Processing math: 53%
Research article Special Issues

On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative

  • This investigation communicates with an initial value problem (IVP) of Hilfer-generalized proportional fractional (GPF) differential equations in the fuzzy framework is deliberated. By means of the Hilfer-GPF operator, we employ the methodology of successive approximation under the generalized Lipschitz condition. Based on the proposed derivative, the fractional Volterra-Fredholm integrodifferential equations (FVFIEs) via generalized fuzzy Hilfer-GPF Hukuhara differentiability (HD) having fuzzy initial conditions are investigated. Moreover, the existence of the solution is proposed by employing the fixed-point formulation. The uniqueness of the solution is verified. Furthermore, we derived the equivalent form of fuzzy FVFIEs which is supposed to demonstrate the convergence of this group of equations. Two appropriate examples are presented for illustrative purposes.

    Citation: Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja. On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative[J]. AIMS Mathematics, 2021, 6(10): 10920-10946. doi: 10.3934/math.2021635

    Related Papers:

    [1] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [2] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [3] Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793
    [4] Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548
    [5] Sumbal Ahsan, Rashid Nawaz, Muhammad Akbar, Saleem Abdullah, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method. AIMS Mathematics, 2022, 7(7): 13169-13191. doi: 10.3934/math.2022726
    [6] Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch . New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Mathematics, 2021, 6(5): 4507-4525. doi: 10.3934/math.2021267
    [7] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [8] Sajid Iqbal, Muhammad Samraiz, Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad . Some new Grüss inequalities associated with generalized fractional derivative. AIMS Mathematics, 2023, 8(1): 213-227. doi: 10.3934/math.2023010
    [9] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
    [10] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
  • This investigation communicates with an initial value problem (IVP) of Hilfer-generalized proportional fractional (GPF) differential equations in the fuzzy framework is deliberated. By means of the Hilfer-GPF operator, we employ the methodology of successive approximation under the generalized Lipschitz condition. Based on the proposed derivative, the fractional Volterra-Fredholm integrodifferential equations (FVFIEs) via generalized fuzzy Hilfer-GPF Hukuhara differentiability (HD) having fuzzy initial conditions are investigated. Moreover, the existence of the solution is proposed by employing the fixed-point formulation. The uniqueness of the solution is verified. Furthermore, we derived the equivalent form of fuzzy FVFIEs which is supposed to demonstrate the convergence of this group of equations. Two appropriate examples are presented for illustrative purposes.



    Recently, fractional calculus has attained assimilated bounteous flow and significant importance due to its rife utility in the areas of technology and applied analysis. Fractional derivative operators have given a new rise to mathematical models such as thermodynamics, fluid flow, mathematical biology, and virology, see [1,2,3]. Previously, several researchers have explored different concepts related to fractional derivatives, such as Riemann-Liouville, Caputo, Riesz, Antagana-Baleanu, Caputo-Fabrizio, etc. As a result, this investigation has been directed at various assemblies of arbitrary order differential equations framed by numerous analysts, (see [4,5,6,7,8,9,10]). It has been perceived that the supreme proficient technique for deliberating such an assortment of diverse operators that attracted incredible presentation in research-oriented fields, for example, quantum mechanics, chaos, thermal conductivity, and image processing, is to manage widespread configurations of fractional operators that include many other operators, see the monograph and research papers [11,12,13,14,15,16,17,18,19,20,21,22].

    In [23], the author proposed a novel idea of fractional operators, which is called GPF operator, that recaptures the Riemann-Liouville fractional operators into a solitary structure. In [24], the authors analyzed the existence of the FDEs as well as demonstrated the uniqueness of the GPF derivative by utilizing Kransnoselskii's fixed point hypothesis and also dealt with the equivalency of the mixed type Volterra integral equation.

    Fractional calculus can be applied to a wide range of engineering and applied science problems. Physical models of true marvels frequently have some vulnerabilities which can be reflected as originating from various sources. Additionally, fuzzy sets, fuzzy real-valued functions, and fuzzy differential equations seem like a suitable mechanism to display the vulnerabilities marked out by elusiveness and dubiousness in numerous scientific or computer graphics of some deterministic certifiable marvels. Here we broaden it to several research areas where the vulnerability lies in information, for example, ecological, clinical, practical, social, and physical sciences [25,26,27].

    In 1965, Zadeh [28] proposed fuzziness in set theory to examine these issues. The fuzzy structure has been used in different pure and applied mathematical analyses, such as fixed-point theory, control theory, topology, and is also helpful for fuzzy automata and so forth. In [29], authors also broadened the idea of a fuzzy set and presented fuzzy functions. This concept has been additionally evolved and the bulk of the utilization of this hypothesis has been deliberated in [30,31,32,33,34,35] and the references therein. The concept of HD has been correlated with fuzzy Riemann-Liouville differentiability by employing the Hausdorff measure of non-compactness in [36,37].

    Numerous researchers paid attention to illustrating the actual verification of certain fuzzy integral equations by employing the appropriate compactness type assumptions. Different methodologies and strategies, in light of HD or generalized HD (see [38]) have been deliberated in several credentials in the literature (see for instance [39,40,41,42,43,44,45,46,47,48,49]) and we presently sum up quickly a portion of these outcomes. In [50], the authors proved the existence of solutions to fuzzy FDEs considering Hukuhara fractional Riemann-Liouville differentiability as well as the uniqueness of the aforesaid problem. In [51,52], the authors investigated the generalized Hukuhara fractional Riemann-Liouville and Caputo differentiability of fuzzy-valued functions. Bede and Stefanini [39] investigated and discovered novel ideas for fuzzy-valued mappings that correlate with generalized differentiability. In [43], Hoa introduced the subsequent fuzzy FDE with order ϑ(0,1):

    {(cDϑσ+1Φ)(ζ)=F(ζ,Φ(ζ)),Φ(σ1)=Φ0E, (1.1)

    where a fuzzy function is F:[σ1,σ2]×EE with a nontrivial fuzzy constant Φ0E. The article addressed certain consequences on clarification of the fractional fuzzy differential equations and showed that the aforesaid equations in both cases (differential/integral) are not comparable in general. A suitable assumption was provided so that this correspondence would be effective. Hoa et al. [53] proposed the Caputo-Katugampola FDEs fuzzy set having the initial condition:

    {(cDϑ,ρσ+1Φ)(ζ)=F(ζ,Φ(ζ)),Φ(σ1)=Φ0, (1.2)

    where 0<σ1<ζσ2, cDϑ,ρσ+1 denotes the fuzzy Caputo-Katugampola fractional generalized Hukuhara derivative and a fuzzy function is F:[σ1,σ2]×EE. An approach of continual estimates depending on generalized Lipschitz conditions was employed to discuss the actual as well as the uniqueness of the solution. Owing to the aforementioned phenomena, in this article, we consider a novel fractional derivative (merely identified as Hilfer GPF-derivative). Consequently, in the framework of the proposed derivative, we establish the basic mathematical tools for the investigation of GPF-FFHD which associates with a fractional order fuzzy derivative. We investigated the actuality and uniqueness consequences of the clarification to a fuzzy fractional IVP by employing GPF generalized HD by considering an approach of continual estimates via generalized Lipschitz condition. Moreover, we derived the FVFIE using a generalized fuzzy GPF derivative is presented. Finally, we demonstrate the problems of actual and uniqueness of the clarification of this group of equations. The Hilfer-GPF differential equation is presented as follows:

    {Dϑ,q,βσ+1Φ(ζ)=F(ζ,Φ(ζ)),ζ[σ1,T],0σ1<TI1γ,βσ1Φ(σ1)=mj=1RjΦ(νj),ϑγ=ϑ+qϑq,νj(σ1,T], (1.3)

    where Dϑ,q,βσ+1(.) is the Hilfer GPF-derivative of order ϑ(0,1),I1γ,βσ1(.) is the GPF integral of order 1γ>0,RjR, and a continuous function F:[σ1,T]×RR with νj[σ1,T] fulfilling σ<ν1<...<νm<T for j=1,...,m. To the furthest extent that we might actually know, nobody has examined the existence and uniqueness of solution (1.3) regarding FVFIEs under generalized fuzzy Hilfer-GPF-HD with fuzzy initial conditions. An illustrative example of fractional-order in the complex domain is proposed and provides the exact solution in terms of the Fox-Wright function.

    The following is the paper's summary. Notations, hypotheses, auxiliary functions, and lemmas are presented in Section 2. In Section 3, we establish the main findings of our research concerning the existence and uniqueness of solutions to Problem 1.3 by means of the successive approximation approach. We developed the fuzzy GPF Volterra-Fredholm integrodifferential equation in Section 4. Section 5 consists of concluding remarks.

    Throughout this investigation, E represents the space of all fuzzy numbers on R. Assume the space of all Lebsegue measureable functions with complex values F on a finite interval [σ1,σ2] is identified by χrc(σ1,σ2) such that

    Fχrc<,cR,1r.

    Then, the norm

    Fχrc=(σ2σ1|ζcF(ζ)|rdζζ)1/r.

    Definition 2.1. ([53]) A fuzzy number is a fuzzy set Φ:R[0,1] which fulfills the subsequent assumptions:

    (1) Φ is normal, i.e., there exists ζ0R such that Φ(ζ0)=1;

    (2) Φ is fuzzy convex in R, i.e, for δ[0,1],

    Φ(δζ1+(1δ)ζ2)min{Φ(ζ1),Φ(ζ2)}foranyζ1,ζ2R;

    (3) Φ is upper semicontinuous on R;

    (4) [z]0=cl{z1R|Φ(z1)>0} is compact.

    C([σ1,σ2],E) indicates the set of all continuous functions and set of all absolutely continuous fuzzy functions signifys by AC([σ1,σ2],E) on the interval [σ1,σ2] having values in E.

    Let γ(0,1), we represent the space of continuous mappings by

    Cγ[σ1,σ2]={F:(σ1,σ2]E:eβ1β(ζσ1)(ζσ1)1γF(ζ)C[σ1,σ2]}.

    Assume that a fuzzy set Φ:R[0,1] and all fuzzy mappings Φ:[σ1,σ2]E defined on L([σ1,σ2],E) such that the mappings ζˉD0[Φ(ζ),ˆ0] lies in L1[σ1,σ2].

    There is a fuzzy number Φ on R, we write [Φ]ˇq={z1R|Φ(z1)ˇq} the ˇq-level of Φ, having ˇq(0,1].

    From assertions (1) to (4); it is observed that the ˇq-level set of ΦE, [Φ]ˇq is a nonempty compact interval for any ˇq(0,1]. The ˇq-level of a fuzzy number Φ is denoted by [Φ_(ˇq),ˉΦ(ˇq)].

    For any δR and Φ1,Φ2E, then the sum Φ1+Φ2 and the product δΦ1 are demarcated as: [Φ1+Φ2]ˇq=[Φ1]ˇq+[Φ2]ˇq and [δ.Φ1]ˇq=δ[Φ1]ˇq, for all ˇq[0,1], where [Φ1]ˇq+[Φ2]ˇq is the usual sum of two intervals of R and δ[Φ1]ˇq is the scalar multiplication between δ and the real interval.

    For any ΦE, the diameter of the ˇq-level set of Φ is stated as diam[μ]ˇq=ˉμ(ˇq)μ_(ˇq).

    Now we demonstrate the notion of Hukuhara difference of two fuzzy numbers which is mainly due to [54].

    Definition 2.2. ([54]) Suppose Φ1,Φ2E. If there exists Φ3E such that Φ1=Φ2+Φ3, then Φ3 is known to be the Hukuhara difference of Φ1 and Φ2 and it is indicated by Φ1Φ2. Observe that Φ1Φ2Φ1+()Φ2.

    Definition 2.3. ([54]) We say that ¯D0[Φ1,Φ2] is the distance between two fuzzy numbers if

    ¯D0[Φ1,Φ2]=supˇq[0,1]H([Φ1]ˇq,[Φ2]ˇq),Φ1,Φ2E,

    where the Hausdroff distance between [Φ1]ˇq and [Φ2]ˇq is defined as

    H([Φ1]ˇq,[Φ2]ˇq)=max{|Φ_(ˇq)ˉΦ(ˇq)|,|ˉΦ(ˇq)Φ_(ˇq)|}.

    Fuzzy sets in E is also refereed as triangular fuzzy numbers that are identified by an ordered triple Φ=(σ1,σ2,σ3)R3 with σ1σ2σ3 such that [Φ]ˇq=[Φ_(ˇq),ˉΦ(ˇq)] are the endpoints of ˇq-level sets for all ˇq[0,1], where Φ_(ˇq)=σ1+(σ2σ1)ˇq and ˉΦ(ˇq)=σ3(σ3σ2)ˇq.

    Generally, the parametric form of a fuzzy number Φ is a pair [Φ]ˇq=[Φ_(ˇq),ˉΦ(ˇq)] of functions Φ_(ˇq),ˉΦ(ˇq),ˇq[0,1], which hold the following assumptions:

    (1) μ_(ˇq) is a monotonically increasing left-continuous function;

    (2) ˉμ(ˇq) is a monotonically decreasing left-continuous function;

    (3) μ_(ˇq)ˉμ(ˇq),ˇq[0,1].

    Now we mention the generalized Hukuhara difference of two fuzzy numbers which is proposed by [38].

    Definition 2.4. ([38]) The generalized Hukuhara difference of two fuzzy numbers Φ1,Φ2E (gH-difference in short) is stated as follows

    Φ1gHΦ2=Φ3Φ1=Φ2+Φ3orΦ2=Φ1+(1)Φ3.

    A function Φ:[σ1,σ2]E is said to be d-increasing (d-decreasing) on [σ1,σ2] if for every ˇq[0,1]. The function ζdiam[Φ(ζ)]ˇq is nondecreasing (nonincreasing) on [σ1,σ2]. If Φ is d-increasing or d-decreasing on [σ1,σ2], then we say that Φ is d-monotone on [σ1,σ2].

    Definition 2.5. ([39])The generalized Hukuhara derivative of a fuzzy-valued function F:(σ1,σ2)E at ζ0 is defined as

    FgH(ζ0)=limh0F(ζ0+h)gHF(ζ0)h,

    if (F)gH(ζ0)E, we say that F is generalized Hukuhara differentiable (gH-differentiable) at ζ0.

    Moreover, we say that F is [(i)gH]-differentiable at ζ0 if

    [FgH(ζ0)]ˇq=[[limh0F_(ζ0+h)gHF_(ζ0)h]ˇq,[limh0ˉF(ζ0+h)gHˉF(ζ0)h]ˇq]=[(F_)(ˇq,ζ0),(ˉF)(ˇq,ζ0)], (2.1)

    and that F is [(ii)gH]-differentiable at ζ0 if

    [FgH(ζ0)]ˇq=[(ˉF)(ˇq,ζ0),(F_)(ˇq,ζ0)]. (2.2)

    Definition 2.6. ([49]) We state that a point ζ0(σ1,σ2), is a switching point for the differentiability of F, if in any neighborhood U of ζ0 there exist points ζ1<ζ0<ζ2 such that

    Type Ⅰ. at ζ1 (2.1) holds while (2.2) does not hold and at ζ2 (2.2) holds and (2.1) does not hold, or

    Type Ⅱ. at ζ1 (2.2) holds while (2.1) does not hold and at ζ2 (2.1) holds and (2.2) does not hold.

    Definition 2.7. ([23]) For β(0,1] and let the left-sided GPF-integral operator of order ϑ of F is defined as follows

    Iϑ,βσ+1F(ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν)dν,ζ>σ1, (2.3)

    where β(0,1], ϑC, Re(ϑ)>0 and Γ(.) is the Gamma function.

    Definition 2.8. ([23]) For β(0,1] and let the left-sided GPF-derivative operator of order ϑ of F is defined as follows

    Dϑ,βσ+1F(ζ)=Dn,ββnϑΓ(nϑ)ζσ1eβ1β(ζν)(ζν)nϑ1F(ν)dν, (2.4)

    where β(0,1], ϑC,Re(ϑ)>0,n=[ϑ]+1 and Dn,β represents the nth-derivative with respect to proportionality index β.

    Definition 2.9. ([23]) For β(0,1] and let the left-sided GPF-derivative in the sense of Caputo of order ϑ of F is defined as follows

    cDϑ,βσ+1F(ζ)=1βnϑΓ(nϑ)ζσ1eβ1β(ζν)(ζν)nϑ1(Dn,βF)(ν)dν, (2.5)

    where β(0,1], ϑC,Re(ϑ)>0 and n=[ϑ]+1.

    Let ΦL([σ1,σ2],E), then the GPF integral of order ϑ of the fuzzy function Φ is stated as:

    Φβϑ(ζ)=(Iϑ,βσ+1Φ)(ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1Φ(ν)dν,ζ>σ1. (2.6)

    Since [Φ(ζ)]ˇq=[Φ_(ˇq,ζ),ˉΦ(ˇq,ζ)] and 0<ϑ<1, we can write the fuzzy GPF-integral of the fuzzy mapping Φ depend on lower and upper mappingss, that is,

    [(Iϑ,βσ+1Φ)(ζ)]ˇq=[(Iϑ,βσ+1Φ_)(ˇq,ζ),(Iϑ,βσ+1ˉΦ)(ˇq,ζ)],ζσ1, (2.7)

    where

    (Iϑ,βσ+1Φ_)(ˇq,ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1Φ_(ˇq,ν)dν, (2.8)

    and

    (Iϑ,βσ+1ˉΦ)(ˇq,ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1ˉΦ(ˇq,ν)dν. (2.9)

    Definition 2.10. For nN, order ϑ and type q hold n1<ϑn with 0q1. The left-sided fuzzy Hilfer-proportional gH-fractional derivative, with respect to ζ having β(0,1] of a function ζCβ1γ[σ1,σ2], is stated as

    (Dϑ,q,βσ+1Φ)(ζ)=(Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1Φ))(ζ),

    where DβΦ(ν)=(1β)Φ(ν)+βΦ(ν) and if the gH-derivative Φ(1ϑ),β(ζ) exists for ζ[σ1,σ2], where

    Φβ(1ϑ)(ζ):=(I(1ϑ),βσ+1Φ)(ζ)=1β1ϑΓ(1ϑ)ζσ1eβ1β(ζν)(ζν)ϑΦ(ν)dν,ζσ1.

    Definition 2.11. Let ΦL([σ1,σ2],E) and the fractional generalized Hukuhara GPF-derivative of fuzzy-valued function Φ is stated as:

    (gHDϑ,βσ+1Φ)(ζ)=I1ϑ,βσ+1(ΦgH)(ζ)=1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑΦgH(ν)dν,ν(σ1,ζ). (2.10)

    Furthermore, we say that Φ is GPF[(i)gH]-differentiable at ζ0 if

    [(gHDϑ,βσ+1)]ˇq=[[1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑΦ_gH(ν)dν]ˇq,[1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑˉΦgH(ν)dν]ˇq]=[(gHD_ϑ,βσ+1)(ˇq,ζ),(gHˉDϑ,βσ+1)(ˇq,ζ)] (2.11)

    and that Φ is GPF[(i)gH]-differentiable at ζ0 if

    [(gHDϑ,βσ+1)]ˇq=[(gHˉDϑ,βσ+1)(ˇq,ζ),(gHD_ϑ,βσ+1)(ˇq,ζ)]. (2.12)

    Definition 2.12. We say that a point ζ0(σ1,σ2), is a switching point for the differentiability of F, if in any neighborhood U of ζ0 there exist points ζ1<ζ0<ζ2 such that

    Type Ⅰ. at ζ1 (2.11) holds while (2.12) does not hold and at ζ2 (2.12) holds and (2.11) does not hold, or

    Type Ⅱ. at ζ1 (2.12) holds while (2.11) does not hold and at ζ2 (2.11) holds and (2.12) does not hold.

    Proposition 1. ([23]) Let ϑ,ϱC such that Re(ϑ)>0 and Re(ϱ)>0. Then for any β(0,1], we have

    (Iϑ,βσ+1eβ1β(sσ1)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱ+ϑ)eβ1β(ζσ1)(ζσ1)ϱ+ϑ1,(Dϑ,βσ+1eβ1β(sσ1)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱϑ)eβ1β(ζσ1)(ζσ1)ϱϑ1,(Iϑ,βσ+1eβ1β(σ2s)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱ+ϑ)eβ1β(σ2s)(σ2ζ)ϱ+ϑ1,(Dϑ,βσ+1eβ1β(σ2s)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱϑ)eβ1β(σ2s)(σ2s)ϱϑ1.

    Lemma 2.13. ([24])For β(0,1], ϑ>0, 0γ<1. If ΦCγ[σ1,σ2] and I1ϑσ+1ΦC1γ[σ1,σ2], then

    (Iϑ,βσ+1Dϑ,βσ+1Φ)(ζ)=Φ(ζ)eβ1β(ζσ1)(ζσ1)ϑ1βϑ1Γ(ϑ)(I1ϑ,βσ+1Φ)(σ1).

    Lemma 2.14. ([24]) Let ΦL1(σ1,σ2). If Dq(1ϑ),βσ+1Φ exists on L1(σ1,σ2), then

    Dϑ,q,βσ+1Iϑ,βσ+1Φ=Iq(1ϑ),βσ+1Dq(1ϑ),βσ+1Φ.

    Lemma 2.15. Suppose there is a d-monotone fuzzy mapping ΦAC([σ1,σ2],E), where [Φ(ζ)]ˇq=[Φ_(ˇq,ζ),ˉΦ(ˇq,ζ)] for 0ˇq1,σ1ζσ2, then for 0<ϑ<1 and β(0,1], we have

    (i)[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Dϑ,q,βσ+1Φ_(ˇq,ζ),Dϑ,q,βσ+1ˉΦ(ˇq,ζ)] for ζ[σ1,σ2], if Φ is d-increasing;

    (ii)[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Dϑ,q,βσ+1ˉΦ(ˇq,ζ),Dϑ,q,βσ+1Φ_(ˇq,ζ)] for ζ[σ1,σ2], if Φ is d-decreasing.

    Proof. It is to be noted that if Φ is d-increasing, then [Φ(ζ)]ˇq=[ddζΦ_(ˇq,ζ),ddζˉΦ(ˇq,ζ)]. Taking into account Definition 2.10, we have

    [(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1Φ_)(ˇq,ζ),Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1ˉΦ)(ˇq,ζ)]=[Dϑ,q,βσ+1Φ_(ˇq,ζ),Dϑ,q,βσ+1ˉΦ(ˇq,ζ)].

    If Φ is d-decreasing, then [Φ(ζ)]ˇq=[ddζˉΦ(ˇq,ζ),ddζΦ_(ˇq,ζ)], we have

    [(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1ˉΦ)(ˇq,ζ),Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1Φ_)(ˇq,ζ)]=[Dϑ,q,βσ+1ˉΦ(ˇq,ζ),Dϑ,q,βσ+1Φ_(ˇq,ζ)].

    This completes the proof.

    Lemma 2.16. For β(0,1],ϑ(0,1). If ΦAC([σ1,σ2],E) is a d-monotone fuzzy function. We take

    z1(ζ):=(Iϑ,βσ+1Φ)(ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1Φ(ν)dν,

    and

    z(1ϑ),β1:=(I(1ϑ),βσ+1Φ)(ζ)=1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑΦgH(ν)dν,

    is d-increasing on (σ1,σ2], then

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=Φ(ζ)mj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,

    and

    (Dϑ,q,βσ+1Iϑ,βσ+1Φ)(ζ)=Φ(ζ).

    Proof. If z1(ζ) is d-increasing on [σ1,σ2] or z1(ζ) is d-decreasing on [σ1,σ2] and z(1ϑ),β1(ζ) is d-increasing on (σ1,σ2].

    Utilizing the Definitions 2.6, 2.10 and Lemma 2.13 with the initial condition (I1γ,βσ+1Φ)(σ1)=0, we have

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=(Iϑ,βσ+1Iq(1ϑ),βσ+1DβI(1q)(1ϑ),βσ+1Φ)(ζ)=(Iγ,βσ+1DβI1γ,βσ+1Φ)(ζ)=(Iγ,βσ+1Dγ,βσ+1Φ)(ζ)=Φ(ζ)I1γ,βσ+1Φβγ1Γ(γ)eβ1β(ζσ1)(ζσ1)γ1. (2.13)

    Now considering Proposition 1, Lemma 2.13 and Lemma 2.14, we obtain

    (Dϑ,q,βσ+1Iϑ,βσ+1Φ)(ζ)=(Iq(1ϑ),βσ+1Dq(1ϑ),βσ+1Φ)(ζ)=Φ(ζ)(I1q(1ϑ),βσ+1Φ)(σ1)eβ1β(ζσ1)βq(1ϑ)Γ(q(1ϑ))(ζσ1)q(1ϑ)1=Φ(ζ).

    On contrast, since ΦAC([σ1,σ2],E), there exists a constant K such that K=supζ[σ1,σ2]¯D0[Φ(ζ),ˆ0].

    Then

    ¯D0[Iϑ,βσ+1Φ(ζ),ˆ0]K1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1dνK1βϑΓ(ϑ)ζσ1|eβ1β(ζν)|(ζν)ϑ1dν=KβϑΓ(ϑ+1)(ζσ1)ϑ,

    where we have used the fact |eβ1βζ|<1 and Iϑ,βσ+1Φ(ζ)=0 and ζ=σ1.

    This completes the proof.

    Lemma 2.17. Let there be a continuous mapping Φ:[σ1,σ2]R+ on [σ1,σ2] and hold Dϑ,q,βσ+1Φ(ζ)F(ξ,Φ(ξ)),ξσ1, where FC([σ1,σ1]×R+,R+). Assume that m(ζ)=m(ζ,σ1,ξ0) is the maximal solution of the IVP

    Dϑ,q,βσ+1ξ(ζ)=F(ζ,ξ),(I1γ,βσ+1ξ)(σ1)=ξ00, (2.14)

    on [σ1,σ2]. Then, if Φ(σ1)ξ0, we have Φ(ζ)m(ζ),ζ[σ1,σ2].

    Proof. The proof is simple and can be derived as parallel to Theorem 2.2 in [53].

    Lemma 2.18. Assume the IVP described as:

    Dϑ,q,βσ+1Φ(ζ)=F(ζ,Φ(ζ)),(I1γ,βσ+1Φ)(σ1)=Φ0=0,ζ[σ1,σ2]. (2.15)

    Let α>0 be a given constant and B(Φ0,α)={ΦR:|ΦΦ0|α}. Assume that the real-valued functions F:[σ1,σ2]×[0,α]R+ satisfies the following assumptions:

    (i) FC([σ1,σ2]×[0,α],R+),F(ζ,0)0,0F(ζ,Φ)MF for all (ζ,Φ)[σ1,σ2]×[0,α];

    (ii) F(ζ,Φ) is nondecreasing in Φ for every ζ[σ1,σ2]. Then the problem (2.15) has at least one solution defined on [σ1,σ2] and Φ(ζ)B(Φ0,α).

    Proof. The proof is simple and can be derived as parallel to Theorem 2.3 in [53].

    In this investigation, we find the existence and uniqueness of solution to problem 1.3 by utilizing the successive approximation technique by considering the generalized Lipschitz condition of the right-hand side.

    Lemma 3.1. For γ=ϑ+q(1ϑ),ϑ(0,1),q[0,1] with β(0,1], and let there is a fuzzy function F:(σ1,σ2]×EE such that ζF(ζ,Φ) belongs to Cβγ([σ1,σ2],E) for any ΦE. Then a d-monotone fuzzy function ΦC([σ1,σ2],E) is a solution of IVP (1.3) if and only if Φ satisfies the integral equation

    Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν))dν,ζ[σ1,σ2],j=1,2,...,m. (3.1)

    and the fuzzy function ζI1γσ+1F(ζ,Φ) is d-increasing on (σ1,σ2].

    Proof. Let ΦC([σ1,σ2],E) be a d-monotone solution of (1.3), and considering z1(ζ):=Φ(ζ)gH(I1γ,βσ+1Φ)(σ1),ζ(σ1,σ2]. Since Φ is d-monotone on [σ1,σ2], it follows that ζz1(ζ) is d-increasing on [σ1,σ2] (see [43]).

    From (1.3) and Lemma 2.16, we have

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=Φ(ζ)mj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,ζ[σ1,σ2]. (3.2)

    Since F(ζ,Φ)Cγ([σ1,σ2],E) for any ΦE, and from (1.3), observes that

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=Iϑ,βσ+1F(ζ,Φ(ζ))=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν))dν,ζ[σ1,σ2]. (3.3)

    Additionally, since z1(ζ) is d-increasing on (σ1,σ2]. Also, we observe that ζFϑ,β(ζ,Φ) is also d-increasing on (σ1,σ2].

    Reluctantly, merging (3.2) and (3.3), we get the immediate consequence.

    Further, suppose ΦC([σ1,σ2],E) be a d-monotone fuzzy function fulfills (3.1) and such that ζFϑ,β(ζ,Φ) is d-increasing on (σ1,σ2]. By the continuity of the fuzzy mapping F, the fuzzy mapping ζFϑ,β(ζ,Φ) is continuous on (σ1,σ2] with Fϑ,β(σ1,Φ(σ1))=limζσ+1Fϑ,β(ζ,Φ)=0. Then

    \begin{eqnarray*} &&\Phi(\zeta) = \frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\mathcal{F}\big(\zeta,\mathcal{\zeta}\big)\big)(\zeta),\nonumber\\&&\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma,\beta}\Phi(\zeta) = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})+\big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\mathfrak{q}(1-\vartheta)}\mathcal{F}(\zeta,\Phi(\zeta))\big)(\zeta), \end{eqnarray*}

    and

    \begin{eqnarray*} \mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma,\beta}\Phi(0) = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j}). \end{eqnarray*}

    Moreover, since \zeta\rightarrow \mathcal{F}^{\vartheta, \beta}(\zeta, \Phi) is \mathfrak{d} -increasing on (\sigma_{1}, \sigma_{2}]. Applying, the operator \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta, \mathfrak{q}, \beta} on (3.1), yields

    \begin{eqnarray*} &&\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\bigg(\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg)\nonumber\\&& = \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\bigg(\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu)\big)d\nu\bigg)\nonumber\\&& = \mathcal{F}\big(\zeta,\Phi(\zeta)\big). \end{eqnarray*}

    This completes the proof.

    In our next result, we use the following assumption. For a given constant \hbar > 0 , and let \mathfrak{B}(\Phi_{0}, \hbar) = \big\{\Phi\in\mathfrak{E}:\bar{\mathcal{D}_{0}}[\Phi, \Phi_{0}]\leq\hbar\big\}.

    Theorem 3.2. Let \mathcal{F}\in\mathcal{C}\big([\sigma_{1}, \sigma_{2}]\times\mathfrak{B}(\Phi_{0}, \hbar), \mathfrak{E}\big) and suppose that the subsequent assumptions hold:

    (i) there exists a positive constant \mathcal{M}_{\mathcal{F}} such that \bar{\mathcal{D}_{0}}[\mathcal{F}(\zeta, z_{1}), \hat{0}]\leq\mathcal{M}_{\mathcal{F}}, for all (\zeta, z_{1})\in[\sigma_{1}, \sigma_{2}]\times\mathfrak{B}(\Phi_{0}, \hbar) ;

    (ii) for every \zeta\in[\sigma_{1}, \sigma_{2}] and every z_{1}, \omega\in\mathfrak{B}(\Phi_{0}, \hbar),

    \begin{eqnarray} \bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,z_{1}),\mathcal{F}(\zeta,\omega)\big]\leq\mathfrak{g}(\zeta,\bar{\mathcal{D}_{0}}[z_{1},\omega]), \end{eqnarray} (3.4)

    where \mathfrak{g}(\zeta, .)\in\mathcal{C}\big([\sigma_{1}, \sigma_{2}]\times[0, \beta], \mathbb{R}^{+}\big) satisfies the assumption in Lemma 2.18 given that problem (2.15) has only the solution \phi(\zeta)\equiv0 on [\sigma_{1}, \sigma_{2}]. Then the subsequent successive approximations given by \Phi^{0}(\zeta) = \Phi_{0} and for n = 1, 2, ...,

    \begin{eqnarray*} &&\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu, \end{eqnarray*}

    converges consistently to a fixed point of problem (1.3) on certain interval [\sigma_{1}, \mathcal{T}] for some \mathcal{T}\in(\sigma_{1}, \sigma_{2}] given that the mapping \zeta\rightarrow \mathcal{I}_{\sigma_{1}^{+}}^{\vartheta, \beta}\mathcal{F}(\zeta, \Phi^{n}(\zeta)) is \mathfrak{d} -increasing on [\sigma_{1}, \mathcal{T}].

    Proof. Take \sigma_{1} < \zeta^{*} such that \zeta^{*}\leq\big[\frac{\beta^{\vartheta}\hbar.\Gamma(1+\vartheta)}{\mathcal{M}}+\sigma_{1}\big]^{\frac{1}{\vartheta}}, where \mathcal{M} = \max\big\{\mathcal{M}_{\mathfrak{g}}, \mathcal{M}_{\mathcal{F}}\big\} and put \mathcal{T}: = \min\{\zeta^{*}, \sigma_{2}\}. Let \mathbb{S} be a set of continuous fuzzy functions \Phi such that \omega(\sigma_{1}) = \Phi_{0} and \omega(\zeta)\in\mathfrak{B}(\Phi_{0}, \hbar) for all \zeta\in[\sigma_{1}, \mathcal{T}]. Further, we suppose the sequence of continuous fuzzy function \{\Phi^{n}\}_{n = 0}^{\infty} given by \Phi^{0}(\zeta) = \Phi_{0}, \, \forall \zeta\in[\sigma_{1}, \mathcal{T}] and for n = 1, 2, ..,

    \begin{eqnarray} &&\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\\&& = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu. \end{eqnarray} (3.5)

    Firstly, we show that \Phi^{n}(\zeta)\in\mathcal{C}([\sigma_{1}, \mathcal{T}], \mathfrak{B}(\Phi_{0}, \hbar)) . For n\geq1 and for any \zeta_{1}, \zeta_{2}\in[\sigma_{1}, \mathcal{T}] with \zeta_{1} < \zeta_{2}, we have

    \begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\Bigg(\Phi^{n}(\zeta_{1})\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1},\Phi^{n}(\zeta_{2})\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\Bigg)\nonumber\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta_{1}}\Big[e^{\frac{\beta-1}{\beta}(\zeta_{1}-\nu)}(\zeta_{1}-\nu)^{\vartheta-1}-e^{\frac{\beta-1}{\beta}(\zeta_{2}-\nu)}(\zeta_{2}-\nu)^{\vartheta-1}\Big]\bar{\mathcal{D}_{0}}\big[\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big),\hat{0}\big]d\nu\nonumber\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{1}}^{\zeta_{2}}e^{\frac{\beta-1}{\beta}(\zeta_{2}-\nu)}(\zeta_{2}-\nu)^{\vartheta-1}\bar{\mathcal{D}_{0}}\big[\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big),\hat{0}\big]d\nu. \end{eqnarray*}

    Using the fact that \vert e^{\frac{\beta-1}{\beta}\zeta}\vert < 1, then, on the right-hand side from the last inequality, the subsequent integral becomes \frac{1}{\beta^{\vartheta}\Gamma(1+\vartheta)}(\zeta_{2}-\zeta_{1})^{\vartheta}. Therefore, with the similar assumption as we did above, the first integral reduces to \frac{1}{\beta^{\vartheta}\Gamma(1+\vartheta)}\big[(\zeta_{1}-\sigma_{1})^{\vartheta}-(\zeta_{2}-\sigma_{1})^{\vartheta}+(\zeta_{2}-\zeta_{1})^{\vartheta}\big]. Thus, we conclude

    \begin{eqnarray*} \bar{\mathcal{D}_{0}}\big[\Phi^{n}\big((\zeta_{1}),\Phi^{n}(\zeta_{2})\big)\big]&&\leq\frac{\mathcal{M}_{\mathcal{F}}}{\beta^{\vartheta}\Gamma(1+\vartheta)}\big[(\zeta_{1}-\sigma_{1})^{\vartheta}-(\zeta_{2}-\sigma_{1})^{\vartheta}+2(\zeta_{2}-\zeta_{1})^{\vartheta}\big]\nonumber\\&&\leq\frac{2\mathcal{M}_{\mathcal{F}}}{\beta^{\vartheta}\Gamma(1+\vartheta)}(\zeta_{2}-\zeta_{1})^{\vartheta}. \end{eqnarray*}

    In the limiting case as \zeta_{1}\rightarrow \zeta_{2}, then the last expression of the above inequality tends to 0, which shows \Phi^{n} is a continuous function on [\sigma_{1}, \mathcal{T}] for all n\geq1.

    Moreover, it follows that \Phi^{n}\in\mathfrak{B}(\Phi_{0}, \hbar) for all n\geq0, \, \zeta\in[\sigma_{1}, \mathcal{T}] if and only if \Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\in\mathfrak{B}(0, \hbar) for all \zeta\in[\sigma_{1}, \mathcal{T}] and for all n\geq0.

    Also, if we assume that \Phi^{n-1}(\zeta)\in\mathbb{S} for all \zeta\in[\sigma_{1}, \mathcal{T}], \, n\geq2, then

    \begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\Big[\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}, \hat{0}\Big]\nonumber\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\bar{\mathcal{D}_{0}}\big[\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big),\hat{0}\big]d\nu\nonumber\\&& = \frac{\mathcal{M}_{\mathcal{F}}(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(1+\vartheta)}\leq\hbar. \end{eqnarray*}

    It follows that \Phi^{n}(\zeta)\in\mathbb{S}, \, \forall\in[\sigma_{1}, \mathcal{T}].

    Henceforth, by mathematical induction, we have \Phi^{n}(\zeta)\in\mathbb{S}, \, \, \forall \zeta\in[\sigma_{1}, \mathcal{T}] and \forall\, n\geq1.

    Further, we show that the sequence \Phi^{n}(\zeta) converges uniformly to a continuous function \Phi\in\mathcal{C}([\sigma_{1}, \mathcal{T}], \mathfrak{B}(\Phi_{0}, \hbar)). By assertion (ii) and mathematical induction, we have for \zeta\in[\sigma_{1}, \mathcal{T}]

    \begin{eqnarray} &&\bar{\mathcal{D}_{0}}\bigg[\Phi^{n+1}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1},\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg]\\&&\leq \phi^{n}(\zeta),\quad\quad n = 0,1,2,..., \end{eqnarray} (3.6)

    where \phi^{n}(\zeta) is defined as follows:

    \begin{eqnarray} \phi^{n}(\zeta) = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathfrak{g}\big(\nu,\phi^{n-1}(\nu)\big)d\nu, \end{eqnarray} (3.7)

    where we have used the fact that \vert e^{\frac{\beta-1}{\beta}\zeta}\vert < 1 and \phi^{0}(\zeta) = \frac{\mathcal{M}(\zeta-\sigma_{1})^{\vartheta}}{\beta^{{\vartheta}}\Gamma({\vartheta}+1)}. Thus, we have, for \zeta\in[\sigma_{1}, \mathcal{T}] and for n = 0, 1, 2, ...,

    \begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n+1}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n}(\zeta)\big] \nonumber\\&&\leq\bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,\Phi^{n}(\zeta)),\mathcal{F}(\zeta,\Phi^{n-1}(\zeta))\big]\nonumber\\&&\leq\mathfrak{g}\big(\zeta,\bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{n-1}(\zeta)\big]\big)\nonumber\\&&\leq\mathfrak{g}\big(\zeta,\phi^{n-1}(\zeta)\big). \end{eqnarray*}

    Let n\leq m and \zeta\in[\sigma_{1}, \mathcal{T}], then one obtains

    \begin{eqnarray*} \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{m}(\zeta)\big]&&\leq\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m}(\zeta)\big]\nonumber\\&&\leq\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n+1}(\zeta)\big]+\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n+1}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m+1}(\zeta)\big]\nonumber\\&&\quad+\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m+1}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m}(\zeta)\big]\nonumber\\&&\leq2\mathfrak{g}(\zeta,\phi^{n-1}(\zeta))+\mathfrak{g}\big(\zeta,\bar{\mathcal{D}_{0}}[\Phi^{n}(\zeta),\Phi^{m}(\zeta)]\big). \end{eqnarray*}

    From (ii), we observe that the solution \phi(\zeta) = 0 is a unique solution of problem (2.15) and \mathfrak{g}(., \phi^{n-1}):[\sigma_{1}, \mathcal{T}]\rightarrow [0, \mathcal{M}_{\mathfrak{g}}] uniformly converges to 0 , for every \epsilon > 0, there exists a natural number n_{0} such that

    \begin{eqnarray*} \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{m}(\zeta)\big]\leq\mathfrak{g}\big(\zeta,\bar{\mathcal{D}_{0}}[\Phi^{n}(\zeta),\Phi^{m}(\zeta)]\big)+\epsilon,\quad\quad for\,n_{0}\leq n\leq m. \end{eqnarray*}

    Using the fact that \bar{\mathcal{D}_{0}}\big[\Phi^{n}(\sigma_{1}), \Phi^{m}(\sigma_{1})\big] = 0 < \epsilon and by using Lemma 2.17, we have for \zeta\in[\sigma_{1}, \mathcal{T}]

    \begin{eqnarray} \bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{m}(\zeta)\big]\leq \delta_{\epsilon}(\zeta),\quad n_{0}\leq n\leq m, \end{eqnarray} (3.8)

    where \delta_{\epsilon}(\zeta) is the maximal solution to the following IVP:

    \begin{eqnarray*} \big(\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\delta_{\epsilon}\big)(\zeta) = \mathfrak{g}(\zeta,\delta_{\epsilon}(\zeta))+\epsilon,\quad\quad \big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma}\delta_{\epsilon}\big) = \epsilon. \end{eqnarray*}

    Taking into account Lemma 2.17, we deduce that [\phi_{\epsilon}(., \omega)] converges uniformly to the maximal solution \phi(\zeta) \equiv0 of (2.15) on [\sigma_{1}, \mathcal{T}] as \epsilon\rightarrow 0.

    Therefore, in view of (3.8), we can obtain n_{0}\in\mathbb{N} is large enough such that, for n_{0} < n, m,

    \begin{eqnarray} &&\sup\limits_{\zeta\in[\sigma_{1},\mathcal{T}]}\bar{\mathcal{D}_{0}}\bigg[\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1},\Phi^{m}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg]\\&&\leq\epsilon. \end{eqnarray} (3.9)

    Since (\mathfrak{E}, \bar{\mathcal{D}_{0}}) is a complete metric space and (3.9) holds, thus \big\{\Phi^{n}(\zeta)\} converges uniformly to \Phi\in\mathcal{C}([\sigma_{1}, \sigma_{2}], \mathfrak{B}(\Phi_{0}, \hbar)). Hence

    \begin{eqnarray} \Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}&& = \lim\limits_{n\rightarrow \infty}\bigg(\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg)\\&& = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu. \end{eqnarray} (3.10)

    Because of Lemma 3.1, the function \Phi(\zeta) is the solution to (1.3) on [\sigma_{1}, \mathcal{T}].

    In order to find the unique solution, assume that \Psi:[\sigma_{1}, \mathcal{T}]\rightarrow \mathfrak{E} is another solution of problem (1.3) on [\sigma_{1}, \mathcal{T}]. We denote \kappa(\zeta) = \bar{\mathcal{D}_{0}}[\Phi(\zeta), \Psi(\zeta)]. Then \kappa(\sigma_{1}) = 0 and for every \zeta\in[\sigma_{1}, \mathcal{T}], we have

    \begin{eqnarray} \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\kappa(\zeta)\leq\bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta))\big]\leq\mathfrak{g}(\zeta,\kappa(\zeta)). \end{eqnarray} (3.11)

    Further, using the comaprison Lemma 2.17, we get \kappa(\zeta)\leq m(\zeta), where m is a maximal solution of the IVP \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta, \mathfrak{q}, \beta}m(\zeta)\leq\mathfrak{g}(\zeta, m(\zeta)), \, \big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma}m\big)(\sigma_{1}) = 0. By asseration (ii), we have m(\zeta) = 0 and hence \Phi(\zeta) = \Psi(\zeta), \, \forall\in[\sigma_{1}, \mathcal{T}].

    This completes the proof.

    Corollary 1. For \beta\in(0, 1] and let \mathcal{C}([\sigma_{1}, \sigma_{2}], \mathfrak{E}). Assume that there exist positive constants \mathcal{L}, \mathcal{M}_{\mathcal{F}} such that, for every z_{1}, \omega\in\mathfrak{E},

    \begin{eqnarray*} \bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,z_{1}),\mathcal{F}(\zeta,\omega)\big]\leq\mathcal{L}\bar{\mathcal{D}_{0}}[z_{1},\omega],\quad\quad \bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,z_{1}),\hat{0}\big]\leq\mathcal{M}_{\mathcal{F}}. \end{eqnarray*}

    Then the subsequent successive approximations given by \Phi^{0}(\zeta) = \Phi_{0} and for n = 1, 2, ..

    \begin{eqnarray*} \Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\Phi_{0} = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu, \end{eqnarray*}

    converges consistently to a fixed point of problem (1.3) on [\sigma_{1}, \mathcal{T}] for certain \mathcal{T}\in(\sigma_{1}, \sigma_{2}] given that the mapping \zeta\rightarrow \mathcal{I}_{\sigma_{1}^{+}}^{\vartheta, \beta}\mathcal{F}(\zeta, \Phi^{n}(\zeta)) is \mathfrak{d} -increasing on [\sigma_{1}, \mathcal{T}].

    Example 3.3. For \beta\in(0, 1], \, \gamma = \vartheta+\mathfrak{q}(1-\vartheta), \, \vartheta\in(0, 1), \, \mathfrak{q}\in[0, 1] and \delta\in\mathbb{R}. Assume that the linear fuzzy \mathcal{GPF} - FDE under Hilfer- \mathcal{GPF} -derivative and moreover, the subsequent assumptions hold:

    \begin{eqnarray} \begin{cases} \big(\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi\big)(\zeta) = \delta\Phi(\zeta)+\eta(\zeta),\quad\quad\quad\quad\quad\quad\zeta\in(\sigma_{1},\sigma_{2}],\\ \big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma,\beta}\Phi\big)(\sigma_{1}) = \Phi_{0} = \sum\limits_{j = 1}^{m}\mathcal{R}_{j}\Phi(\zeta_{j}),\quad\quad \gamma = \vartheta+\mathfrak{q}(1-\vartheta). \end{cases} \end{eqnarray} (3.12)

    Applying Lemma 3.1, we have

    \begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \delta\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\Phi(\nu)d\nu+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\eta(\nu)d\nu,\quad\zeta\in[\sigma_{1},\sigma_{2}]\nonumber\\&& = \delta\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta), \end{eqnarray*}

    where \eta\in\mathcal{C}((\sigma_{1}, \sigma_{2}], \mathfrak{E}) and furthermore, assuming the diameter on the right part of the aforementioned equation is increasing. Observing \mathcal{F}(\zeta, \Phi): = \delta\Phi+\eta fulfill the suppositions of Corollary 1.

    In order to find the analytical view of (3.12), we utilized the technique of successive approximation. Putting \Phi^{0}(\zeta) = \Phi_{0} and

    \begin{eqnarray*} &&\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \delta\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi^{n-1}\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta),\quad n = 1,2,... \end{eqnarray*}

    Letting n = 1, \; \delta > 0, assuming there is a \mathfrak{d} -increasing mapping \Phi, then we have

    \begin{eqnarray*} &&\Phi^{1}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \delta\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\frac{(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta). \end{eqnarray*}

    In contrast, if we consider \delta < 0 and \Phi is \mathfrak{d} -decreasing, then we have

    \begin{eqnarray*} &&(-1)\bigg(\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\ominus_{\mathfrak{g}H}\Phi^{1}(\zeta)\bigg)\nonumber\\&& = \delta\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\frac{(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta). \end{eqnarray*}

    For n = 2 , we have

    \begin{eqnarray*} &&\Phi^{2}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\bigg[\frac{\delta(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\frac{\delta^{2}(\zeta-\sigma_{1})^{2\vartheta}}{\beta^{2\vartheta}\Gamma(2\vartheta+1)}\bigg]+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{2\vartheta,\beta}\eta\big)(\zeta), \end{eqnarray*}

    if \delta > 0 and there is \mathfrak{d} -increasing mapping \Phi , we have

    \begin{eqnarray*} &&(-1)\bigg(\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\ominus_{\mathfrak{g}H}\Phi^{2}(\zeta)\bigg)\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\bigg[\frac{\delta(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\frac{\delta^{2}(\zeta-\sigma_{1})^{2\vartheta}}{\beta^{2\vartheta}\Gamma(2\vartheta+1)}\bigg]+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{2\vartheta,\beta}\eta\big)(\zeta), \end{eqnarray*}

    and there is \delta < 0, \, and\, \mathfrak{d} -increasing mapping \Phi. So, continuing inductively and in the limiting case, when n\rightarrow \infty, we attain the solution

    \begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\sum\limits_{l = 1}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+1)}+\int\limits_{\sigma_{1}}^{\zeta}\sum\limits_{l = 1}^{\infty}\frac{\delta^{l-1}(\zeta-\sigma_{1})^{l\vartheta}-1}{\beta^{l\vartheta-1}\Gamma(l\vartheta)}\eta(\nu)d\nu\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\sum\limits_{l = 1}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+1)}+\int\limits_{\sigma_{1}}^{\zeta}\sum\limits_{l = 0}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta+(\vartheta-1)}}{\beta^{l\vartheta}+(\vartheta-1)\Gamma(l\vartheta+\vartheta)}\eta(\nu)d\nu\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\sum\limits_{l = 1}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+1)}+\frac{1}{\beta^{\vartheta-1}}\int\limits_{\sigma_{1}}^{\zeta}(\zeta-\sigma_{1})^{\vartheta-1}\sum\limits_{l = 0}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+\vartheta)}\eta(\nu)d\nu, \end{eqnarray*}

    for every \delta > 0 and \Phi is \mathfrak{d} -increasing, or \delta < 0 and \Phi is \mathfrak{d} -decreasing, accordingly. Therefore, by means of Mittag-Leffler function \mathcal{E}_{\vartheta, \mathfrak{q}}(\Phi) = \sum\limits_{l = 1}^{\infty}\frac{\Phi^{\kappa}}{\Gamma(l\vartheta+\mathfrak{q})}, \, \vartheta, \mathfrak{q} > 0, the solution of problem (3.12) is expressed by

    \begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = {\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}\mathcal{E}_{\vartheta,1}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)+\frac{1}{\beta^{\vartheta-1}}\int\limits_{\sigma_{1}}^{\zeta}(\zeta-\sigma_{1})^{\vartheta-1}\mathcal{E}_{\vartheta,\vartheta}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)\eta(\nu)d\nu, \end{eqnarray*}

    for every of \delta > 0 and \Phi is \mathfrak{d} -increasing. Alternately, if \delta < 0 and \Phi is \mathfrak{d} -decreasing, then we get the solution of problem (3.12)

    \begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = {\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}\mathcal{E}_{\vartheta,1}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)\ominus(-1)\frac{1}{\beta^{\vartheta-1}}\int\limits_{\sigma_{1}}^{\zeta}(\zeta-\sigma_{1})^{\vartheta-1}\mathcal{E}_{\vartheta,\vartheta}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)\eta(\nu)d\nu. \end{eqnarray*}

    Consider IVP

    \begin{equation} \begin{cases} \big(\,_{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi\big)(\zeta) = \mathcal{F}\big(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)\big),\quad\quad \zeta\in[\zeta_{0},\mathcal{T}]\\\Phi(\zeta_{0}) = \Phi_{0}\in\mathfrak{E}, \end{cases} \end{equation} (4.1)

    where \beta\in(0, 1] and \vartheta\in(0, 1) is a real number and the operation _{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta} denote the \mathcal{GPF} derivative of order \vartheta, \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} is continuous in \zeta which fulfills certain supposition that will be determined later, and

    \begin{eqnarray} \mathcal{H}_{1}\Phi(\zeta) = \int\limits_{\zeta_{0}}^{\zeta}\mathcal{H}_{1}(\zeta,s)\Phi(s)ds,\quad\quad\quad\mathcal{H}_{2}\Phi(\zeta) = \int\limits_{\zeta_{0}}^{\mathcal{T}}\mathcal{H}_{2}(\zeta,s)\Phi(s)ds, \end{eqnarray} (4.2)

    with \mathcal{H}_{1}, \mathcal{H}_{2}:[\zeta_{0}, \mathcal{T}]\times[\zeta_{0}, \mathcal{T}]\rightarrow \mathbb{R} such that

    \begin{eqnarray*} \mathcal{H}_{1}^{*} = \sup\limits_{\zeta\in[\zeta_{0},\mathcal{T}]}\int\limits_{\zeta_{0}}^{\zeta}\vert\mathcal{H}_{1}(\zeta,s)\vert ds,\quad\quad\quad\mathcal{H}_{2}^{*} = \sup\limits_{\zeta\in[\zeta_{0},\mathcal{T}]}\int\limits_{\zeta_{0}}^{\mathcal{T}}\vert\mathcal{H}_{2}(\zeta,s)\vert ds. \end{eqnarray*}

    Now, we investigate the existence and uniqueness of the solution of problem (4.1). To establish the main consequences, we require the following necessary results.

    Theorem 4.1. Let \mathcal{F}:[\sigma_{1}, \sigma_{2}]\rightarrow \mathfrak{E} be a fuzzy-valued function on [\sigma_{1}, \sigma_{2}]. Then

    (i) \mathcal{F} is [(i)-\mathfrak{g}H] -differentiable at c\in[\sigma_{1}, \sigma_{2}] iff \mathcal{F} is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable at c.

    (ii) \mathcal{F} is [(ii)-\mathfrak{g}H] -differentiable at c\in[\sigma_{1}, \sigma_{2}] iff \mathcal{F} is \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable at c.

    Proof. In view of Definition 2.18 and Definition 2.11, the proof is straightforward.

    Lemma 4.2. ([44]) Let there be a fuzzy valued mapping \mathcal{F}:[\zeta_{0}, \mathcal{T}]\rightarrow \mathfrak{E} such that \mathcal{F}^{\prime}_{\mathfrak{g}H}\in\mathfrak{E}\cap\chi_{c}^{r}(\sigma_{1}, \sigma_{2}), then

    \begin{eqnarray} \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\,_{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\beta}\mathcal{F}\big)(\zeta) = \mathcal{F}(\zeta)\ominus_{\mathfrak{g}H}\mathcal{F}(\zeta_{0}). \end{eqnarray} (4.3)

    Lemma 4.3. The IVP (4.1) is analogous to subsequent equation

    \begin{eqnarray} \Phi(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \end{eqnarray} (4.4)

    if \Phi(\zeta) be \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable,

    \begin{eqnarray} \Phi(\zeta) = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \end{eqnarray} (4.5)

    if \Phi(\zeta) be \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable, and

    \begin{eqnarray} \Phi(\zeta) = \begin{cases} \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu,\quad\zeta\in[\sigma_{1},\sigma_{3}],\\ \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu,\quad\zeta\in[\sigma_{3},\sigma_{2}], \end{cases} \end{eqnarray} (4.6)

    if there exists a point \sigma_{3}\in(\sigma_{1}, \sigma_{2}) such that \Phi(\zeta) is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable on [\sigma_{1}, \sigma_{3}] and \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable on [\sigma_{3}, \sigma_{2}] and \mathcal{F}(\sigma_{3}, \Phi(\sigma_{3}, \Phi(\sigma_{3}), \mathcal{H}_{1}\Phi(\sigma_{3}))\in\mathbb{R}.

    Proof. By means of the integral operator (2.6) on both sides of (4.1), yields

    \begin{eqnarray} \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\,_{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi(\zeta)\big) = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)\big). \end{eqnarray} (4.7)

    Utilizing Lemma 4.2 and Definition 2.6, we gat

    \begin{eqnarray} \Phi(\zeta)\ominus_{\mathfrak{g}H}\Phi_{0} = \frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu. \end{eqnarray} (4.8)

    In view of Defnition 2.17 and Theorem 4.1, if \Phi(\zeta) be \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable,

    \begin{eqnarray} \Phi(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu \end{eqnarray} (4.9)

    and if \Phi(\zeta) be \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable

    \begin{eqnarray} \Phi(\zeta) = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu. \end{eqnarray} (4.10)

    In addition, when we have a switchpoint \sigma_{3}\in(\sigma_{1}, \sigma_{2}) of type (I) the \, ^{GPF}[\mathfrak{g}H] -differentiability changes from type (I) to type (II) at \zeta = \sigma_{3}. Then by (4.9) and (4.10) and Definition 2.12, The proof is easy to comprehend.

    Also, we proceed with the following assumptions:

    ({\mathbb{A}_{1}}). \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} is continuous and there exist positive real functions \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3} such that

    \begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\Big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta),\mathcal{H}_{1}\Psi(\zeta),\mathcal{H}_{2}\Psi(\zeta))\Big)\nonumber\\&&\leq\mathcal{L}_{1}(\zeta)\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{L}_{2}(\zeta)\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)+\mathcal{L}_{3}(\zeta)\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi). \end{eqnarray*}

    ({\mathbb{A}_{2}}). There exist a number \epsilon such that \delta\leq\epsilon < 1, \, \zeta\in[\zeta_{0}, \mathcal{T}]

    \delta = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})

    and

    \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P} = \sup\limits_{\zeta\in[0,\mathcal{T}]}\big\{\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1},\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2},\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\big\}.

    Theorem 4.4. Let \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} be a bounded continuous functions and holds (\mathbb{A}_{1}). Then the IVP (4.1) has a unique solution which is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable on [\zeta_{0}, \mathcal{T}], given that \delta < 1, where \delta is given in (\mathbb{A}_{2}).

    Proof. Assuming \Phi(\zeta) is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiability and \Phi_{0}\in\mathfrak{E} be fixed. Propose a mapping \mathfrak{F}:\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E})\rightarrow \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) by

    \begin{eqnarray} \big(\mathfrak{F}\Phi\big)(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu,\quad for\,all\,\zeta\in[\zeta_{0},\mathcal{T}]. \end{eqnarray} (4.11)

    Next we prove that \mathfrak{F} is contraction. For \Phi, \Psi\in\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) by considering of (\mathbb{A}_{1}) and by distance properties (2.3), one has

    \begin{eqnarray} &&\bar{\mathcal{D}_{0}}\big(\mathfrak{F}\Phi(\zeta),\mathfrak{F}\Psi(\zeta)\big)\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}_{0}}\big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta),\mathcal{H}_{1}\Psi(\zeta),\mathcal{H}_{2}\Psi(\zeta))\Big)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\big[\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)+\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi) \big]d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)d\nu+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi)d\nu. \end{eqnarray} (4.12)

    Now, we find that

    \begin{eqnarray} &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\Big(\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\Phi,\Psi)\int\limits_{\zeta_{0}}^{\nu}\vert\mathcal{H}_{1}(\nu,x)\vert dx \Big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} (4.13)

    Analogously,

    \begin{eqnarray} &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi)d\nu\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi),\\ &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)d\nu = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} (4.14)

    Then we have

    \begin{eqnarray} \bar{\mathcal{D}_{0}}\big(\mathfrak{F}\Phi,\mathfrak{F}\Psi\big)&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\mathcal{H}_{2}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi)\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi,\Psi)\\&& < \bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} (4.15)

    Consequently, \mathfrak{F} is a contraction mapping on \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) having a fixed point \mathfrak{F}\Phi(\zeta) = \Phi(\zeta). Henceforth, the IVP (4.1) has unique solution.

    Theorem 4.5. For \beta\in(0, 1] and let \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} be a bounded continuous functions and satisfies (\mathbb{A}_{1}). Let the sequence \Phi_{n}:[\zeta_{0}, \mathcal{T}]\rightarrow \mathfrak{E} is given by

    \begin{eqnarray} \Phi_{n+1}(\zeta)&& = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big)d\nu,\quad\\ \Phi_{0}(\zeta)&& = \Phi_{0}, \end{eqnarray} (4.16)

    is described for any n\in\mathbb{N}. Then the sequence \{\Phi_{n}\} converges to fixed point of problem (4.1) which is \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable on [\zeta_{0}, \mathcal{T}], given that \delta < 1, where \delta is defined in (\mathbb{A}_{2}).

    Proof. We now prove that the sequence \{\Phi_{n}\} , given in (4.16), is a Cauchy sequence in \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}). To do just that, we'll require

    \begin{eqnarray} \bar{\mathcal{D}_{0}}(\Phi_{1},\Phi_{0})&& = \bar{\mathcal{D}_{0}}\bigg(\Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{0}(\nu),\mathcal{H}_{1}\Phi_{0}(\nu),\mathcal{H}_{2}\Phi_{0}(\nu)\big)d\nu,\Phi_{0}\bigg)\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\bar{\mathcal{D}_{0}}\Big(\mathcal{F}\big(\nu,\Phi_{0}(\nu),\mathcal{H}_{1}\Phi_{0}(\nu),\mathcal{H}_{2}\Phi_{0}(\nu)\big), \hat{0}\Big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{M}, \end{eqnarray} (4.17)

    where \mathcal{M} = \sup_{\zeta\in[\zeta_{0}, \mathcal{T}]}\bar{\mathcal{D}_{0}}\big(\mathcal{F}(\zeta, \Phi, \mathcal{H}_{1}\Phi, \mathcal{H}_{2}\Phi), \hat{0}\big).

    Since \mathcal{F} is Lipschitz continuous, In view of Definition (2.3), we show that

    \begin{eqnarray} &&\bar{\mathcal{D}_{0}}(\Phi_{n+1},\Phi_{n})\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}_{0}}\big(\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big),\mathcal{F}\big(\nu,\Phi_{n-1}(\nu),\mathcal{H}_{1}\Phi_{n-1}(\nu),\mathcal{H}_{2}\Phi_{n-1}(\nu)\big)\Big)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}.\bar{\mathcal{D}_{0}}\big(\Phi_{n},\Phi_{n-1}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{1}\Phi_{n},\mathcal{H}_{1}\Phi_{n-1}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{2}\Phi_{n},\mathcal{H}_{2}\Phi_{n-1}\big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi_{n},\Phi_{n-1})\leq\delta \bar{\mathcal{D}_{0}}(\Phi_{n},\Phi_{n-1})\leq\delta^{n}\bar{\mathcal{D}_{0}}(\Phi_{1},\Phi_{0})\leq\delta^{n}\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{M}. \end{eqnarray} (4.18)

    Since \delta < 1 promises that the sequence \{\Phi_{n}\} is a Cauchy sequence in \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}). Consequently, there exist \Phi\in\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) such that \{\Phi_{n}\} converges to \Phi. Thus, we need to illustrate that \Phi is a solution of the problem (4.1).

    \begin{eqnarray} &&\bar{\mathcal{D}}_{0}\bigg(\Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \Phi_{0}\bigg)\\&& = \bar{\mathcal{D}}_{0}\bigg(\Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \Phi_{n+1}\\&&\quad+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big)d\nu\bigg)\\&&\leq \bar{\mathcal{D}_{0}}\big(\Phi(\zeta),\Phi_{n+1}\big)+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}.\bar{\mathcal{D}_{0}}\big(\Phi(\nu),\Phi_{n}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{1}\Phi_{n}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{2}\Phi(\nu),\mathcal{H}_{2}\Phi_{n}\big)d\nu\\&&\leq \bar{\mathcal{D}_{0}}\big(\Phi(\zeta),\Phi_{n+1}\big)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi(\zeta),\Phi_{n}). \end{eqnarray} (4.19)

    In the limiting case, when n\rightarrow \infty. Thus we have

    \begin{eqnarray} \Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu = \Phi_{0}. \end{eqnarray} (4.20)

    By Lemma 4.3, we prove that \Phi is a solution of the problem (4.1). In order to prove the uniqness of \Phi(\zeta), let \Psi(\zeta) be another solution of problem (4.1) on [\zeta_{0}, \mathcal{T}]. Utilizing Lemma 4.3, gets

    \begin{eqnarray*} \bar{\mathcal{D}_{0}}(\Phi,\Psi)\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}}_{0}\bigg(\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu),\mathcal{F}\big(\nu,\Psi(\nu),\mathcal{H}_{1}\Psi(\nu),\mathcal{H}_{2}\Psi(\nu)\big)\bigg)d\nu. \end{eqnarray*}

    Analogously, by employing the distance properties \bar{\mathcal{D}}_{0} and Lipschitiz continuity of \mathcal{F}, consequently, we deduce that (1-\delta)\bar{\mathcal{D}_{0}}(\Phi, \Psi)\leq0, since \delta < 1, we have \Phi(\zeta) = \Psi(\zeta) for all \zeta\in[\zeta_{0}, \mathcal{T}]. Hence, the proof is completed.

    Example 4.6. Suppose the Cauchy problem by means of differential operator (2.4)

    \begin{eqnarray} \mathcal{D}_{z}^{\vartheta,\beta}\Phi(z) = \mathcal{F}(z,\Phi(z)), \end{eqnarray} (4.21)

    where \mathcal{F}(z, \Phi(z)) is analytic in \Phi and \Phi(z) is analytic in the unit disk. Therefore, \mathcal{F} can be written as

    \begin{eqnarray*} \mathcal{F}(z,\Phi) = \varphi \Phi(z). \end{eqnarray*}

    Consider \mathcal{Z} = z^{\vartheta}. Then the solution can be formulated as follows:

    \begin{eqnarray} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Phi_{j}\mathcal{Z}^{j}, \end{eqnarray} (4.22)

    where \Phi_{j} are constants. Putting (4.22) in (4.21), yields

    \begin{eqnarray*} \frac{\partial}{\partial z}\sum\limits_{j = 0}^{\infty}\Upsilon_{\vartheta,\beta,j}\Phi_{j}\mathcal{Z}^{j}-\varphi\sum\limits_{j = 0}^{\infty}\Phi_{j}\mathcal{Z}^{j} = 0. \end{eqnarray*}

    Since

    \begin{eqnarray*} \Upsilon_{\vartheta,\beta,j} = \frac{\beta^{\vartheta}\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}{j\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}, \end{eqnarray*}

    then the simple computations gives the expression

    \begin{eqnarray*} \frac{\beta^{\vartheta}\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}{\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}\Phi_{j}-\varphi\Phi_{j-1} = 0. \end{eqnarray*}

    Consequently, we get

    \begin{eqnarray*} \Phi_{j} = \Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}. \end{eqnarray*}

    Therefore, we have the subsequent solution

    \begin{eqnarray*} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\mathcal{Z}^{j}, \end{eqnarray*}

    or equivalently

    \begin{eqnarray*} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma(j+1)\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\frac{\mathcal{Z}^{j}}{j!}, \end{eqnarray*}

    where \varphi is assumed to be arbitrary constant, we take

    \varphi: = \beta^{\vartheta}.

    Therefore, for appropriate \vartheta, we have

    \begin{eqnarray*} \Phi(\mathcal{Z})&& = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma(j+1)\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\frac{\mathcal{Z}^{j}}{j!}\nonumber\\&& = \,_{3}\Psi_{2}\begin{bmatrix} (1,1),\Big(1-\vartheta-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta}\Big),\Big(1-\vartheta,\frac{\vartheta}{\beta}\Big);\\\qquad\qquad\qquad\quad\quad\quad\quad\quad\qquad\qquad\qquad\qquad\mathcal{Z}\\\Big(1-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta},\Big),\Big(1,\frac{\vartheta}{\beta}\Big); \end{bmatrix}\nonumber\\&& = \,_{3}\Psi_{2}\begin{bmatrix} (1,1),\Big(1-\vartheta-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta}\Big),\Big(1-\vartheta,\frac{\vartheta}{\beta}\Big);\\\qquad\qquad\qquad\quad\quad\quad\quad\quad\qquad\qquad\qquad\qquad z^{\vartheta\beta}\\\Big(1-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta},\Big),\Big(1,\frac{\vartheta}{\beta}\Big); \end{bmatrix}, \end{eqnarray*}

    where \vert z\vert < 1.

    The present investigation deal with an IVP for \mathcal{GPF} fuzzy FDEs and we employ a new scheme of successive approximations under generalized Lipschitz condition to obtain the existence and uniqueness consequences of the solution to the specified problem. Furthermore, another method to discover exact solutions of \mathcal{GPF} fuzzy FDEs by utilizing the solutions of integer order differential equations is considered. Additionally, the existence consequences for \mathcal{FVFIDE}s under \mathcal{GPF} - \mathcal{HD} with fuzzy initial conditions are proposed. Also, the uniqueness of the so-called integrodifferential equations is verified. Meanwhile, we derived the equivalent integral forms of the original fuzzy \mathcal{FVFIDE}s whichis utilized to examine the convergence of these arrangements of conditions. Two examples enlightened the efficacy and preciseness of the fractional-order \mathcal{HD} and the other one presents the exact solution by means of the Fox-Wright function. For forthcoming mechanisms, we will relate the numerical strategies for the estimated solution of nonlinear fuzzy FDEs.

    The authors would like to express their sincere thanks to the support of Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination, Chaos Soliton. Fract., 136 (2020), 109860. doi: 10.1016/j.chaos.2020.109860
    [2] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput, 316 (2018), 504–515.
    [3] J. Danane, K. Allali, Z. Hammouch, Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos Soliton. Fract., 136 (2020), 109787. doi: 10.1016/j.chaos.2020.109787
    [4] Y. M. Chu, S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, More new results on integral inequalities for generalized K-fractional conformable integral operators, DCDS-S, 14 (2021), 2119–2135. doi: 10.3934/dcdss.2021063
    [5] S. S. Zhou, S. Rashid, A. Rauf. F. Jarad, Y. S. Hamed, K. M. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, AIMS Mathematics, 6 (2021), 8001–8029. doi: 10.3934/math.2021465
    [6] S. Rashid, S. Sultana, F. Jarad, H. Jafari, Y. S. Hamed, More efficient estimates via h-discrete fractional calculus theory and applications, Chaos Soliton. Fract., 147 (2021), 110981. doi: 10.1016/j.chaos.2021.110981
    [7] H. G. Jile, S. Rashid, F. B. Farooq, S. Sultana, Some inequalities for a new class of convex functions with applications via local fractional integral, J. Funct. Space., 2021 (2021), 6663971.
    [8] S. Rashid, S. Parveen, H. Ahmad, Y. M. Chu, New quantum integral inequalities for some new classes of generalized \psi-convex functions and their scope in physical systems, Open Phy., 19 (2021), 35–50.
    [9] A. A. El-Deeb, S. Rashid, On some new double dynamic inequalities associated with Leibniz integral rule on time scales, Adv. Differ. Equ., 2021 (2021), 125. doi: 10.1186/s13662-021-03282-3
    [10] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Mathematics, 6 (2021), 4507–4525. doi: 10.3934/math.2021267
    [11] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504–515.
    [12] K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Math. Model. Nat. Pheno., 13 (2018), DOI: 10.1051/mmnp/2018006.
    [13] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, 2 Eds., Singapore: World Scientific, 2012.
    [14] S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Mathematics, 5 (2020), 7041–7054. doi: 10.3934/math.2020451
    [15] M. A. Qurashi, S. Rashid, S. Sultana, H. Ahmad, K. A. Gepreel, New formulation for discrete dynamical type inequalities via h -discrete fractional operator pertaining to nonsingular kernel, Math. Biosci. Eng., 18 (2021), 1794–1812. doi: 10.3934/mbe.2021093
    [16] Y. M. Chu, S. Rashid, J. Singh, A novel comprehensive analysis on generalized harmonically \Psi-convex with respect to Raina's function on fractal set with applications, Math. Method. Appl. Sci., 2021, DOI: 10.1002/mma.7346.
    [17] S. Rashid, F. Jarad, Z. Hammouch, Some new bounds analogous to generalized proportional fractional integral operator with respect to another function, DCDS-S, 14 (2021), 3703–3718.
    [18] S. Rashid, S. I. Butt, S. Kanwal, H. Ahmad, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized \psi-convex functions with applications, J. Funct. Space., 2021 (2021), 6631474.
    [19] S. Rashid, Y. M. Chu, J. Singh, D. Kumar, A unifying computational framework for novel estimates involving discrete fractional calculus approaches, Alex. Eng. J., 60 (2021), 2677–2685. doi: 10.1016/j.aej.2021.01.003
    [20] M. A. Qurashi, S. Rashid, Y. Karaca, Z. Hammouch, D. Baleanu, Y. M. Chu, Achieving more precse bounds based on double and triple integral as proposed by generalized proportional fractional operators in the Hilfer sense, Fractals, 2021, 2140027.
    [21] M. K. Wang, S. Rashid, Y. Karaca, D. Baleanu, Y. M. Chu, New multi-functional approach for kth-order differentiability governed by fractional calculus via approximately generalized (\psi, \hbar)-convex functions in Hilbert space, Fractals, 2021, 2140019.
    [22] M. A. Qurashi, S. Rashid, A. Khalid, Y. Karaca, Y. M. Chu, New computations of ostrowski type inequality pertaining to fractal style with applications, Fractals, 2021, 2140026.
    [23] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [24] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 2020 (2020), 329. doi: 10.1186/s13662-020-02792-w
    [25] C. J. Rozier, The one-dimensional heat equation, Cambridge University Press, 1984.
    [26] R. Ellahi, C. Fetecau, M. Sheikholeslami, Recent advances in the application of differential equations in mechanical engineering problems, Math. Probl. Eng., 2018 (2018), 1584920.
    [27] Y. M. Chu, Solution of differential equations with applications to engineering problems, Dynam. Syst.: Anal. Comput. Tech., 2017,233.
    [28] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [29] S. S. L. Chang, L. Zadeh, On fuzzy mapping and control, IEEE T. Syst. Man Cy., 2 (1972), 30–34.
    [30] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal.-Theor., 72 (2010), 2859–2862. doi: 10.1016/j.na.2009.11.029
    [31] M. Z. Ahmad, M. K. Hasan, B. De Baets, Analytical and numerical solutions of fuzzy differential equations, Inform. Sci., 236 (2013), 156–167. doi: 10.1016/j.ins.2013.02.026
    [32] Z. Alijani, D. Baleanu, B. Shiri, G. C. Wu, Spline collocation methods for systems of fuzzy fractional differential equations, Chaos Soliton. Fract., 131 (2020), 109510. doi: 10.1016/j.chaos.2019.109510
    [33] O. A. Arqub, M. AL-Smadi, S. Momani, T. Hayat, Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method, Soft Comput., 20 (2016), 3283–3302. doi: 10.1007/s00500-015-1707-4
    [34] O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. Applic., 28 (2017), 1591–1610. doi: 10.1007/s00521-015-2110-x
    [35] O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. doi: 10.5373/jaram.1447.051912
    [36] R. P. Agarwal, S. Arshad, D. O'Regan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition, Fract. Calc. Appl. Anal., 15 (2012), 572–590. doi: 10.2478/s13540-012-0040-1
    [37] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. doi: 10.1016/j.cam.2017.09.039
    [38] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. doi: 10.1016/j.fss.2004.08.001
    [39] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Set. Syst., 230 (2013), 119–141. doi: 10.1016/j.fss.2012.10.003
    [40] O. S. Fard, M. Salehi, A survey on fuzzy fractional variational problems, J. Comput. Appl. Math., 271 (2014), 71–82. doi: 10.1016/j.cam.2014.03.019
    [41] N. V. Hoa, Existence results for extremal solutions of interval fractional functional integro-differential equations, Fuzzy Set. Syst., 347 (2018), 29–53. doi: 10.1016/j.fss.2017.09.006
    [42] N. V. Hoa, On the initial value problem for fuzzy differential equations of non-integer order \alpha\in(1, 2), Soft Comput., 24 (2020), 935–954. doi: 10.1007/s00500-019-04619-7
    [43] N. V. Hoa, V. Lupulescu, D. O'Regan, A note on initial value problems for fractional fuzzy differential equations, Fuzzy Set. Syst., 347 (2018), 54–69. doi: 10.1016/j.fss.2017.10.002
    [44] T. Allahviranloo. A. Armand, Z. Gouyandeh, H. Ghadiri, Existence and uniqueness of solutions for fuzzy fractional Volterra-Fredholm integro-differential equations, J. Fuzzy. Set. Val. Anal., 2013 (2013), 1–9.
    [45] M. S. Shagari, S. Rashid, K. M. Abualnaja, M. Alansari, On nonlinear fuzzy set-valued \Theta-contractions with applications, AIMS Mathematics, 6 (2021), 10431–10448. doi: 10.3934/math.2021605
    [46] M. Mazandarani, M. Najariyan, Type-2 fuzzy fractional derivatives, Commun. Nonlinear. Sci., 19 (2014), 2354–2372. doi: 10.1016/j.cnsns.2013.11.003
    [47] D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivative, Comput. Appl. Math., 37 (2018), 3672–3690. doi: 10.1007/s40314-017-0536-8
    [48] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set. Syst., 161 (2010), 1564–1584. doi: 10.1016/j.fss.2009.06.009
    [49] L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal.-Theor., 71 (2009), 1311–1328. doi: 10.1016/j.na.2008.12.005
    [50] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal.-Theor., 74 (2011), 85–93.
    [51] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Syst., 26 (2014), 1481–1490. doi: 10.3233/IFS-130831
    [52] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297–302. doi: 10.1007/s00500-011-0743-y
    [53] N. V. Hoa, H. Vu, T. M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70–99. doi: 10.1016/j.fss.2018.08.001
    [54] V. Lakshmikantham, R. N. Mohapatra, Theory of fuzzy differential equations and applications, London: CRC Press, 2003.
  • This article has been cited by:

    1. Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif, New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method, 2022, 7, 2473-6988, 2044, 10.3934/math.2022117
    2. Saima Rashid, Rehana Ashraf, Zakia Hammouch, New generalized fuzzy transform computations for solving fractional partial differential equations arising in oceanography, 2023, 8, 24680133, 55, 10.1016/j.joes.2021.11.004
    3. Saima Rashid, Rehana Ashraf, Ahmet Ocak Akdemir, Manar A. Alqudah, Thabet Abdeljawad, Mohamed S. Mohamed, Analytic Fuzzy Formulation of a Time-Fractional Fornberg–Whitham Model with Power and Mittag–Leffler Kernels, 2021, 5, 2504-3110, 113, 10.3390/fractalfract5030113
    4. Saima Rashid, Rehana Ashraf, Fatimah S. Bayones, A Novel Treatment of Fuzzy Fractional Swift–Hohenberg Equation for a Hybrid Transform within the Fractional Derivative Operator, 2021, 5, 2504-3110, 209, 10.3390/fractalfract5040209
    5. Saima Rashid, Sobia Sultana, Bushra Kanwal, Fahd Jarad, Aasma Khalid, Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator, 2022, 7, 2473-6988, 16067, 10.3934/math.2022880
    6. Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Khadija Tul Kubra, Abdullah M. Alsharif, Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time, 2021, 6, 2473-6988, 12114, 10.3934/math.2021703
    7. Manar A. Alqudah, Rehana Ashraf, Saima Rashid, Jagdev Singh, Zakia Hammouch, Thabet Abdeljawad, Novel Numerical Investigations of Fuzzy Cauchy Reaction–Diffusion Models via Generalized Fuzzy Fractional Derivative Operators, 2021, 5, 2504-3110, 151, 10.3390/fractalfract5040151
    8. Ravichandran VIVEK, Kangarajan K., Dvivek VİVEK, Elsayed ELSAYED, Dynamics and Stability of \Xi-Hilfer Fractional Fuzzy Differential Equations with Impulses, 2023, 6, 2651-4001, 115, 10.33434/cams.1257750
    9. Saima Rashid, Fahd Jarad, Hind Alamri, New insights for the fuzzy fractional partial differential equations pertaining to Katugampola generalized Hukuhara differentiability in the frame of Caputo operator and fixed point technique, 2024, 15, 20904479, 102782, 10.1016/j.asej.2024.102782
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3157) PDF downloads(173) Cited by(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog