q− = (p ⊙ q)−;
(9) ⊕ is commutative and associative.

Proof. The proofs of (1)–(4) and (6) are easy and we omit them.
(5) (p ⊕ q) ⊕ u ≤ p ⊕ (q ⊕ u) iff (p− → q)− → u ≤ p− → (q− → u) iff p− ⊙ ((p− → q)− → u) ≤ q− → u
iff p− ≤ ((p− → q)− → u)→ (q− → u) iff p− → (((p− → q)− → u)→ (q− → u)) = 1.

Now p− → (((p− → q)− → u) → (q− → u)) ≥ p− → (q− → (p− → q)−) ≥ p− → ((p− → q) →
q) = 1. Therefore, we have (p ⊕ q) ⊕ u ≤ p ⊕ (q ⊕ u).
(7) Since (p− ⊙ q−) → (p ⊕ q)− = p− → (q− → (p ⊕ q)−) ≥ p− → ((p ⊕ q) → q) = p− → ((p− →
q) → q) ≥ p− → p− = 1, then (p− ⊙ q−) → (p ⊕ q)− = 1. Thus (p− ⊙ q−) ≤ (p ⊕ q)−. Conversely,
(p ⊕ q)− ≤ (p− ⊙ q−) iff (p− ⊙ q−)− ≤ (p ⊕ q)−− iff p− → q−− ≤ p− → q iff p− → q ≤ p− → q. Hence,
p− ⊙ q− = (p ⊕ q)−.
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(8) Since (p− ⊕ q−) → (p ⊙ q)− = (p−− → q−) → (p → q−) ≥ p → p−− = 1, then (p− ⊕ q−) →
(p ⊙ q)− = 1, and so p− ⊕ q− ≤ (p ⊙ q)−. Conversely, (p ⊙ q)− ≤ p− ⊕ q− iff p → q− ≤ p−− → q− iff
p→ q− ≤ p→ q−. It follows that p− ⊕ q− = (p ⊙ q)−.
(9) Since p ⊕ q = p− → q = p− → q−− = p− → (q− → 0) = q− → (p− → 0) = q− → p−− = q− →
p = q ⊕ p for each p, q ∈ E, then ⊕ is commutative. Now, we prove the associativity, p ⊕ (q ⊕ u) =
p ⊕ (q− → u) = p− → (q− → u) = (p− ⊙ q−) → u = (p− ⊙ q−)−− → u = (p− → q−−)− → u = (p− →
q)− → u = (p ⊕ q) ⊕ u. □

Proposition 3.3. Suppose that ε is residuated, then for each a, pi ∈ E, i = 1, 2, · · · n, n ∈ N, a ∧ (p1 ⊕

p2 ⊕ · · · ⊕ pn) ≤ (a ∧ p1) ⊕ (a ∧ p2) ⊕ · · · ⊕ (a ∧ pn).

Proof. First, we show that a∧ (p⊕ q) ≤ (a∧ p)⊕ (a∧ q) for each a, p, q ∈ E. Now, (a∧ p)⊕ (a∧ q) =
(a ∧ p)− → (a ∧ q) = (a− ∨ p−) → (a ∧ q) = (a− → a ∧ q) ∧ (p− → a ∧ q) = ((a− → a) ∧ (a− →
q))∧ (p− → a)∧ (p− → q) = (a⊕ a)∧ (a⊕ q)∧ (p⊕ a)∧ (p⊕ q). Since a ≤ (a⊕ a)∧ (a⊕ q)∧ (p⊕ a),
then a ∧ (p ⊕ q) ≤ (a ⊕ a) ∧ (a ⊕ q) ∧ (p ⊕ a) ∧ (p ⊕ q) = (a ∧ p) ⊕ (a ∧ q).

Assume that the inequation holds for n. Thus, a∧ (p1 ⊕ p2 ⊕ · · · ⊕ pn ⊕ pn+1) ≤ (a∧ (p1 ⊕ p2 ⊕ · · · ⊕

pn))⊕ (a∧ pn+1) ≤ (a∧ p1)⊕ (a∧ p2)⊕ · · · ⊕ (a∧ pn)⊕ (a∧ pn+1). Therefore, the conclusion holds. □

Definition 3.4. Suppose that I is a nonempty subset of an EQ-algebra. Then I is called an ideal if:
(I1) For any p, q ∈ E, if p ≤ q and q ∈ I, then p ∈ I.
(I2) For any p, q ∈ I, p ⊕ q ∈ I.

Obviously, there are two trivial ideals, E and {0}. Let’s denote the set of all ideals of ε by I(ε). If
I , E and I ∈ I(ε), I is said to be a proper ideal.

Example 3.5. [17] Suppose that E = {0, p, q, x, y, 1}, with 0 < p < q < x < y < 1. Define ⊙ and ∼ in
the following:

⊙ 0 p q x y 1
0 0 0 0 0 0 0
p 0 0 0 0 0 p
q 0 0 0 0 p q
x 0 0 0 p p x
y 0 0 p p p y
1 0 p q x y 1

∼ 0 p q x y 1
0 1 x q p 0 0
p x 1 q p p p
q q q 1 q q q
x p p q 1 x x
y 0 p q x 1 y
1 0 p q x y 1

Then (E,∧,⊙,∼, 1) is an EQ-algebra and I1 = {0, p} and I2 = {0, p, q} are the ideals.

Let {Iλ : λ ∈ Λ} be a family of ideals, then ∩λ∈ΛIλ is an ideal, but ∪λ∈ΛIλ is not an ideal generally.

Example 3.6. [17] Suppose E = {0, p, q, x, y, e, f , 1}, with 0 < p < x < y < e < 1 and
0 < q < x < y < f < 1. We can check that (E,∧,⊙,∼, 1) is an EQ-algebra, where ⊙ and ∼ are given
by the following table:
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⊙ 0 p q x y e f 1
0 0 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 p
q 0 0 0 0 0 0 0 q
x 0 0 0 0 0 0 0 x
y 0 0 0 0 y y y y
e 0 0 0 0 y e y e
f 0 0 0 0 y y y f
1 0 p q c y y f 1

∼ 0 p q x y e f 1
0 1 e f y x p q 0
p e 1 y f x p x p
q f y 1 e x x q q
x y f e 1 x x x x
y x x x x 1 f e y
e p p x x f 1 y e
f q x q x e y 1 f
1 0 p q x y e f 1

Also, I1 = {0, p} and I2 = {0, q} are two ideals, but I1∪ I2 = {0, p, q} is not an ideal as p⊕q = x < I1∪ I2.

Theorem 3.7. Suppose that ε is residuated and ∅ , I ⊆ E. Then I ∈ I(ε) if and only if 0 ∈ I and
p, p− ⊙ q ∈ I imply q ∈ I for each p, q ∈ E.

Proof. (⇒) Let I ∈ I(ε). Then 0 ∈ I by I , ∅ and (I1). Assume that p, p− ⊙ q ∈ I, then q →
(p ⊕ (p− ⊙ q)) = q→ (p− → (p− ⊙ q)) = (q ⊙ p−)→ (p− ⊙ q) = 1. Hence, q ≤ p ⊕ (p− ⊙ q) ∈ I, and so
q ∈ I.
(⇐) Suppose that p, q ∈ E satisfying q ∈ I and p ≤ q. Then q− ≤ p− and q− ⊙ p ≤ p− ⊙ p = 0 ∈ I.
By assumption, we have p ∈ I. Now, let p, q ∈ I. Since p− ⊙ (p ⊕ q) = p− ⊙ (p− → q) ≤ q ∈ I, then
p− ⊙ (p ⊕ q) ∈ I. Hence, p ⊕ q ∈ I, and so I ∈ I(ε). □

Theorem 3.8. Suppose that ε is residuated and ∅ , I ⊆ E. Then I ∈ I(ε) if and only if 0 ∈ I and
p, (p− → q−)− ∈ I imply q ∈ I for each p, q ∈ E.

Proof. (⇒) Let I ∈ I(ε). It follows from (I1) and I , ∅ that 0 ∈ I. Suppose that p, (p− → q−)− ∈ I,
then p− ⊙ q−− ∈ I as p− ⊙ q−− ≤ (p− ⊙ q−−)−− = ((p− ⊙ q−−)−)− = (p− → q−−−)− = (p− → q−)− and (I1).
Since p− ⊙ q ≤ p− ⊙ q−−, then p− ⊙ q ∈ I. Hence, q ∈ I by Theorem 3.7.
(⇐) By the Theorem 3.7, we only need to show that p−⊙q ∈ I and p ∈ I imply q ∈ I for every p, q ∈ E.
Setting q = p−−, then p−− ∈ I. Let p, q ∈ E satisfying p− ⊙ q ∈ I and p ∈ I, then (p− ⊙ q)−− ∈ I. Since
(p− ⊙ q)−− = ((p− ⊙ q)−)− = (p− → q−)−, then (p− → q−)− ∈ I, thus q ∈ I by assumption. □

Corollary 3.9. Suppose that ε is residuated and I ∈ I(ε). Then
(1) p, q ∈ I if and only if p ∨1 q ∈ I;
(2) p ∈ I if and only if p−− ∈ I for each p ∈ E.

Proof. (1) (⇒) Suppose that p, q ∈ I, since p− ⊙ (p ∨1 q) = (p− ⊙ p) ∨1 (p− ⊙ q) = p− ⊙ q ≤ q, then
p− ⊙ (p ∨1 q) ∈ I. Thus, (p ∨1 q) ∈ I by the Theorem 3.7.
(⇐) Clearly.
(2) Assume that p ∈ I, then p−− ∈ I by taking q = p−− in the Theorem 3.8. Conversely, since
p ≤ p−− ∈ I and I ∈ I(ε), then p ∈ I. □

Proposition 3.10. Assume that ε is residuated and 0 ∈ I ∈ I(ε). Then the following assertions are
equivalent:
(1) I ∈ I(ε);
(2) L(p, q) = {u ∈ E : u ⊙ p− ≤ q} ⊆ I for each p, q ∈ I;
(3) if (u ⊙ p−) ⊙ q− = 0, then u ∈ I for every u ∈ E and p, q ∈ I.
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Proof. (1) ⇒ (2): For any a ∈ L(p, q), a ⊙ p− ≤ q for every p, q ∈ I. Since q ∈ I and I ∈ I(ε), then
a ⊙ p− ∈ I. Thus, a ∈ I by the Theorem 3.7. Hence, L(p, q) ⊆ I.
(2)⇒ (3) Suppose that p, q ∈ I satisfying (u ⊙ p−) ⊙ q− = 0. Since (u ⊙ p−) ⊙ q− ≤ 0 and 0, q ∈ I, then
u ⊙ p− ∈ L(q, 0) ⊆ I by (2). Thus, u ⊙ p− ∈ I. Also, since u ⊙ p− ≤ u ⊙ p− and u ⊙ p−, p ∈ I, then,
u ∈ L(p, u ⊙ p−) ⊆ I by (2), and so u ∈ I.
(3) ⇒ (1) Now, let p, p− ⊙ q ∈ I. Since (q ⊙ p−) ⊙ (p− ⊙ q)− = 0, then q ∈ I by (3). Thus, I ∈ I(ε) by
Theorem 3.7. □

Next, we learn the relationship between ideals and filters on EQ-algebras. For every ∅ , X ⊆ E,
define X− = {x ∈ E | x− ∈ X}.

Proposition 3.11. Suppose that F is a filter of an EQ-algebra ε. Then F
′

is an ideal, where F
′

= {p ∈
E| there exists q ∈ F satisfying p−− ≤ q−}.

Proof. (I1) Assume that p, q ∈ E satisfying p ≤ q and q ∈ F
′

, then there is q0 ∈ F satisfying q−− ≤ q−0 .
Since p−− ≤ q−− ≤ q−0 , then p ∈ F

′

.
(I2) Assume that p, q ∈ F, then there are p0, q0 ∈ F satisfying p−− ≤ p−0 and q−− ≤ q−0 . Then p0⊙q0 ∈ F
as F is a filter. Since (p ⊕ q)−− = (p− ⊙ q−)− = p− → q−− ≤ p− → q−0 ≤ p0 → q−0 = (p0 ⊙ q0)−, thus
p ⊕ q ∈ F

′

. □

Proposition 3.12. Assume that ε is residuated and I ∈ I(ε). Then I∗ is a filter, where I∗ = {p ∈ E| there
exists q ∈ I satisfying p−− ≥ q−}.

Proof. (F1) Since 1−− = 1, then for each q ∈ I, q− ≤ 1 = 1−−, thus 1 ∈ I∗.
(F2) Assume p, q ∈ I∗, then there exist p0, q0 ∈ I satisfying p−− ≥ p−0 and q−− ≥ q−0 . Since p → q− ≤
q−− → p− ≤ q−0 → p− ≤ p−− → q−−0 ≤ p−0 → q−−0 = p0⊕q−−0 , then (p⊙q)−− = (p→ q−)− ≥ (p0⊕q−−0 )−.
Since p0, q0 ∈ I and I ∈ I(ε), then p0, q−−0 ∈ I and p0 ⊕ q−− ∈ I, hence p ⊙ q ∈ I∗.
(F3) First we prove that if p, q ∈ E with p ≤ q and p ∈ I∗, then q ∈ I∗. Since p ∈ I∗, then there
exists p0 satisfying p−− ≥ p−0 , thus q−− ≥ p−− ≥ p−0 , i.e. q ∈ I∗. Now, assume p, p → q ∈ I∗, then
p ⊙ (p→ q) ∈ I∗. Thus, q ∈ I∗ as p ⊙ (p→ q) ≤ q.
(F4) Since ε is residuated, then for every p, q, u ∈ E, p → q ≤ (p ⊙ u) → (q ⊙ u). If p → q ∈ I∗, then
(p ⊙ u)→ (q ⊙ u) ∈ I∗.

To sum up, I∗ is a filter. □

Proposition 3.13. Suppose that ε is residuated with (DNP), then I ∈ I(ε) if and only if I− is a filter.

Proof. (⇒) (F1) 1 ∈ I− as 0 ∈ I.
(F2) Suppose p, q ∈ I−, then p−, q− ∈ I, and so (p ⊙ q)− = p− ⊕ q− ∈ I. Thus, (p ⊙ q) ∈ I−.
(F3) Now, suppose p ≤ q and p ∈ I−, then p− ∈ I and q− ≤ p−, hence q− ∈ I. That is, q ∈ I−. If
p, p→ q ∈ I−, then p ⊙ (p→ q) ∈ I−. It follows from p ⊙ (p→ q) ≤ q that q ∈ I−.
(F4) Suppose p→ q ∈ I−, since p→ q ≤ (p ⊙ u)→ (q ⊙ u), then (p ⊙ u)→ (q ⊙ u) ∈ I−.
(⇐) (I1) Since 1 ∈ I−, then 0 ∈ I. Let p, q ∈ E with p ≤ q and q ∈ I. Then q− ∈ I− and q− ≤ p−, and
thus p− ∈ I−. That is, p = p−− ∈ I.
(I2) Note that p−, q− ∈ I− and (p− ⊙ q−) ∈ I− for each p, q ∈ I. Then (p− ⊙ q−) → (p− → q)− =
(p− → q) → ((p− ⊙ q−) → 0) = (p− → q) → ((p− → q−−) = 1 and (p− ⊙ q−) ≤ (p− → q)−. Thus,
(p− → q)− ∈ I− and (p− → q)−− ∈ I. Hence, p ⊕ q = (p− → q) ∈ I. □
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Let A be a nonempty set of an EQ-algebra ε. The smallest ideal of ε including A is said to be the
ideal generated by A and is marked by ⟨A⟩.

Theorem 3.14. Let X be a nonempty set of an EQ-algebra ε. Then ⟨X⟩ = {a ∈ E | a ≤ (· · · ((p1 ⊕ p2)⊕
p3) · · · ⊕ pn), pi ∈ X, i = 1, 2, · · · , n}.

Proof. Let A = {a ∈ E | a ≤ (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn), pi ∈ X, i = 1, 2, · · · , n}. Firstly, we check
that A ∈ I(ε). Since 0 ∈ A, then A is nonempty. Assume a, b ∈ E with a ≤ b and b ∈ A. Since
b ∈ A, then there exist pi ∈ X, i = 1, 2, · · · , n with b ≤ (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn). It follows from
a ≤ b that a ≤ (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn), and thus a ∈ A. Now, assume a, b ∈ A, then there are
pi, qi ∈ X, i = 1, 2, · · · , n satisfying a ≤ (· · · ((p1⊕ p2)⊕ p3) · · ·⊕ pn) and b ≤ (· · · ((q1⊕q2)⊕q3) · · ·⊕qn),
thus (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn)− ≤ a−. Hence a ⊕ b = a− → b ≤ (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn)− →
b ≤ (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn)− → (· · · ((q1 ⊕ q2) ⊕ q3) · · · ⊕ qn) = (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn) ⊕
(· · · ((q1 ⊕ q2)⊕ q3) · · · ⊕ qn) ≤ (· · · (· · · ((p1 ⊕ p2)⊕ p3) · · · ⊕ pn)⊕ q1)⊕ · · · ⊕ qn) by Proposition 3.2 (5),
i.e. (a ⊕ b) ∈ A. Therefore, A ∈ I(ε).

Obviously, X ⊆ A. Hence we only need to show that for any ideal C satisfying X ⊆ C, we can obtain
A ⊆ C. For any a ∈ A, then there are pi ∈ X, i = 1, 2, · · · , n with a ≤ (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn).
Since X ⊆ C and C ∈ I(ε), then (· · · ((p1 ⊕ p2) ⊕ p3) · · · ⊕ pn) ∈ C and a ∈ C. Hence, A is the smallest
ideal containing X. □

Proposition 3.15. Suppose that ε is residuated and I ∈ I(ε), p ∈ E. Then ⟨I ∪ {p}⟩ = {a ∈ E | a ≤
q1 ⊕ (q2 · · · ⊕ (qn ⊕ np)), qi ∈ I, i = 1, 2, · · · , n} ∪ {a ∈ E | a ≤ p ⊕ (p ⊕ · · · ⊕ (p ⊕ q)), q ∈ I}.

Proof. Let A = {a ∈ E | a ≤ q1 ⊕ (q2 · · · ⊕ (qn ⊕ np)), qi ∈ I, i = 1, 2, · · · , n} ∪ {a ∈ E | a ≤
p ⊕ (p ⊕ · · · ⊕ (p ⊕ q)), q ∈ I}. Obviously, (I ∪ {p}) ⊆ A and 0 ∈ A. Firstly, we prove that A is an
ideal. Suppose that b, c ∈ E with b ≤ c and c ∈ A, then there are qi ∈ I, i = 1, 2, · · · , n and q ∈ I such
that c ≤ q1 ⊕ (q2 · · · ⊕ (qn ⊕ np)) or c ≤ p ⊕ (p ⊕ · · · ⊕ (p ⊕ q)), thus b ≤ c ≤ q1 ⊕ (q2 · · · ⊕ (qn ⊕ np))
or b ≤ c ≤ p ⊕ (p ⊕ · · · ⊕ (p ⊕ q)), and so b ∈ A, i.e. (I1) holds. Assume b, c ∈ A, then there
are qi, u j ∈ I, i = 1, 2, · · · , n, j = 1, 2, · · · ,m and q, u ∈ I satisfying b ≤ q1 ⊕ (q2 · · · ⊕ (qn ⊕ np)) or
b ≤ p ⊕ (p ⊕ · · · ⊕ (p ⊕ q)) and c ≤ u1 ⊕ (u2 · · · ⊕ (un ⊕ mp)) or c ≤ p ⊕ (p ⊕ · · · ⊕ (p ⊕ u)).

Case 1: If b ≤ q1⊕(q2 · · ·⊕(qn⊕np)) and c ≤ u1⊕(u2 · · ·⊕(un⊕mp)), then, by the Proposition 3.2 (5),
we have
b ⊕ c
≤ [q1 ⊕ (q2 ⊕ · · · ⊕ (qn ⊕ np))] ⊕ [u1 ⊕ (u2 ⊕ · · · ⊕ (un ⊕ mp))]
≤ q1 ⊕ {[q2 ⊕ · · · ⊕ (qn ⊕ np)] ⊕ [u1 ⊕ (u2 ⊕ · · · ⊕ (un ⊕ mp))]}
≤ q1 ⊕ (q2 ⊕ {[q3 ⊕ · · · ⊕ (qn ⊕ np)] ⊕ [u1 ⊕ (u2 · · · ⊕ (un ⊕ mp))]}
≤ · · · ≤ q1 ⊕ (q2 ⊕ (· · · (qn ⊕ (np ⊕ (u1 ⊕ (· · · ⊕ (un ⊕ mp) · · · )))) · · · ))
Hence, b ⊕ c ∈ A.

Other cases are analogous to the Case 1, then we also get b ⊕ c ∈ A. Hence, A is an ideal.
Now, let B be any ideal with (I ∪ {p}) ⊆ B, then for each b ∈ A, there are qi ∈ I, i = 1, 2, · · · , n and

q ∈ I such that b ≤ q1 ⊕ (q2 · · · ⊕ (qn ⊕ np) or b ≤ p ⊕ (p ⊕ · · · ⊕ (p ⊕ q)). Since B is an ideal and
(I ∪ {p}) ⊆ B, then we have qi ∈ B(i = 1, 2, · · · , n), q, q1 ⊕ (q2 · · · ⊕ (qn ⊕ np), p⊕ (p⊕ · · · ⊕ (p⊕ q)) ∈ B.
Hence b ∈ B, i.e. A ⊆ B. Therefore, the conclusion holds. □

By Proposition 3.2 (8), if ε satisfies the condition (DNP), then the operation ⊕ is commutative and
associative. So we have the following statement:
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Remark 3.16. Note that nc ≜ c ⊕ (c ⊕ · · · ⊕ (c ⊕ c) · · · ) = (c−)n−1 → c. If ε satisfies the condition
(DNP), then nc = ((c−)n)−.

Proposition 3.17. Suppose that I ∈ I(ε) and c ∈ E. Then
(1) ⟨c⟩ = {p ∈ E : ∃n ∈ N, s.t.p ≤ nc};
if ε satisfies the condition (DNP),
(2) ⟨I ∪ {c}⟩ = {p ∈ E : ∃n ∈ N, q ∈ I, s.t. p ≤ (nc) ⊕ q} = {p ∈ E : ∃n ∈ N, s.t. p ⊙ (nc)− ∈ I};
(3) ⟨I ∪ {p}⟩ ∩ ⟨I ∪ {q}⟩ = ⟨I ∪ {p ∧ q}⟩;
(4) ⟨⟨p⟩ ∪ ⟨q⟩⟩ = ⟨p ⊕ q⟩;
(5) ⟨p⟩ ∩ ⟨q⟩ = ⟨p−− ∧ q−−⟩ = ⟨p ∧ q⟩.

Proof. (1) By the Theorem 3.14.
(2) By the Theorem 3.14, we know that ⟨I ∪ {c}⟩ = {p ∈ E : ∃n ∈ N, q ∈ I, s.t. p ≤ (nc) ⊕ q}. The
problem turns into proving that {p ∈ E : ∃n ∈ N, q ∈ I, s.t. p ≤ (nc) ⊕ q} = {p ∈ E : ∃n ∈ N, s.t.
p ⊙ (nc)− ∈ I}. Since p ≤ (nc) ⊕ q⇔ p ⊙ (nc)− ≤ q ∈ I, it follows that p ⊙ (nc)− ∈ I, which implies
{p ∈ E : ∃n ∈ N, q ∈ I, s.t. p ≤ (nc) ⊕ q} ⊆ {p ∈ E : ∃n ∈ N, s.t. p ⊙ (nc)− ∈ I}. Conversely, we just
take q = p ⊙ (nc)−. Hence, the conclusion holds.
(3) For each c ∈ ⟨I ∪ {p∧ q}⟩, there is n ∈ N satisfying c⊙ (n(p∧ q))− ∈ I. Since c⊙ (np)− = c⊙ (p−)n,
then c⊙ (n(p∧ q))− = c⊙ ((p∧ q)−)n ≥ c⊙ (p−)n, thus c⊙ (np)− ∈ I. Similarly, we have c⊙ (mq)− ∈ I.
Thus c ∈ ⟨I∪{p}⟩∩⟨I∪{q}⟩, and so ⟨I∪{p∧q}⟩ ⊆ ⟨I∪p⟩∩⟨I∪{q}⟩. Conversely, let c ∈ ⟨I∪p⟩∩⟨I∪{q}⟩.
Then there are n,m ∈ N satisfying c ⊙ (np)− and c ⊙ (mq)− ∈ I, and so c ⊙ (p−)n and c ⊙ (q−)m ∈ I. Let
Y1 = c ⊙ (p−)n and Y2 = c ⊙ (q−)m. Then Y−1 = (c ⊙ (p−)n)− = (p−)n → c− and Y−2 = (c ⊙ (q−)m)− =
(q−)m → c−. Thus, (p−)n → (Y−2 → (Y−1 → c−)) = 1 and (q−)m → (Y−2 → (Y−1 → c−)) = 1. By
Proposition 3.1 (3), there is p ∈ N satisfying [(p∧ q)−]p → (Y−2 → (Y−1 → c−)) = (p− ∨ q−)p → (Y−2 →
(Y−1 → c−)) =

∧
{(c1 ⊙ ... ⊙ cp)→ (Y−2 → (Y−1 → c−)) : ci ∈ {p−, q−}} = 1. Hence, c ∈ ⟨I ∪ {p ∧ q}⟩.

(4) Since ⟨p⟩, ⟨q⟩ ⊆ ⟨p⊕q⟩, then ⟨p⟩∪ ⟨q⟩ ⊆ ⟨p⊕q⟩, and so ⟨⟨p⟩∪ ⟨q⟩⟩ ⊆ ⟨p⊕q⟩. Now, let w ∈ ⟨p⊕q⟩,
then w ≤ n(p ⊕ q) ≤ (np) ⊕ (nq)for some n ∈ N+. It follows that from np ∈ ⟨p⟩ and nq ∈ ⟨q⟩ that
w ∈ ⟨⟨p⟩ ∪ ⟨q⟩⟩. Hence, ⟨⟨p⟩ ∪ ⟨q⟩⟩ = ⟨p ⊕ q⟩.
(5) By p ∈ ⟨p⟩ and q ∈ ⟨q⟩, we know that p−− ∈ ⟨p⟩ and q−− ∈ ⟨q⟩ by Corollary 3.9 (2). Then
p−− ∧ q−− ∈ ⟨p⟩ ∩ ⟨q⟩, and so ⟨p−− ∧ q−−⟩ ⊆ ⟨p⟩ ∩ ⟨q⟩. Conversely, let w ∈ ⟨p⟩ ∩ ⟨q⟩, then w ≤ np and
w ≤ mq for some n,m ∈ N+. Thus, w ≤ (np) ∧ (mq) ≤ nm(p−− ∧ q−−), that is, w ∈ ⟨p−− ∧ q−−⟩. Since
ε satisfies the condition (DNP), then, ⟨p⟩ ∩ ⟨q⟩ = ⟨p−− ∧ q−−⟩ = ⟨p ∧ q⟩ holds.

□

Proposition 3.18. Let ε be an EQ-algebra. Then (I(ε),∨,∧) is a frame, where ∨i∈I Ii = ⟨∪i∈I Ii⟩, ∧i∈I Ii =

∩i∈I Ii for each Ii ∈ I(ε), i ∈ I.

Proof. It’s obvious that (I(ε),∨,∧) is a complete lattice. Next, we show that I ∧ (∨i∈I Ii) = ∨i∈I(I ∧ Ii),
that is, I ∩ ⟨∪i∈I Ii⟩ = ⟨∪i∈I(I ∩ Ii)⟩. Obviously, ⟨∪i∈I(I ∩ Ii)⟩ ⊆ I ∩ ⟨∪i∈I Ii⟩ holds. On the other hand,
for each p ∈ I ∩ ⟨∪i∈I Ii⟩. Then p ∈ I and p ≤ pi1 ⊕ pi2 ⊕ · · · ⊕ pin for some i1, i2, · · · , in ∈ I and
pi j ∈ Ii j(1 ≤ j ≤ n). Hence, p = p ∧ (pi1 ⊕ pi2 ⊕ · · · ⊕ pin) ≤ (p ∧ pi1) ⊕ (p ∧ pi2) ⊕ · · · ⊕ (p ∧ pin)
by Proposition 3.3. Since p ∧ pi j ∈ I ∧ Ii j for each 1 ≤ j ≤ n, then p ∈ ⟨∪i∈I(I ∩ Ii)⟩. It follows that
I ∩ ⟨∪i∈I Ii⟩ = ⟨∪i∈I(I ∩ Ii)⟩, and so the conclusion holds. □

Theorem 3.19. Given a residuated EQ-algebra with (DNP). Define I1 → I2 := {p ∈ E | ⟨p⟩ ∩ I1 ⊆ I2}

for each I1, I2 ∈ I(ε). Then
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(1) I1 → I2 ∈ I(ε);
(2) I1 ∩ I ⊆ I2 if and only if I ⊆ I1 → I2, where I ∈ I(ε).

Proof. (1) Since ⟨0⟩ ∩ I1 ⊆ I2, then 0 ∈ I1 → I2. Let p, q ∈ E with p ≤ q and q ∈ I1 → I2, then
⟨q⟩ ∩ I1 ⊆ I2. It follows from ⟨p⟩ ∩ I1 ⊆ ⟨q⟩ ∩ I1 ⊆ I2 that p ∈ I1 → I2, that is (I1) holds.

As for (I2), we first show that ⟨p⊕q⟩ ⊆ ⟨p⟩∨⟨q⟩. For each w ∈ ⟨p⊕q⟩, then w ≤ n(p⊕q) = (np)⊕(nq)
for some n ∈ N by Proposition 3.17 (1). Since (np) ∈ ⟨p⟩ and (nq) ∈ ⟨q⟩, then w ∈ ⟨p⟩ ∨ ⟨q⟩. Now,
let p, q ∈ I1 → I2. Then ⟨p⟩ ∩ I1 ⊆ I2 and ⟨q⟩ ∩ I1 ⊆ I2, and so ((⟨p⟩ ∩ I1) ∨ (⟨q⟩ ∩ I1)) ⊆ I2. Hence,
⟨p ⊕ q⟩ ∩ I1 ⊆ (⟨p⟩ ∨ ⟨q⟩) ∩ I1 ⊆ I2, that is, p ⊕ q ∈ I1 → I2. Therefore, I1 → I2 ∈ I(ε).
(2) Assume that I1 ∩ I ⊆ I2 and p ∈ I, then ⟨p⟩ ∩ I1 ⊆ I2. Hence p ∈ I1 → I2, and so I ⊆ I1 → I2.
Conversely, if I ⊆ I1 → I2 and p ∈ I1 ∩ I, then p ∈ I ⊆ I1 → I2. Thus, p ∈ ⟨p⟩ ∩ I1 ⊆ I2, that is,
I1 ∩ I ⊆ I2. □

Corollary 3.20. Suppose that ε is residuated with (DNP), then (I(ε),∨,∧,→, {0}) is a Heyting-algebra,
where I− = I → {0} = {p ∈ E | ⟨p⟩ ∩ I = {0}} for each I ∈ I(ε).

Proposition 3.21. Given a residuated EQ-algebra with (DNP). Then
(1) For each I ∈ I(ε), I− = {p ∈ E | p ∧ a = 0 for each a ∈ I};
(2) For each p ∈ E, ⟨p⟩− = {q ∈ E | p ∧ q = 0}.

Proof. (1) For each p ∈ I−, then ⟨p⟩∩I = {0}. It follows from Proposition 3.17 (5) that p∧a ∈ ⟨p⟩∩I for
each a ∈ I, and so p∧a = 0 for each a ∈ I. Conversely, assume p ∈ E with p∧a = 0 for each a ∈ I. Let
w ∈ ⟨p⟩ ∩ I, then w ≤ np for some n ∈ N+ and w ∈ I. Thus, p∧w = 0 and w = w∧ np ≤ n(p∧w) = 0.
Thus, ⟨p⟩∩ I = {0}. Hence, I− = I → {0} = {p ∈ E | ⟨p⟩∩ I = {0}} = {p ∈ E | p∧a = 0 for each a ∈ I}.
(2) By (1), we get that ⟨p⟩− = {q ∈ E | q∧a = 0 for each a ∈ ⟨p⟩}. For each q ∈ ⟨p⟩−, then q∧a = 0 for
each a ∈ ⟨p⟩. Since p ∈ ⟨p⟩, then q ∧ p = 0, that is, ⟨p⟩− ⊆ {q ∈ E | p ∧ q = 0}. On the other hand, let
q ∈ {q ∈ E | p∧q = 0} and a ∈ ⟨p⟩. Then a ≤ np for some n ∈ N+. Now, q∧a ≤ q∧(np) ≤ n(p∧q) = 0,
thus q ∧ a = 0, that is, {q ∈ E | p ∧ q = 0} ⊆ ⟨p⟩−. Hence, the conclusion holds. □

Theorem 3.22. Given a residuated EQ-algebra with (DNP). Then the following statements are
equivalent:
(1) (I(ε),∨,∧,− , {0}, E) is a Boolean algebra;
(2) Each ideal of E is principal and for each p ∈ E, there is n ∈ N+ satisfying p ∧ (np)− = 0.

Proof. (1) ⇒ (2) By assumption, I ∨ I− = E for each I ∈ I(ε), thus 1 ∈ I ∨ I−. Hence, there are u ∈ I
and v ∈ I− satisfying u ⊕ v = 1. By Proposition 3.21 (1), we have p ∧ v = 0 for each p ∈ I. Now
p ⊙ v ≤ p ∧ v = 0, then p ⊙ v = 0, and so p → v− = (p ⊙ v)− = 1. Hence, p ≤ v−. Since u ⊕ v = 1,
then (nu)− → v = (nu) ⊕ v = 1 for each n ∈ N+, thus (nu)− ≤ v, and so v− ≤ (nu)−− = (nu). Hence,
p ≤ v− ≤ nu for each p ∈ I, that is, I = ⟨u⟩.

For each p ∈ E, it follows from I(ε) is a Boolean algebra that E = ⟨p⟩ ∨ ⟨p⟩− = ⟨⟨p⟩− ∪ {p}⟩ = {a ∈
E | ∃n ∈ N+, q ∈ ⟨p⟩−, s.t. a ≤ np ⊕ q}. Since 1 ∈ E, then there are n ∈ N+ and q ∈ ⟨p⟩− satisfying
np ⊕ q = 1. By q ∈ ⟨p⟩−, we have q ∧ p = 0. Since (np)− → q = np ⊕ q = 1, then (np)− ≤ q, thus
(np)− ∧ p ≤ q ∧ p = 0. Hence, (np)− ∧ p = 0.
(2)⇒ (1) By Corollary 3.20, we obtain that I(ε) is a Heyting algebra, then it suffices to show that I− =
{0} only for I = E. By assumption, I = ⟨p⟩ for some p ∈ E and p∧ (np)− = 0. By Proposition 3.21 (2),
we have (np)− ∈ ⟨p⟩− = {0}, thus (np)− = 0, and so (np)−− = 1. It follows that 1 ∈ ⟨p⟩ = I, and so
I = E. □
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Proposition 3.23. Let ξ : A→ B be a homomorphism of EQ-algebras. Then
(1) if I ∈ I(B), then ξ−1(I) ∈ I(A);
(2) if ξ is surjective and I ∈ I(A), then ξ(I) ∈ I(B);
(3) if ker(ξ) = {x ∈ A | ξ(x) = 0}, then ker(ξ) ∈ I(A).

Proof. (1) Since ξ(0) = 0 ∈ I, then 0 ∈ ξ−1(I). It follows from p ≤ q and q ∈ ξ−1(I) that ξ(q) ∈ I.
Since p → q = 1 and ξ is a homomorphism, then ξ(p) ≤ ξ(q), and so ξ(p) ∈ I and p ∈ ξ−1(I).
Assume that p, q ∈ ξ−1(I). Then ξ(p), ξ(q) ∈ I and ξ(p− → q) = ξ(p)− → ξ(q) ∈ I as I ∈ I(B). Thus,
p− → q ∈ ξ−1(I) and ξ−1(I) ∈ I(A).
(2) Obviously, 0 ∈ ξ(I). Assume that p ≤ q and q ∈ ξ(I). Then, there is a ∈ I satisfying ξ(a) = q. Since
p = ξ(b) ≤ ξ(a) = q, where b ∈ A, then ξ(1) = 1 = ξ(b) → ξ(a) = ξ(b → a), thus b ≤ a. Moreover,
because a ∈ I and I ∈ I(A), so b ∈ I and p = ξ(b) ∈ ξ(I). Now, let p, q ∈ ξ(I). Then there are a, b ∈ I
with ξ(a) = p and ξ(b) = q. Since I ∈ I(A), a− → b ∈ I, then p− → q = ξ(a)− → ξ(b) ∈ ξ(I). Hence,
ξ(I) ∈ I(B).
(3) ker(ξ) , ∅ as ξ(0) = 0. Let p, q ∈ ker(ξ). Then ξ(p) = ξ(q) = 0 and ξ(p− → q) = ξ(p)− →
ξ(q) = 0− → 0 = 0. Hence, p− → q ∈ kerξ. Assume that p ≤ q and q ∈ ker(ξ). Since ξ is monotone,
ξ(p) ≤ ξ(q) = 0. Then ξ(p) = 0 and so p ∈ ker(ξ). Hence, ker(ξ) ∈ I(A). □

Proposition 3.24. Suppose that ε is residuated with (DNP) and I ∈ I(ε). Define a binary operation ≈I

in the following:

p ≈I q iff (p ∼ q)− ∈ I

Then ≈I is a congruence relation on ε.

Proof. Firstly, we prove that ≈I is an equivalence relation. Since (p ∼ p)− = 0 ∈ I, then p ≈I p, i.e.
≈I is reflexivity. Assume p ≈I q, then (p ∼ q)− ∈ I, and so (q ∼ p)− ∈ I, i.e. q ≈I p, hence ≈I is
symmetry. If p ≈I q and q ≈I u, then (p ∼ q)− ∈ I and (q ∼ u)− ∈ I, thus p ∼ q, q ∼ u ∈ I− and
(p ∼ q) ⊙ (q ∼ u) ∈ I. Since (p ∼ q) ⊙ (q ∼ u) ≤ p ∼ u, then p ∼ u ∈ I, and so (p ∼ u)− ∈ I, i.e. ≈I is
transitive.

Now, assume p ≈I q, then (p ∼ q)− ∈ I. Since p ∼ q ≤ (p∧ u) ∼ (q∧ u), then ((p∧ u) ∼ (q∧ u))− ≤
(p ∼ q)−, hence ((p ∧ u) ∼ (q ∧ u))− ∈ I, i.e. (p ∧ u) ≈I (q ∧ u).

Assume p ≈I q, then (p ∼ q)− ∈ I, and so p ∼ q ∈ I−. Since p ∼ q ≤ p → q, q → p, then
p→ q, q→ p ∈ I−. Hence (p⊙u)→ (q⊙u), (q⊙u)→ (p⊙u) ∈ I− and ((p⊙u)→ (q⊙u))⊙ ((q⊙u)→
(p⊙u)) ∈ I−. Since ((p⊙u)→ (q⊙u))⊙((q⊙u)→ (p⊙u)) ≤ (p⊙u) ∼ (q⊙u), then (p⊙u) ∼ (q⊙u) ∈ I−.
Thus, ((p ⊙ u) ∼ (q ⊙ u))− ∈ I, i.e. (p ⊙ u) ≈I (q ⊙ u).

Assume p ≈I q, z ≈I w, then (p ∼ q)− ∈ I and (z ∼ w)− ∈ I, and so (p ∼ q) ∈ I− and (z ∼ w) ∈ I−.
Thus, (p ∼ q)⊙ (z ∼ w) ∈ I−. Since (p ∼ q)⊙ (z ∼ w) ≤ (p ∼ z) ∼ (q ∼ w), then ((p ∼ z) ∼ (q ∼ w))− ≤
((p ∼ q) ⊙ (z ∼ w))− ∈ I, hence ((p ∼ z) ∼ (q ∼ w))− ∈ I, i.e. (p ∼ z) ≈I (q ∼ w).
Therefore, the conclusion holds. □

Define ε/I = {[v] | v ∈ E}, where [v] = {y ∈ E | v ≈I y}. Define binary operations ∧I , ⊙I , ∼I as
follows: For all v, y ∈ E

[v] ∧I [y] = [v ∧ y], [v] ⊙I [y] = [v ⊙ y], [v] ∼I [y] = [v ∼ y].

Then, (E/I,∧I ,⊙I ,∼I , 1) is an EQ-algebra.
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Theorem 3.25. Let I ∈ I(ε), then I = [0].

Proof. At first, we show that [0] is an ideal. Obviously, 0 ∈ [0]. Assume that p, q ∈ E with p, (p−⊙q) ∈
[0], then p ≈I 0 and (p− ⊙ q) ≈I 0. Since p− = (p → 0) ≈I (0 → 0) = 1, then (p− ⊙ q) ≈I (1 ⊙ q) = q.
Thus, q ≈I 0 and q ∈ [0] by symmetry and transitivity. Hence, by the Theorem 3.7, we know that [0]
is an ideal.

Now we show that I = [0]. For each p ∈ I, we have (p ∼ 0)− = (p → 0)− = p−− ∈ I and
(0 ∼ p)− = 0 ∈ I, then p ≈I 0 and p ∈ [0]. Conversely, for any p ∈ [0], then p ≈I 0, and so p−− ∈ I.
Thus, p ∈ I as p ≤ p−−. Hence I = [0]. □

4. Special ideals on EQ-algebras

In this part, we will introduce some special ideals, such as implicative ideals, primary ideals, prime
ideals and maximal ideals. Also, We discuss some related properties and their relations.

Definition 4.1. Assume that I is a non-void subset of an EQ-algebra, then I is called an implicative
ideal if the following hold for each p, q, u ∈ E:
(IM1) 0 ∈ I;
(IM2) If p, q ∈ I, then p ⊕ q ∈ I;
(IM3) If p ⊙ q− ⊙ u− ∈ I and q ⊙ u− ∈ I, then p ⊙ u− ∈ I.

Let’s denote the set of all implicative ideals of ε by IM(ε).

Example 4.2. In Example 3.5, we can show that I = {0, p, q} ∈ IM(ε).

Proposition 4.3. If ε is residuated with (DNP), then I ∈ IM(ε) if and only if I− ≜ F is a positive
implicative filter of ε.

Proof. By Proposition 3.13, we obtain that I ∈ I(ε) if and only if I− is a filter.
(⇒) Assume that (p ⊙ q) → u ∈ I− and p → q ∈ I−. Then, there are t1, t2 ∈ I satisfying ((p ⊙ q) →
u)− = t1 ∈ I and (p → q)− = t2 ∈ I. That is, p ⊙ q ⊙ u− = t1 ∈ I and p ⊙ q− = t2 ∈ I. By the
commutativity and (DNP), we have u− ⊙ (q−)− ⊙ (p−)− = t1 ∈ I and q− ⊙ (p−)− = t2 ∈ I. By (IM3), we
get that (p→ u)− = u− ⊙ p = u− ⊙ (p−)−. Hence, p→ u ∈ I−.
(⇐) Similarly, suppose that p⊙ q− ⊙ u− ∈ I and q⊙ u− ∈ I, then u− ⊙ q− ⊙ (p−)− ∈ I and u− ⊙ (q−)− ∈ I.
That is, (u− ⊙ q− → p−)− ∈ I and (u− → q−)− ∈ I. It follows that u− ⊙ q− → p− ∈ I− and u− → q− ∈ I−.
By Definition 2.6, we have u− → p− ∈ I−. Hence, (u− → p−)− ∈ I, and so u− ⊙ p ∈ I. □

Proposition 4.4. Each implicative ideal of ε is an ideal.

Proof. Assume that I ∈ IM(ε) and p, q ∈ E satisfying p ≤ q and q ∈ I, then p → q = 1. Since
p → q ≤ p → q−− = (p ⊙ q−)−, then (p ⊙ q−)− = 1 and (p ⊙ q−)−− = 0 ∈ I. Thus, p ⊙ q− = 0 ∈ I as
p ⊙ q− ≤ (p ⊙ q−)−−. Taking u = 0, then p ⊙ q− ⊙ u− = p ⊙ q− = 0 ∈ I and q ⊙ u− = q ∈ I. Hence,
p = p ⊙ u− ∈ I as I ∈ IM(ε). Therefore, I ∈ I(ε). □

Example 4.5. In Example 3.5, we know that I = {0, p} ∈ I(ε), but I < IM(ε) as 1⊙ x−⊙q− = 0 ∈ I and
x ⊙ q− = 0 ∈ I, but 1 ⊙ q− = q < I. Therefore, this example implies the converse of the Proposition 4.4
is not true generally.
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Proposition 4.6. Suppose that ε is residuated with (DNP) and I ∈ I(ε). Then the following assertions
are equivalent:
(1) I ∈ IM(ε);
(2) If p ⊙ v ⊙ v ∈ I, then p ⊙ v ∈ I for each p, v ∈ E;
(3) If p2 ∈ I, then p ∈ I for each p ∈ E;
(4) {p ∈ E | p2 = 0} ⊆ I for each p ∈ E.

Proof. (1) ⇒ (2) Let p ⊙ v ⊙ v ∈ I. Then, p ⊙ v−− ⊙ v−− ∈ I. Since v− ⊙ v−− = 0 and I ∈ IM(ε), then
we have p ⊙ v−− ∈ I. It follows that p ⊙ v ∈ I.
(2)⇒ (1) Assume that p⊙v−⊙u− ∈ I and v⊙u− ∈ I. Since (p⊙u−⊙u−)⊙(v⊙u−)− = (p⊙u−⊙u−)⊙(u− →
v−) ≤ p⊙u−⊙v− and I ∈ I(ε), then (p⊙u−⊙u−)⊙ (v⊙u−)− ∈ I, thus p⊙u−⊙u− ∈ I by the Theorem 3.7.
Hence, p ⊙ u− ∈ I by (2). Therefore, I ∈ IM(ε).
(2) ⇒ (3) Since I ∈ I(ε), then (p2)−− ∈ I by the Corollary 3.9. By the Proposition 2.3 (6),
Proposition 2.4, Proposition 3.2 (4),
(p−− ⊙ p−−)→ (p2)−−

= (p−− ⊙ p−−)→ ((p2)− → 0)
= p−− → (p−− → ((p2)− → 0))
= p−− → ((p2)− → p−−−)
= p−− → ((p2)− → p−)
= (p2)− → (p−− → p−)
= (p2)− → (p→ p−)
= p→ ((p2)− → p−)
= p→ (p→ (p2)−−)
= p2 → (p2)−− = 1
Hence, p−− ⊙ p−− ≤ (p2)−−. Since (p2)−− ∈ I and I ∈ I(ε). Then 1⊙ p−− ⊙ p−− = p−− ⊙ p−− ∈ I. Hence,
1 ⊙ p = p ∈ I by (2).
(3)⇒ (2) Let p ⊙ v ⊙ v ∈ I for each p, v ∈ E. Since p2 ≤ p, then (p ⊙ v)2 = p2 ⊙ v2 ≤ p ⊙ v ⊙ v. Thus,
p ⊙ v ∈ I by (3).
(3)⇒ (4) Let a ∈ {p ∈ E | p2 = 0}. Then a2 = 0, and so a ∈ I. Hence, {p ∈ E | p2 = 0} ⊆ I.
(4)⇒ (3) Let p2 ∈ I for every p ∈ E. Then p2/I = 0/I. Since {0/I} ∈ I(ε/I), then p/I ∈ {0/I}. Hence,
p ∈ I. □

Corollary 4.7. Assume that I ∈ IM(ε) and J ∈ I(ε) with I ⊆ J, then J ∈ IM(ε).

Proof. If I ⊆ J and I ∈ IM(ε), then {p ∈ E | p2 = 0} ⊆ I ⊆ J by the Proposition 4.6. Since J ∈ I(ε),
then J ∈ IM(ε). □

Corollary 4.8. If I ∈ IM(ε), then for each p ∈ E, p− ∧ p ∈ I.

Proof. Since p− ∧ p ≤ p, p−, then (p− ∧ p)2 ≤ p ⊙ p− = 0 and (p− ∧ p)2 = 0. Hence p− ∧ p ∈ I by the
Proposition 4.6. □

Proposition 4.9. Suppose that ε is residuated with p−− ⊙ q ⊙ t− ∈ I, p ⊙ q− ∈ I and I ∈ IM(ε), then
p ⊙ t− ∈ I.

Proof. Let p−− ⊙ q ⊙ t− ∈ I and p ⊙ q− ∈ I for each p, q, t ∈ E. Then by the Proposition 3.2 (4),
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(p−− ⊙ q ⊙ t−)− ⊙ (p−− ⊙ q−− ⊙ t−)
= ((q ⊙ t−)→ p−−−) ⊙ (p−− ⊙ q−− ⊙ t−)
= ((q ⊙ t−)→ p−) ⊙ (p−− ⊙ q−− ⊙ t−)
= t− ⊙ (t− → (q→ p−)) ⊙ p−− ⊙ q−−

≤ (q→ p−) ⊙ p−− ⊙ q−−

= (q→ p−) ⊙ (p− → 0) ⊙ q−−

≤ q− ⊙ q−− = 0 ∈ I.
Since I ∈ I(ε), (p−−⊙q⊙ t−)−⊙ (p−−⊙q−−⊙ t−) ∈ I, then, by the Theorem 3.7, p−−⊙q−−⊙ t− ∈ I. From
(p⊙q−)−⊙(q−⊙ p−−) = q−⊙(q− → p−)⊙ p−− ≤ p−⊙ p−− = 0 ∈ I and I ∈ I(ε), (p⊙q−)−⊙(q−⊙ p−−) ∈ I.
Hence, q− ⊙ p−− ∈ I as p ⊙ q− ∈ I. It follows that t− ⊙ p−− ∈ I as I ∈ IM(ε). Since t− ⊙ p ≤ t− ⊙ p−−,
then p ⊙ t− ∈ I. □

Proposition 4.10. Assume that ∅ , I ⊆ E. Then the following assertions are equivalent:
(1) I ∈ IM(ε);
(2) I ∈ I(ε) and if p ⊙ (q−)2 ∈ I, then p ⊙ q− ∈ I for each p, q ∈ E;
(3) I ∈ I(ε) and if (p ⊙ q−) ⊙ t− ∈ I, then (p ⊙ t−) ⊙ (q ⊙ t−)− ∈ I for each p, q, t ∈ E;
(4) 0 ∈ I and if (p ⊙ (q−)2) ⊙ t− ∈ I and t ∈ I, then p ⊙ q− ∈ I for each p, q, t ∈ E.

Proof. (1) ⇒ (2): By Proposition 4.4, I ∈ I(ε). Suppose that (p ⊙ q−) ⊙ q− = p ⊙ (q−)2 ∈ I. Since
q ⊙ q− = 0 ∈ I, then p ⊙ q− ∈ I by (IM3).
(2)⇒ (3) Let (p⊙ q−)⊙ t− ∈ I. Since p⊙ (q⊙ t−)− ⊙ t− ⊙ t− = p⊙ t− ⊙ t− ⊙ (t− → q−) ≤ (p⊙ q−)⊙ t− ∈ I
and I ∈ I(ε), thus, p⊙(q⊙ t−)−⊙ t−⊙ t− ∈ I. By (2), we get that (p⊙ t−)⊙(q⊙ t−)− = p⊙(q⊙ t−)−⊙ t− ∈ I.
(3) ⇒ (1) Assume that (p ⊙ q−) ⊙ t− ∈ I and q ⊙ t− ∈ I. Then, (p ⊙ t−) ⊙ (q ⊙ t−)− ∈ I by (3). Since
q ⊙ t− ∈ I and I ∈ I(ε), then p ⊙ t− ∈ I by the Theorem 3.7. Hence, I ∈ IM(ε).
(2)⇒ (4) Let (p⊙ (q−)2)⊙ t− ∈ I and t ∈ I. Then, 0 ∈ I and p⊙ (q−)2 ∈ I as I ∈ I(ε). Hence, p⊙ q− ∈ I
by (2).
(4)⇒ (2) It’s easy by taking t = 0 in (4). □

Proposition 4.11. Let ξ : A→ B be a homomorphism of EQ-algebras. Then
(1) If I ∈ IM(B), then ξ−1(I) ∈ IM(A).
(2) If ξ is surjective and I ∈ IM(A), then ξ(I) ∈ IM(B).

Proof. The proof is analogous to that of the Proposition 3.23. □

Proposition 4.12. Let I ∈ I(ε). Then I ∈ IM(ε) iff ⟨I ∪ {u}⟩ = Iu, where Iu = {p ∈ E : p ⊙ u− ∈ I} and
u ∈ E.

Proof. (⇒) For any u ∈ E, Iu , ∅ as 0 ∈ Iu. Let p− ⊙ q, p ∈ Iu. Then (p− ⊙ q) ⊙ u− ∈ I and p ⊙ u− ∈ I.
Since I ∈ IM(ε), then q ⊙ u− ∈ I, and so q ∈ Iu. Hence, Iu ∈ I(ε) by the Theorem 3.7. Also, u ∈ Iu as
u ⊙ u− = 0 ∈ I. Let p ∈ I. Since p ⊙ u− ≤ p, then p ⊙ u− ∈ I, and so p ∈ Iu. Hence, I ⊆ Iu. Now,
assume there is J ∈ I(ε) satisfying I ∪ {u} ⊆ J. For any p ∈ Iu, then p ⊙ u− ∈ I ⊆ J, and so p ⊙ u− ∈ J.
Since u ∈ J and J ∈ I(ε), then p ∈ J, and so Iu ⊆ J. Hence, the conclusion holds.
(⇐) Let I ∈ I(ε), p ⊙ q− ⊙ t− ∈ I and q ⊙ t− ∈ I for every p, q, t ∈ E. Then, p ⊙ q− ∈ It and q ∈ It by
definition. Since It ∈ I(ε), then p ∈ It, and so p ⊙ t− ∈ I. Hence, I ∈ IM(ε). □
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Proposition 4.13. Let I, J ∈ I(ε). Then
(1) Iu1 = I iff u1 ∈ I;
(2) if u1 ≤ u2, then Iu1 ⊆ Iu2;
(3) if I ⊆ J, then Iu1 ⊆ Ju1;
(4) (I ∩ J)u1 = Iu1 ∩ Ju1 and (I ∪ J)u1 = Iu1 ∪ Ju1;
(5) Iu1⊕u2 ⊆ (Iu1)u2 .

Proof. (1) Since I ∪ {u1} ⊆ Iu1 = I, then u1 ∈ I. Conversely, if u1 ∈ I, since Iu1 = ⟨I ∪ {u1}⟩ and I ∈ I(ε),
then Iu1 = I.
(2) Suppose that p ∈ Iu1 and u1 ≤ u2, then p⊙u−1 ∈ I. Since u1 ≤ u2, then u−2 ≤ u−1 , and so p⊙u−2 ≤ p⊙u−1 ,
hence p ⊙ u−2 ∈ I and p ∈ Iu2 . Thus, Iu1 ⊆ Iu2 .
(3) Let I, J ∈ I(ε) and I ⊆ J. If p ∈ Iu1 , then p⊙u−1 ∈ I, and so p⊙u−1 ∈ J. Hence, p ∈ Ju1 and Iu1 ⊆ Ju1 .
(4) Since I ∩ J ⊆ I, J, then, (I ∩ J)u1 ⊆ Iu1 ∩ Ju1 by (3). Suppose that p ∈ Iu1 ∩ Ju1 . Then p ⊙ u−1 ∈ I
and p ⊙ u−1 ∈ J, and so p ⊙ u−1 ∈ I ∩ J. Hence, p ∈ (I ∩ J)u1 . Analogously, we can prove that
(I ∪ J)u1 = Iu1 ∪ Ju1 .
(5) Let p ∈ Iu1⊕u2 , then p ⊙ (u1 ⊕ u2)− = p ⊙ (u−1 → u2)− ∈ I. Since (u−1 ⊙ u−2 ) → (u−1 → u2)− = (u−1 →
u2) → ((u−1 ⊙ u−2 ) → 0) = (u−1 → u2) → (u−1 → u−−2 ) = 1. Thus, (u−1 ⊙ u−2 ) ≤ (u−1 → u2)−, and so
p ⊙ (u−1 ⊙ u−2 ) ≤ p ⊙ (u−1 → u2)− ∈ I. Since I ∈ I(ε), p ⊙ (u−1 ⊙ u−2 ) ∈ I. Hence, p ∈ (Iu1)u2 . □

Proposition 4.14. Let ε be an EQ-algebra with (DNP), then the assertions are equivalent:
(1) If I ∈ I(ε), then I ∈ IM(ε);
(2) {0} ∈ IM(ε);
(3) For each a ∈ E, the set E(a) = {p ∈ E | p ⊙ a− = 0} ∈ I(ε).

Proof. (1)⇒ (2) Since {0} ∈ I(ε), then {0} ∈ IM(ε).
(2) ⇒ (3) (I1) E(a) , ∅ as 0 ∈ E(a). Assume that p ≤ q and q ∈ E(a), then p ⊙ a− ≤ q ⊙ a− = 0, thus
p ⊙ a− = 0, hence p ∈ E(a).
(I2) Assume p, q ∈ E(a), then p ⊙ a− = 0, q ⊙ a− = 0. Since (p− → q) ⊙ q− ⊙ a− = (p− → q) ⊙ (q →
0) ⊙ a− ≤ p−− ⊙ a− = p ⊙ a− = 0 by the Proposition 2.3 (5), then (p− → q) ⊙ q− ⊙ a− = 0 ∈ {0}. Since
q ⊙ a− = 0 ∈ {0} and {0} ∈ IM(ε), then (p− → q) ⊙ a− = 0, and so (p− → q) ∈ E(a).
(3) ⇒ (1) Let I ∈ I(ε) with p ⊙ q− ⊙ z− ∈ I and q ⊙ z− ∈ I for each p, q, z ∈ E. For any a/I ∈ ε/I,
(ε/I)(a/I) ∈ I(ε/I). Then (p ⊙ q−)/I ⊙ z−/I = 0 and q/I ⊙ z−/I = 0. Thus, (p ⊙ q−)/I ∈ (ε/I)(z/I)
and q/I ∈ (ε/I)(z/I), and so q/I ∈ (ε/I)(z/I) as (ε/I)(z/I) ∈ I(ε/I). Hence p/I ⊙ z−/I = 0, and then
p ⊙ z− ∈ I. Therefore, I ∈ IM(ε). □

Definition 4.15. Assume that P is a proper ideal of an EQ-algebra ε. If p ⊙ q ∈ P implies pn ∈ P or
qn ∈ P for some n ∈ N and each p, q ∈ E, then P is said to be a primary ideal.

Example 4.16. In Example 3.5, we can check that I = {0, p} is a primary ideal.

Proposition 4.17. Suppose that P is a proper ideal of ε with (DNP). Then P is a primary ideal iff
[u] ⊙p [v] = [0] implies [u]n = [0] or [v]n = [0] for some n ∈ N and each [u], [v] ∈ ε/P.

Proof. (⇒) Assume P is a primary ideal and [u] ⊙p [v] = [0], then [u ⊙ v] = [u] ⊙p [v] = [0], thus
(u ⊙ v)−− = ((u ⊙ v) → 0)− ∈ P, and so (u ⊙ v) ∈ P. Hence, un ∈ P or vn ∈ P for some n ∈ N by
definition. Assume un ∈ P, then (un → 0)− = (un)−− = un ∈ P. Also (0→ un)− = 0 ∈ P, i.e. [u]n = [0].
If we assume vn ∈ P, we can get [v]n = [0].
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(⇐) Assume u ⊙ v ∈ P, then ((u ⊙ v) → 0)− = (u ⊙ v)−− ∈ P. Since (0 → (u ⊙ v))− = 0 ∈ P, then
[u] ⊙p [v] = [u ⊙ v] = [0]. Hence, [u]n = [0] or [v]n = [0] for some n ∈ N. If [u]n = [0], then
un = (un)−− = (un → 0)− ∈ P. If [v]n = [0], we can obtain (vn) ∈ P. Hence, the conclusion holds. □

Definition 4.18. Let P be a proper ideal of an EQ-algebra ε. P is said to be a prime ideal of ε if
p∧ y ∈ P implies p ∈ P or y ∈ P for each p, y ∈ E. Let’s denote the set of all prime ideals of ε by Ip(ε).

Example 4.19. In Example 3.5, we can check that both I1 = {0, p} ∈ Ip(ε) and I2 = {0, p, q} ∈ Ip(ε).

Proposition 4.20. If ε is residuated with (DNP), then I ∈ Ip(ε) if and only if I− = F is a prime filter
of ε.

Proof. The proof is analogous to that of Proposition 3.13. □

Proposition 4.21. Assume that ε satisfies (DNP) and P is a proper ideal of ε. Then P ∈ Ip(ε) iff
I ∩ J ⊆ P implies I ⊆ P or J ⊆ P for each I, J ∈ I(ε).

Proof. (⇒) Let I, J ∈ I(ε) with I ∩ J ⊆ P, but I ⊈ P and J ⊈ P, then there are p ∈ I − P and q ∈ J − P.
Since p ∧ q ≤ p, q and I, J ∈ I(ε), then p ∧ q ∈ I ∩ J ⊆ P and p ∧ q ∈ P. Thus, p ∈ P or q ∈ P as
P ∈ Ip(ε), which generates a contradiction. Hence, I ⊆ P or J ⊆ P.
(⇐) Let P ∈ I(ε) with p∧q ∈ P for each p, q ∈ E. If p, q < P, then ⟨P∪{p}⟩∩⟨P∪{q}⟩ = ⟨P∪{p∧q}⟩ = P
by Proposition 3.17. Thus, ⟨P ∪ {p}⟩ ⊆ P or ⟨P ∪ {q}⟩ ⊆ P, and so p ∈ P or q ∈ P, which generates a
contradiction. Hence, P ∈ Ip(ε). □

Proposition 4.22. Let ξ : E1 → E2 be a homomorphism of EQ-algebras. Then
(1) if P ∈ Ip(E2), then ξ−1(P) ∈ Ip(E1);
(2) if ξ is surjective and P ∈ Ip(E1) with P , E2, then ξ(P) ∈ Ip(E2).

Proof. The proof is similar to the Proposition 3.23. □

Proposition 4.23. Assume that ε is an EQ-algebra. If p2 = p for each p ∈ E, then every primary ideal
is prime.

Proof. Assume P is a primary ideal and p ∧ q ∈ P, since (p ⊙ q) ≤ (p ∧ q), then p ⊙ q ∈ P, and so
pn ∈ P or qn ∈ P for some n ∈ N by definition. If pn ∈ P, then pn = p ∈ P as p2 = p. If qn ∈ P, we get
that q ∈ P. Hence P is prime. □

Definition 4.24. Let M be a proper ideal of ε. If there is no proper ideal strictly contains M, then M
is called a maximal ideal. Let us denote the set of all maximal ideals by IM(ε).

Proposition 4.25. Let I be a proper ideal of an EQ-algebra ε. Then I ∈ IM(ε) if and only if ⟨I∪{p}⟩ = E
for each p ∈ E \ I.

Proof. (⇒) If p < I, then I ⫋ ⟨I ∪ {p}⟩ ⊆ E. Hence, ⟨I ∪ {p}⟩ = E by definition.
(⇐) Assume G is an ideal with I ⫋ G ⊆ E. Then there exists p ∈ G but p < I. Thus E = ⟨I ∪ {p}⟩ ⊆ G,
and so E = G. Therefore, I ∈ IM(ε). □

Proposition 4.26. Suppose that ε is residuated with (DNP) and I ∈ IM(ε). Then p ∈ E \ I if and only
if (np)− ∈ I for some n ∈ N.
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Proof. (⇒) If p < I, then ⟨I ∪ {p}⟩ = E by the Proposition 4.25, and so 1 ∈ ⟨I ∪ {p}⟩. By the
Proposition 3.17 (2), there are n ∈ N and q ∈ I satisfying 1 ≤ q ⊕ (np) = q− → (np), hence q− ≤ (np),
and so (np)− ≤ q−− = q ∈ I. Therefore (np)− ∈ I.
(⇐) Let p ∈ I and (np)− ∈ I. Then (np) ∈ I and (np) ⊕ (np)− = 1 ∈ I. But I is a proper ideal, which
generates a contradiction. Hence, p < I. □

Proposition 4.27. Given an EQ-algebra ε with (DNP), then every maximal ideal is prime.

Proof. Let M ∈ Max(ε) and p ∧ q ∈ M for any p, q ∈ E. If p < M, then M ⫋ ⟨M ∪ {p}⟩. Since
M ∈ Max(ε), we get ⟨M ∪ {p}⟩ = E. In a similar way, if q < M, then ⟨M ∪ {q}⟩ = E. By the
Proposition 3.17, we have E = ⟨M ∪ {p}⟩ ∩ ⟨M ∪ {q}⟩ = ⟨M ∪ {p ∧ q}⟩ = M, which is a contradiction.
Therefore, M ∈ Ip(ε). □

Proposition 4.28. Let ξ : E1 → E2 be a homomorphism of EQ-algebras. Then
(1) if M ∈ IM(E2), then ξ−1(M) ∈ IM(E1);
(2) if ξ is surjective and M ∈ IM(E1) such that ξ(M) , E2, then ξ(M) ∈ IM(E2).

Proof. The proof is similar to the Proposition 3.23. □

Theorem 4.29. Let I be a prime ideal of an EQ-algebra with (DNP). If I is an implicative ideal, then
it is maximal.

Proof. Assume that I < IM(ε). Then there is J ∈ I(ε) satisfying I ⫋ J ⫋ E, and so there is an element
p ∈ J− I. Since (p−∧ p)⊙ p− ≤ p−⊙ p = 0 ∈ I, then (p−∧ p)⊙ p− ∈ ⟨I∪{p}⟩, thus p∧ p− ∈ ⟨I∪{p}⟩ ⊆ J.
If p ∧ p− ∈ I, then p− ∈ I as I ∈ Ip(ε), and so p− ∈ J. Since J ∈ I(ε), p ⊕ p− = 1 ∈ J, which generates
a contradiction. Hence p ∧ p− = p, then p ≤ p−, and so p2 = 0 ∈ I. Because I is an implicative ideal,
so p ∈ I by Proposition 4.6, which is a contradiction. Hence, I ∈ IM(ε). □

5. Topological space of prime ideals

In this part, we give the topological properties of prime ideals.

Proposition 5.1. Let P ∈ Ip(ε). Then
(1) if P1 is a proper ideal and P ⊆ P1, then P1 ∈ Ip(ε);
(2) if {Pi}i∈I is a family of ideals and P ⊆ ∩i∈IPi, then {Pi}i∈I is a chain.

Proof. (1) For each x, y ∈ E with x∧y ∈ P ⊆ P1, since P is prime, then either x ∈ P ⊆ P1 or y ∈ P ⊆ P1,
hence P1 ∈ Ip(ε).
(2) For each P1, P2 ∈ {Pi}i∈I . If P1 = E or P2 = E, then the conclusion holds. Now, we suppose that
P1 , E, P2 , E and P1 ⊈ P2, P2 ⊈ P1, then there are x, y ∈ E satisfying x ∈ P1 − P2 and y ∈ P2 − P1.
Since P ⊆ ∩i∈IPi ⊆ P1 ∩ P2, then P1 ∩ P2 is prime by (1). Also since ⟨x⟩ ∈ P1 and ⟨y⟩ ∈ P2, then
⟨x⟩ ∩ ⟨y⟩ ⊆ P1 ∩ P2. Thus x ∈ ⟨x⟩ ⊆ P1 ∩ P2 or y ∈ ⟨y⟩ ⊆ P1 ∩ P2, which is a contradiction. It follows
that P1 ⊆ P2 or P2 ⊆ P1, hence {Pi}i∈I is a chain. □

Proposition 5.2. Assume that I is a proper ideal of an EQ-algebra with (DNP) and ∅ , S ⊆ E
satisfying I ∩ S = ∅. Then there exists P ∈ Ip(ε) satisfying I ⊆ P and P ∩ S = ∅.
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Proof. Let Σ = {J ∈ I(ε) | I ⊆ J and J ∩ S = ∅}. Then Σ , ∅ as I ∈ Σ. If {Jλ}λ∈∆ is a chain of ideals
that are in Σ, then by Zorn′s lemma we have P = ∪λ∈∆Jλ is a maximal element of Σ. So, it only need
to prove that P is an ideal. Then, we know that P ∈ Ip(ε) by Proposition 4.27. Assume that x ≤ y and
y ∈ P. Then there exists λ0 ∈ ∆ with y ∈ Jλ0 . Since Jλ0 is an ideal, then x ∈ Jλ0 ⊆ P, i.e. (I1) holds.
Let x, y ∈ P. Then there are λ ∈ ∆ and µ ∈ ∆ satisfying x ∈ Jλ and y ∈ Jµ. Since {Jλ}λ∈∆ is a chain,
then either Jλ ⊆ Jµ or Jµ ⊆ Jλ. Assume Jλ ⊆ Jµ, then x, y ∈ Jµ. Hence x ⊕ y ∈ Jµ ⊆ P, i.e. (I2) holds.
Therefore P is an ideal. Hence, the conclusion holds.

□

Corollary 5.3. Assume that ε is an EQ-algebra with (DNP). Then for any proper ideal I of ε with
x < I, there is P ∈ Ip(ε) satisfying I ⊆ P and x < P.

Proof. Since I is proper, then there is x ∈ E−I. Let S = {x} in the Proposition 5.2, the proof is clear. □

Next we discuss the topological properties of prime ideals. For each X ⊆ E, we denote that S (X) =
{P ∈ IP(ε) | X ⊈ P}.

Proposition 5.4. Suppose that ε is an EQ-algebra, then
(1) X1 ⊆ X2 ⊆ E implies S (X1) ⊆ S (X2);
(2) S (X1) = ∅ if and only if X1 = ∅ or X1 = {0};
(3) S (X1) = IP(ε) if and only if ⟨X1⟩ = E;
(4) S (X1) = S (⟨X1⟩);
(5) If X1, X2 ⊆ E, then ⟨X1⟩ = ⟨X2⟩ if and only if S (X1) = S (X2);
(6) If S (X1) ⊆ S (X2), then ⟨X1⟩ ⊆ ⟨X2⟩.

Proof. (1) For any P ∈ S (X1), then X1 ⊈ P. Since X1 ⊆ X2, then X2 ⊈ P and X2 ∈ S (X2). Hence,
S (X1) ⊆ S (X2).
(2) (⇒) Assume that S (X1) = ∅ but X1 , ∅ and X1 , {0}, then there are 0 , a ∈ X1 and P ∈ Ip(ε)
such that a < P by Corollary 5.3, i.e. X1 ⊈ P, and so P ∈ S (X1), which is contradiction. Hence, either
X1 = ∅ or X1 = {0}.
(⇐) If X1 = ∅, then for each P ∈ IP(ε), we have ∅ ⊆ P, i.e. P < S (∅), hence S (∅) = ∅. Also, If X1 = {0},
we can obtain S ({0}) = ∅.
(3) (⇒) Assume S (X1) = IP(ε) but ⟨X1⟩ , E. Then ⟨X1⟩ is proper. By Corollary 5.3, there is P ∈ Ip(ε)
satisfying ⟨X1⟩ ⊆ P. Then, X1 ⊆ ⟨X1⟩ ⊆ P, i.e. P < S (X1), which generates a contradiction. Hence
⟨X1⟩ = E.
(⇐) If ⟨X1⟩ = E, then E is the smallest ideal including X1. Hence X1 ⊈ P for any P ∈ IP(ε), and so
IP(ε) ⊆ S (X1). Therefore, S (X1) = IP(ε).
(4) Since X1 ⊆ ⟨X1⟩, then S (X1) ⊆ S (⟨X1⟩) by (1). Conversely, for any P ∈ S (⟨X1⟩), we have ⟨X1⟩ ⊈ P.
Hence X1 ⊈ P, i.e. P ∈ S (X1). Therefore S (X1) = S (⟨X1⟩).
(5) If ⟨X1⟩ = ⟨X2⟩, then S (X1) = S (⟨X1⟩) = S (⟨X2⟩) = S (X2). Conversely, assume S (X1) = S (X2), but
⟨X1⟩ , ⟨X2⟩, then there is P ∈ Ip(ε) satisfying ⟨X1⟩ ⊆ P, ⟨X2⟩ ⊈ P by Proposition 5.2. Thus P < S (X1),
P ∈ S (X2), which is a contradiction. Hence ⟨X1⟩ = ⟨X2⟩.
(6) For any P ∈ IP(ε), if X2 ⊆ P, then P < S (X2), and so P < S (X1). Hence X1 ⊆ P. Therefore
⟨X1⟩ ⊆ ⟨X2⟩. □
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Proposition 5.5. Suppose that ε is an EQ-algebra, then
(1) If {Xi}i∈I is a family of subset of E, then S (∪i∈IXi) = ∪i∈IS (Xi);
(2) For each Z1,Z2 ∈ E, S (Z1) ∩ S (Z2) = S (⟨Z1⟩ ∩ ⟨Z2⟩).

Proof. (1) For each i ∈ I, Xi ⊆ ∪i∈IXi, then S (Xi) ⊆ S (∪i∈IXi) for any i ∈ I. Thus ∪i∈IS (Xi) ⊆ S (∪i∈IXi).
Conversely, for any P ∈ S (∪i∈IXi), then ∪i∈IXi ⊈ P. Hence, there exists i0 ∈ I satisfying Xi0 ⊈ P, hence
P ∈ S (Xi0) ⊆ ∪i∈IS (Xi), and so S (∪i∈IXi) ⊆ ∪i∈IS (Xi). Hence, S (∪i∈IXi) = ∪i∈IS (Xi).
(2) On one hand, if P ∈ S (Z1) ∩ S (Z2), then Z1 ⊈ P and Z2 ⊈ P. Hence ⟨Z1⟩ ⊈ P and ⟨Z2⟩ ⊈ P. If
⟨Z1⟩ ∩ ⟨Z2⟩ ⊆ P, then ⟨Z1⟩ ⊆ P or ⟨Z2⟩ ⊆ P, which generates a contradiction, hence ⟨Z1⟩ ∩ ⟨Z2⟩ ⊈ P,
i.e. P ∈ S (⟨Z1⟩ ∩ ⟨Z2⟩), and so S (Z1) ∩ S (Z2) ⊆ S (⟨Z1⟩ ∩ ⟨Z2⟩). On the other hand, assume P ∈
S (⟨Z1⟩ ∩ ⟨Z2⟩), then ⟨Z1⟩ ⊈ P, ⟨Z2⟩ ⊈ P. Thus Z1 ⊈ P and Z2 ⊈ P. Hence P ∈ S (Z1) ∩ S (Z2), i.e.
S (⟨Z1⟩ ∩ ⟨Z2⟩) ⊆ S (Z1) ∩ S (Z2). Hence, S (Z1) ∩ S (Z2) = S (⟨Z1⟩ ∩ ⟨Z2⟩). □

Let ε be an EQ-algebra, if X = {a}, then we denote that S (a) = {P ∈ IP(ε) | a < P}.

Proposition 5.6. Assume that ε is an EQ-algebra, then
(1) S (0) = ∅ and S (1) = IP(ε);
(2) if a ≤ b, then S (a) ⊆ S (b);
(3) S (a) = S (b) if and only if ⟨a⟩ = ⟨b⟩;
(4) S (a) ∩ S (b) = S (a ∧ b);
(5) S (a) ∪ S (b) = S (a ⊕ b).

Proof. (1) For any P ∈ IP(ε), 0 ∈ P, then S (0) = ∅. Since P is proper, then 1 < P. Thus P ∈ S (1), and
so S (1) = IP(ε).
(2) − (3) The proof is analogous to that of the Proposition 5.4 (1) and (5).
(4) For any P ∈ IP(ε), a ∧ b < P iff a < P and b < P, hence P ∈ S (a ∧ b) iff a ∧ b < P iff a < P and
b < P iff P ∈ S (a) and P ∈ S (b) iff P ∈ S (a) ∩ S (b).
(5) We can check that for each ideal I of ε, a < I or b < I iff a⊕b < I by using the proof by contradiction.
Then for any P ∈ IP(ε), we have a < P or b < P iff a ⊕ b < P, it follows that P ∈ S (a) ∪ S (b) iff
P ∈ S (a ⊕ b). □

Definition 5.7. Let ε be an EQ-algebra and ℑ = {S (X) | X ⊆ E}, then by the Proposition 5.4 and 5.5
we have
(1) ∅, IP(ε) ∈ ℑ;
(2) if S (X), S (Y) ∈ ℑ, then S (X) ∩ S (Y) ∈ ℑ;
(3) if S (Xi)i∈I ∈ ℑ, then ∪i∈IS (Xi) ∈ ℑ.

Hence, ℑ is a topology on IP(ε) and (IP(ε),ℑ) is a topological space of prime ideals.

Proposition 5.8. Suppose that ε is an EQ-algebra, then {S (a)}a∈E is a topological base of ℑ.

Proof. For any S (X) ∈ ℑ, then, by the Proposition 5.5, we have S (X) = S (∪a∈X{a}) = ∪a∈XS ({a}).
It follows that every member in ℑ can be expressed as the union of elements in subset of {S (a)}a∈E.
Hence, the conclusion holds. □

Proposition 5.9. Let ε be an EQ-algebra, then S (a) is compact in (IP(ε),ℑ) for any a ∈ E.

Proof. We only need to prove that each open covering of S (a) has a finite open covering. Assume
S (a) = ∪i∈IS (ai) = S (∪i∈I{ai}), then ⟨a⟩ = ⟨∪i∈I{ai}⟩ by the Proposition 5.4 (5), thus a ∈ ⟨∪i∈I{ai}⟩ and
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there are n ∈ N and i1, i2, · · · , in ∈ I satisfying a ≤ ai1 ⊕ ai2 ⊕ · · · ⊕ ain . By the Proposition 5.6 (2)
and (5), we have S (a) ⊆ S (ai1 ⊕ai2 ⊕ · · ·⊕ain) = S (ai1)∪· · ·∪S (ain). Conversely, S (ai1)∪· · ·∪S (ain) ⊆
∪i∈IS (ai) = S (a). Hence, S (a) = S (ai1) ∪ · · · ∪ S (ain). □

Proposition 5.10. Suppose that ε is an EQ-algebra, Then (IP(ε),ℑ) is a compact T0 topological space.

Proof. Since IP(ε) = S (1), then IP(ε) is compact by the Proposition 5.9. Now we show that IP(ε) is a
T0 topological space. For every P,Q ∈ IP(ε) and P , Q, then P ⊈ Q or Q ⊈ P. If P ⊈ Q, then there
exists a satisfying a ∈ P but a < Q. Let U = S (a), then Q ∈ U, P < U. If Q ⊈ P, the proof is similar.
Hence, the conclusion holds. □

From the above discussions, we know that the topological space Ip(E) is a prime spectrum [16].
Next, we study the reticulation of EQ-algebras.

Definition 5.11. Given an EQ-algebra ε, a bounded distributive lattice L, and a map λ : E → L. We
call the pair (L, λ) an ideal reticulation, if it satisfies the following properties:
(R1) λ(a ⊕ b) = λ(a) ∨ λ(b);
(R2) λ(a ∧ b) = λ(a) ∧ λ(b);
(R3) λ(0) = 0, λ(1) = 1;
(R4) λ is surjective;
(R5) λ(a) ≤ λ(b) iff na ≤ b for some n ∈ N+.

Example 5.12. Let L be the set of all principal ideals and λ : a → ⟨a⟩, where a ∈ E. Then, we can
check that (L, λ) be an ideal reticulation by Proposition 3.17.

Proposition 5.13. Given an ideal I of EQ-algebra ε and a, b ∈ E. Then
(1) If λ(a) = λ(b), then a ∈ I if and only if b ∈ I.
(2) λ(a) = λ(b) if and only if ⟨a⟩ = ⟨b⟩.
(3) λ(a) ∈ λ(I) if and only if a ∈ I.
(4) If I is prime of E, then λ(I) is a prime ideal of L.

Proof. (1) Assume that a ∈ I, since λ(b) ≤ λ(a), then nb ≤ a for some n ∈ N+. Thus, b ∈ I. Similarly,
we can prove that b ∈ I implies that a ∈ I.
(2) Let λ(a) = λ(b). Now, λ(a) ≤ λ(b)⇔ a ≤ nb⇔ a ∈ ⟨b⟩, it follows that ⟨a⟩ ⊆ ⟨b⟩. Analogously, we
have ⟨b⟩ ⊆ ⟨a⟩.
(3) If λ(a) ∈ λ(I), then there is b ∈ I such that λ(a) = λ(b). It follows that a ∈ I by (1).
(4) Since 0 ∈ I , ∅, then λ(0) ∈ λ(I) , ∅. Assume that λ(a), λ(b) ∈ L with λ(a) ≤ λ(b), then na ≤ b.
Thus, na ∈ I and so a ∈ I. Hence, λ(a) ∈ λ(I), that is, (I1) holds. Let λ(a), λ(b) ∈ λ(I). Then, a, b ∈ I
by (3). Hence, a ⊕ b ∈ I, and so λ(a ⊕ b) ∈ λ(I). That is, λ(a) ∨ λ(b) ∈ λ(I). Hence, λ(I) is an ideal.

Since I , E, then there is a ∈ E but a < I. Thus,λ(a) < λ(I) by (3). Hence, λ(I) is proper. Assume
that λ(a) ∧ λ(b) ∈ λ(I), then λ(a ∧ b) ∈ λ(I). Thus, a ∈ I or b ∈ I, it follows that λ(a) ∈ λ(I) or
λ(b) ∈ λ(I). Hence, λ(I) is prime. □

Proposition 5.14. The map λ : E → L is surjective if and only if λ∗ : P(L)→ P(E) is injective.

Proof. Let λ be surjective. If λ∗(X) = λ∗(Y) for some X,Y ∈ P(L), then λλ∗(X) = λλ∗(Y). It follows
that X = λλ∗(X) = λλ∗(Y) = Y , that is, λ∗ is injective. Conversely, for each y ∈ Y , λ∗({y}) , ∅.
Otherwise, if λ∗({y}) = ∅ for some y0 ∈ Y . Then,λ∗(Y) = λ∗(Y \ {y0}), but Y , Y \ {y0}, which is a
contradiction. □
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Now, we define the restriction λ∗ : Ip(L)→ Ip(E) by λ∗(I) = λ−1(I) for each I ∈ Ip(L).

Proposition 5.15. If I ∈ Ip(L), then λ∗(I) ∈ Ip(E).

Proof. First, we show that λ∗(I) is an ideal of E. Let a, b ∈ E such that a ≤ b and b ∈ λ∗. Then
λ(a) ≤ λ(b) ∈ I. Thus, λ(a) ∈ I, it follows that a ∈ λ∗(I). That is, (I1) holds. Now, assume a, b ∈ λ∗,
then λ(a), λ(b) ∈ I, and so λ(a) ∨ λ(b) ∈ I. That is λ(a ⊕ b) ∈ I, it follows that a ⊕ b ∈ λ∗(E).

Since I , L and λ∗ is injective, then λ∗(I) , E. Assume that a ∧ b ∈ λ∗(I), then λ(a) ∧ λ(b) =
λ(a∧ b) ∈ I. Thus, λ(a) ∈ I or λ(b) ∈ I, it follows that a ∈ λ∗(I) or b ∈ λ∗(I). Hence, λ∗(I) ∈ Ip(E). □

Theorem 5.16. Given an ideal I of EQ-algebra ε. Then
(1) λ∗λ(I) = I.
(2) The map λ∗ is surjective.

Proof. (1) By Proposition 5.13 (3), we have a ∈ I ⇔ λ(a) ∈ λ(I) iff a ∈ λ∗λ(I).
(2) Let I ∈ Ip(E), λ(I) ∈ Ip(L) by Proposition 5.13 (4). By (1), we know that λ∗λ(I) = I, then λ∗ is
surjective. □

6. Conclusions

In this article, we firstly introduced ideals and other special ideals in EQ-algebras, such as
implicative ideals, primary ideals, prime ideals and maximal ideals. We discuss their properties and
the relationships among them, for example, we proved that every maximal ideal is prime and if prime
ideals are implicative, then they are maximal in the EQ-algebras with the condition (DNP). And each
primary ideal is prime under certain condition. Also, we gave the generation formula of ideals and
their equivalent characterizations. By studying the relationship between ideals and filters, we obtain
that filters and ideals are not dual notions in EQ-algebra. But we prove that they are dual in a residuated
EQ-algebra with the condition (DNP). Also, We gave an equivalent condition for I(ε) to become a
Boolean algebra. Finally, we introduced the topological properties of prime ideals. We got that the set
of all prime ideals is a compact T0 topological space. Also, we transferred the spectrum of EQ-algebras
to bounded distributive lattices and given the ideal reticulation of EQ-algebras.

As we all know, fuzzy ideals are the generalization of ideals. An ideal can uniquely determine
a fuzzy ideal, but given a fuzzy ideal, we can get more than one ideals. So the study of fuzzy
ideals is more extensive than that of ideals, and more algebraic structure information can be obtained.
Therefore, we will devote ourselves to the study of fuzzy ideals on EQ-algebras in the future work.
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