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Abstract: This investigation communicates with an initial value problem (IVP) of Hilfer-generalized
proportional fractional (GPF ) differential equations in the fuzzy framework is deliberated. By means
of the Hilfer-GPF operator, we employ the methodology of successive approximation under the
generalized Lipschitz condition. Based on the proposed derivative, the fractional Volterra-Fredholm
integrodifferential equations (FVFIEs) via generalized fuzzy Hilfer-GPF Hukuhara differentiability
(HD) having fuzzy initial conditions are investigated. Moreover, the existence of the solution is
proposed by employing the fixed-point formulation. The uniqueness of the solution is verified.
Furthermore, we derived the equivalent form of fuzzy FVFIEs which is supposed to demonstrate
the convergence of this group of equations. Two appropriate examples are presented for illustrative
purposes.
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1. Introduction

Recently, fractional calculus has attained assimilated bounteous flow and significant importance due
to its rife utility in the areas of technology and applied analysis. Fractional derivative operators have
given a new rise to mathematical models such as thermodynamics, fluid flow, mathematical biology,
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and virology, see [1–3]. Previously, several researchers have explored different concepts related to
fractional derivatives, such as Riemann-Liouville, Caputo, Riesz, Antagana-Baleanu, Caputo-Fabrizio,
etc. As a result, this investigation has been directed at various assemblies of arbitrary order differential
equations framed by numerous analysts, (see [4–10]). It has been perceived that the supreme proficient
technique for deliberating such an assortment of diverse operators that attracted incredible presentation
in research-oriented fields, for example, quantum mechanics, chaos, thermal conductivity, and image
processing, is to manage widespread configurations of fractional operators that include many other
operators, see the monograph and research papers [11–22].

In [23], the author proposed a novel idea of fractional operators, which is called GPF operator,
that recaptures the Riemann-Liouville fractional operators into a solitary structure. In [24], the authors
analyzed the existence of the FDEs as well as demonstrated the uniqueness of the GPF derivative by
utilizing Kransnoselskii’s fixed point hypothesis and also dealt with the equivalency of the mixed type
Volterra integral equation.

Fractional calculus can be applied to a wide range of engineering and applied science problems.
Physical models of true marvels frequently have some vulnerabilities which can be reflected as
originating from various sources. Additionally, fuzzy sets, fuzzy real-valued functions, and fuzzy
differential equations seem like a suitable mechanism to display the vulnerabilities marked out by
elusiveness and dubiousness in numerous scientific or computer graphics of some deterministic
certifiable marvels. Here we broaden it to several research areas where the vulnerability lies in
information, for example, ecological, clinical, practical, social, and physical sciences [25–27].

In 1965, Zadeh [28] proposed fuzziness in set theory to examine these issues. The fuzzy structure
has been used in different pure and applied mathematical analyses, such as fixed-point theory, control
theory, topology, and is also helpful for fuzzy automata and so forth. In [29], authors also broadened
the idea of a fuzzy set and presented fuzzy functions. This concept has been additionally evolved and
the bulk of the utilization of this hypothesis has been deliberated in [30–35] and the references therein.
The concept ofHD has been correlated with fuzzy Riemann-Liouville differentiability by employing
the Hausdorff measure of non-compactness in [36, 37].

Numerous researchers paid attention to illustrating the actual verification of certain fuzzy integral
equations by employing the appropriate compactness type assumptions. Different methodologies and
strategies, in light of HD or generalized HD (see [38]) have been deliberated in several credentials
in the literature (see for instance [39–49]) and we presently sum up quickly a portion of these
outcomes. In [50], the authors proved the existence of solutions to fuzzy FDEs considering Hukuhara
fractional Riemann-Liouville differentiability as well as the uniqueness of the aforesaid problem.
In [51, 52], the authors investigated the generalized Hukuhara fractional Riemann-Liouville and
Caputo differentiability of fuzzy-valued functions. Bede and Stefanini [39] investigated and
discovered novel ideas for fuzzy-valued mappings that correlate with generalized differentiability.
In [43], Hoa introduced the subsequent fuzzy FDE with order ϑ ∈ (0, 1) :

(
cD

ϑ
σ+

1
Φ
)
(ζ) = F (ζ,Φ(ζ)),

Φ(σ1) = Φ0 ∈ E,
(1.1)

where a fuzzy function is F : [σ1, σ2] × E → E with a nontrivial fuzzy constant Φ0 ∈ E. The
article addressed certain consequences on clarification of the fractional fuzzy differential equations and
showed that the aforesaid equations in both cases (differential/integral) are not comparable in general.
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A suitable assumption was provided so that this correspondence would be effective. Hoa et al. [53]
proposed the Caputo-Katugampola FDEs fuzzy set having the initial condition:

(
cD

ϑ,ρ

σ+
1
Φ
)
(ζ) = F (ζ,Φ(ζ)),

Φ(σ1) = Φ0,
(1.2)

where 0 < σ1 < ζ ≤ σ2, cD
ϑ,ρ

σ+
1

denotes the fuzzy Caputo-Katugampola fractional generalized
Hukuhara derivative and a fuzzy function is F : [σ1, σ2] × E → E. An approach of continual
estimates depending on generalized Lipschitz conditions was employed to discuss the actual as well
as the uniqueness of the solution. Owing to the aforementioned phenomena, in this article, we
consider a novel fractional derivative ( merely identified as Hilfer GPF -derivative). Consequently, in
the framework of the proposed derivative, we establish the basic mathematical tools for the
investigation of GPF -FFHD which associates with a fractional order fuzzy derivative. We
investigated the actuality and uniqueness consequences of the clarification to a fuzzy fractional IVP
by employing GPF generalized HD by considering an approach of continual estimates via
generalized Lipschitz condition. Moreover, we derived the FVFIE using a generalized fuzzy GPF
derivative is presented. Finally, we demonstrate the problems of actual and uniqueness of the
clarification of this group of equations. The Hilfer-GPF differential equation is presented as follows:

D
ϑ,q,β

σ+
1

Φ(ζ) = F (ζ,Φ(ζ)), ζ ∈ [σ1,T ], 0 ≤ σ1 < T

I
1−γ,β
σ1 Φ(σ1) =

m∑
j=1
R jΦ(ν j), ϑ ≤ γ = ϑ + q − ϑq, ν j ∈ (σ1,T ],

(1.3)

where Dϑ,q,β

σ+
1

(.) is the Hilfer GPF -derivative of order ϑ ∈ (0, 1), I1−γ,β
σ1 (.) is the GPF integral of order

1 − γ > 0, R j ∈ R, and a continuous function F : [σ1,T ] × R → R with ν j ∈ [σ1,T ] fulfilling
σ < ν1 < ... < νm < T for j = 1, ...,m. To the furthest extent that we might actually know, nobody
has examined the existence and uniqueness of solution (1.3) regarding FVFIEs under generalized
fuzzy Hilfer-GPF -HD with fuzzy initial conditions. An illustrative example of fractional-order in the
complex domain is proposed and provides the exact solution in terms of the Fox-Wright function.

The following is the paper’s summary. Notations, hypotheses, auxiliary functions, and lemmas
are presented in Section 2. In Section 3, we establish the main findings of our research concerning
the existence and uniqueness of solutions to Problem 1.3 by means of the successive approximation
approach. We developed the fuzzy GPF Volterra-Fredholm integrodifferential equation in Section 4.
Section 5 consists of concluding remarks.

2. Preliminaries

Throughout this investigation, E represents the space of all fuzzy numbers on R. Assume the space
of all Lebsegue measureable functions with complex values F on a finite interval [σ1, σ2] is identified
by χr

c(σ1, σ2) such that

‖F ‖χr
c < ∞, c ∈ R, 1 ≤ r ≤ ∞.
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Then, the norm

‖F ‖χr
c =

( σ2∫
σ1

|ζcF (ζ)|r
dζ
ζ

)1/r

∞.

Definition 2.1. ( [53]) A fuzzy number is a fuzzy set Φ : R → [0, 1] which fulfills the subsequent
assumptions:
(1) Φ is normal, i.e., there exists ζ0 ∈ R such that Φ(ζ0) = 1;
(2) Φ is fuzzy convex in R, i.e, for δ ∈ [0, 1],

Φ(δζ1 + (1 − δ)ζ2) ≥ min
{
Φ(ζ1),Φ(ζ2)

}
f or any ζ1, ζ2 ∈ R;

(3) Φ is upper semicontinuous on R;
(4) [z]0 = cl

{
z1 ∈ R |Φ(z1) > 0

}
is compact.

C
(
[σ1, σ2],E

)
indicates the set of all continuous functions and set of all absolutely continuous fuzzy

functions signifys byAC
(
[σ1, σ2],E

)
on the interval [σ1, σ2] having values in E.

Let γ ∈ (0, 1), we represent the space of continuous mappings by

Cγ[σ1, σ2] =
{
F : (σ1, σ2]→ E : e

β−1
β (ζ−σ1)(ζ − σ1)1−γF (ζ) ∈ C[σ1, σ2]

}
.

Assume that a fuzzy set Φ : R 7→ [0, 1] and all fuzzy mappings Φ : [σ1, σ2] → E defined on
L
(
[σ1, σ2],E

)
such that the mappings ζ → D̄0[Φ(ζ), 0̂] lies in L1[σ1, σ2].

There is a fuzzy number Φ on R, we write [Φ]q̌ =
{
z1 ∈ R |Φ(z1) ≥ q̌

}
the q̌-level of Φ, having

q̌ ∈ (0, 1].
From assertions (1) to (4); it is observed that the q̌-level set of Φ ∈ E, [Φ]q̌ is a nonempty compact

interval for any q̌ ∈ (0, 1]. The q̌-level of a fuzzy number Φ is denoted by
[
Φ(q̌), Φ̄(q̌)

]
.

For any δ ∈ R and Φ1,Φ2 ∈ E, then the sum Φ1 + Φ2 and the product δΦ1 are demarcated as:
[Φ1 + Φ2]q̌ = [Φ1]q̌ + [Φ2]q̌ and [δ.Φ1]q̌ = δ[Φ1]q̌, for all q̌ ∈ [0, 1], where [Φ1]q̌ + [Φ2]q̌ is the usual
sum of two intervals of R and δ[Φ1]q̌ is the scalar multiplication between δ and the real interval.

For any Φ ∈ E, the diameter of the q̌-level set of Φ is stated as diam[µ]q̌ = µ̄(q̌) − µ(q̌).
Now we demonstrate the notion of Hukuhara difference of two fuzzy numbers which is mainly due

to [54].

Definition 2.2. ( [54]) Suppose Φ1,Φ2 ∈ E. If there exists Φ3 ∈ E such that Φ1 = Φ2 + Φ3, then Φ3

is known to be the Hukuhara difference of Φ1 and Φ2 and it is indicated by Φ1 	 Φ2. Observe that
Φ1 	 Φ2 , Φ1 + (−)Φ2.

Definition 2.3. ( [54]) We say that D̄0[Φ1,Φ2] is the distance between two fuzzy numbers if

D̄0[Φ1,Φ2] = sup
q̌∈[0,1]

H
(
[Φ1]q̌, [Φ2]q̌

)
, ∀Φ1,Φ2 ∈ E,

where the Hausdroff distance between [Φ1]q̌ and [Φ2]q̌ is defined as

H
(
[Φ1]q̌, [Φ2]q̌

)
= max

{
|Φ(q̌) − Φ̄(q̌)|, |Φ̄(q̌) − Φ(q̌)|

}
.
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Fuzzy sets in E is also refereed as triangular fuzzy numbers that are identified by an ordered triple
Φ = (σ1, σ2, σ3) ∈ R3 with σ1 ≤ σ2 ≤ σ3 such that [Φ]q̌ = [Φ(q̌), Φ̄(q̌)] are the endpoints of q̌-level
sets for all q̌ ∈ [0, 1], where Φ(q̌) = σ1 + (σ2 − σ1)q̌ and Φ̄(q̌) = σ3 − (σ3 − σ2)q̌.

Generally, the parametric form of a fuzzy number Φ is a pair [Φ]q̌ = [Φ(q̌), Φ̄(q̌)] of functions
Φ(q̌), Φ̄(q̌), q̌ ∈ [0, 1], which hold the following assumptions:
(1) µ(q̌) is a monotonically increasing left-continuous function;
(2) µ̄(q̌) is a monotonically decreasing left-continuous function;
(3) µ(q̌) ≤ µ̄(q̌), q̌ ∈ [0, 1].

Now we mention the generalized Hukuhara difference of two fuzzy numbers which is proposed
by [38].

Definition 2.4. ( [38]) The generalized Hukuhara difference of two fuzzy numbers Φ1,Φ2 ∈ E (gH-
difference in short) is stated as follows

Φ1 	gH Φ2 = Φ3 ⇔ Φ1 = Φ2 + Φ3 or Φ2 = Φ1 + (−1)Φ3.

A function Φ : [σ1, σ2] → E is said to be d-increasing (d-decreasing) on [σ1, σ2] if for every
q̌ ∈ [0, 1]. The function ζ → diam[Φ(ζ)]q̌ is nondecreasing (nonincreasing) on [σ1, σ2]. If Φ is
d-increasing or d-decreasing on [σ1, σ2], then we say that Φ is d-monotone on [σ1, σ2].

Definition 2.5. ( [39])The generalized Hukuhara derivative of a fuzzy-valued function F : (σ1, σ2)→
E at ζ0 is defined as

F ′gH(ζ0) = lim
h→0

F (ζ0 + h) 	gH F (ζ0)
h

,

if (F )′
gH(ζ0) ∈ E, we say that F is generalized Hukuhara differentiable (gH-differentiable) at ζ0.

Moreover, we say that F is [(i) − gH]-differentiable at ζ0 if

[F ′gH(ζ0)]q̌ =

[[
lim
h→0

F (ζ0 + h) 	gH F (ζ0)
h

]q̌

,
[

lim
h→0

F̄ (ζ0 + h) 	gH F̄ (ζ0)
h

]q̌]
=

[
(F )′(q̌, ζ0), (F̄ )′(q̌, ζ0)

]
, (2.1)

and that F is [(ii) − gH]-differentiable at ζ0 if

[F ′gH(ζ0)]q̌ =
[
(F̄ )′(q̌, ζ0), (F )′(q̌, ζ0)

]
. (2.2)

Definition 2.6. ( [49]) We state that a point ζ0 ∈ (σ1, σ2), is a switching point for the differentiability
of F , if in any neighborhood U of ζ0 there exist points ζ1 < ζ0 < ζ2 such that
Type I. at ζ1 (2.1) holds while (2.2) does not hold and at ζ2 (2.2) holds and (2.1) does not hold, or
Type II. at ζ1 (2.2) holds while (2.1) does not hold and at ζ2 (2.1) holds and (2.2) does not hold.

Definition 2.7. ( [23]) For β ∈ (0, 1] and let the left-sided GPF -integral operator of order ϑ of F is
defined as follows

I
ϑ,β

σ+
1
F (ζ) =

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F (ν)dν, ζ > σ1, (2.3)

where β ∈ (0, 1],ϑ ∈ C, Re(ϑ) > 0 and Γ(.) is the Gamma function.

AIMS Mathematics Volume 6, Issue 10, 10920–10946.



10925

Definition 2.8. ( [23]) For β ∈ (0, 1] and let the left-sided GPF -derivative operator of order ϑ of F is
defined as follows

D
ϑ,β

σ+
1
F (ζ) =

Dn,β

βn−ϑΓ(n − ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)n−ϑ−1F (ν)dν, (2.4)

where β ∈ (0, 1],ϑ ∈ C, Re(ϑ) > 0, n = [ϑ] + 1 and Dn,β represents the nth-derivative with respect to
proportionality index β.

Definition 2.9. ( [23]) For β ∈ (0, 1] and let the left-sided GPF -derivative in the sense of Caputo of
order ϑ of F is defined as follows

cD
ϑ,β

σ+
1
F (ζ) =

1
βn−ϑΓ(n − ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)n−ϑ−1(Dn,βF

)
(ν)dν, (2.5)

where β ∈ (0, 1],ϑ ∈ C, Re(ϑ) > 0 and n = [ϑ] + 1.

Let Φ ∈ L([σ1, σ2],E), then the GPF integral of order ϑ of the fuzzy function Φ is stated as:

Φ
β
ϑ(ζ) =

(
I
ϑ,β

σ+
1
Φ
)
(ζ) =

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1Φ(ν)dν, ζ > σ1. (2.6)

Since [Φ(ζ)]q̌ = [Φ(q̌, ζ), Φ̄(q̌, ζ)] and 0 < ϑ < 1, we can write the fuzzy GPF -integral of the fuzzy
mapping Φ depend on lower and upper mappingss, that is,[(

I
ϑ,β

σ+
1
Φ
)
(ζ)

]q̌
=

[(
I
ϑ,β

σ+
1
Φ
)
(q̌, ζ),

(
I
ϑ,β

σ+
1
Φ̄
)
(q̌, ζ)

]
, ζ ≥ σ1, (2.7)

where

(
I
ϑ,β

σ+
1
Φ
)
(q̌, ζ) =

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1Φ(q̌, ν)dν, (2.8)

and

(
I
ϑ,β

σ+
1
Φ̄
)
(q̌, ζ) =

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1Φ̄(q̌, ν)dν. (2.9)

Definition 2.10. For n ∈ N, order ϑ and type q hold n − 1 < ϑ ≤ n with 0 ≤ q ≤ 1. The left-sided
fuzzy Hilfer-proportional gH-fractional derivative, with respect to ζ having β ∈ (0, 1] of a function
ζ ∈ C

β
1−γ[σ1, σ2], is stated as(

D
ϑ,q,β

σ+
1

Φ
)
(ζ) =

(
I
q(1−ϑ),β
σ+

1
Dβ(I(1−q)(1−ϑ),β

σ+
1

Φ
))

(ζ),

whereDβΦ(ν) = (1− β)Φ(ν) + βΦ′(ν) and if the gH-derivative Φ′(1−ϑ),β(ζ) exists for ζ ∈ [σ1, σ2], where

Φ
β
(1−ϑ)(ζ) :=

(
I

(1−ϑ),β
σ+

1
Φ
)
(ζ) =

1
β1−ϑΓ(1 − ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑΦ(ν)dν, ζ ≥ σ1.
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Definition 2.11. Let Φ′ ∈ L([σ1, σ2],E) and the fractional generalized Hukuhara GPF -derivative of
fuzzy-valued function Φ is stated as:

(
gHD

ϑ,β

σ+
1
Φ
)
(ζ) = I

1−ϑ,β
σ+

1
(Φ′gH)(ζ) =

1
β1−ϑΓ(1 − ϑ)

ϑ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑΦ′gH(ν)dν, ν ∈ (σ1, ζ). (2.10)

Furthermore, we say that Φ is GPF[(i) − gH]-differentiable at ζ0 if

[( gHD
ϑ,β

σ+
1

)]q̌ =

[[ 1
β1−ϑΓ(1 − ϑ)

ϑ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑΦ′

gH(ν)dν
]q̌
,
[ 1
β1−ϑΓ(1 − ϑ)

ϑ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑΦ̄′gH(ν)dν

]q̌]
= [( gHD

ϑ,β

σ+
1

)(q̌, ζ), ( gHD̄
ϑ,β

σ+
1

)(q̌, ζ)] (2.11)

and that Φ is GPF[(i) − gH]-differentiable at ζ0 if

[( gHD
ϑ,β

σ+
1
)]q̌ = [( gHD̄

ϑ,β

σ+
1
)(q̌, ζ), ( gHD

ϑ,β

σ+
1
)(q̌, ζ)]. (2.12)

Definition 2.12. We say that a point ζ0 ∈ (σ1, σ2), is a switching point for the differentiability of F , if
in any neighborhood U of ζ0 there exist points ζ1 < ζ0 < ζ2 such that
Type I. at ζ1 (2.11) holds while (2.12) does not hold and at ζ2 (2.12) holds and (2.11) does not hold, or
Type II. at ζ1 (2.12) holds while (2.11) does not hold and at ζ2 (2.11) holds and (2.12) does not hold.

Proposition 1. ( [23]) Let ϑ, % ∈ C such that Re(ϑ) > 0 and Re(%) > 0. Then for any β ∈ (0, 1], we have(
I
ϑ,β

σ+
1
e
β−1
β (s − σ1)%−1

)
(ζ) =

Γ(%)
βϑΓ(% + ϑ)

e
β−1
β (ζ−σ1)(ζ − σ1)%+ϑ−1,(

D
ϑ,β

σ+
1
e
β−1
β (s − σ1)%−1

)
(ζ) =

Γ(%)
βϑΓ(% − ϑ)

e
β−1
β (ζ−σ1)(ζ − σ1)%−ϑ−1,(

I
ϑ,β

σ+
1
e
β−1
β (σ2 − s)%−1

)
(ζ) =

Γ(%)
βϑΓ(% + ϑ)

e
β−1
β (σ2−s)(σ2 − ζ)%+ϑ−1,(

D
ϑ,β

σ+
1
e
β−1
β (σ2 − s)%−1

)
(ζ) =

Γ(%)
βϑΓ(% − ϑ)

e
β−1
β (σ2−s)(σ2 − s)%−ϑ−1.

Lemma 2.13. ( [24])For β ∈ (0, 1], ϑ > 0, 0 ≤ γ < 1. If Φ ∈ Cγ[σ1, σ2] and I1−ϑ
σ+

1
Φ ∈ C1

γ[σ1, σ2], then

(
I
ϑ,β

σ+
1
D

ϑ,β

σ+
1
Φ
)
(ζ) = Φ(ζ) −

e
β−1
β (ζ−σ1)(ζ − σ1)ϑ−1

βϑ−1Γ(ϑ)

(
I

1−ϑ,β
σ+

1
Φ
)
(σ1).

Lemma 2.14. ( [24]) Let Φ ∈ L1(σ1, σ2). IfDq(1−ϑ),β
σ+

1
Φ exists on L1(σ1, σ2), then

D
ϑ,q,β

σ+
1
I
ϑ,β

σ+
1
Φ = I

q(1−ϑ),β
σ+

1
D
q(1−ϑ),β
σ+

1
Φ.

Lemma 2.15. Suppose there is a d-monotone fuzzy mapping Φ ∈ AC
(
[σ1, σ2],E

)
, where

[
Φ(ζ)

]q̌
=[

Φ(q̌, ζ), Φ̄(q̌, ζ)
]

for 0 ≤ q̌ ≤ 1, σ1 ≤ ζ ≤ σ2, then for 0 < ϑ < 1 and β ∈ (0, 1], we have
(i)

[(
D

ϑ,q,β

σ+
1

Φ
)
(ζ)

]q̌
=

[
D

ϑ,q,β

σ+
1

Φ(q̌, ζ),Dϑ,q,β

σ+
1

Φ̄(q̌, ζ)
]

for ζ ∈ [σ1, σ2], if Φ is d-increasing;

(ii)
[(
D

ϑ,q,β

σ+
1

Φ
)
(ζ)

]q̌
=

[
D

ϑ,q,β

σ+
1

Φ̄(q̌, ζ),Dϑ,q,β

σ+
1

Φ(q̌, ζ)
]

for ζ ∈ [σ1, σ2], if Φ is d-decreasing.
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Proof. It is to be noted that if Φ is d-increasing, then
[
Φ′(ζ)

]q̌
=

[ d
dζΦ(q̌, ζ), d

dζ Φ̄(q̌, ζ)
]
. Taking into

account Definition 2.10, we have[(
D

ϑ,q,β

σ+
1

Φ
)
(ζ)

]q̌
=

[
I
q(1−ϑ),β
σ+

1
Dβ(I(1−q)(1−ϑ),β

σ+
1

Φ
)
(q̌, ζ),Iq(1−ϑ),β

σ+
1

Dβ(I(1−q)(1−ϑ),β
σ+

1
Φ̄
)
(q̌, ζ)

]
=

[
D

ϑ,q,β

σ+
1

Φ(q̌, ζ),Dϑ,q,β

σ+
1

Φ̄(q̌, ζ)
]
.

If Φ is d-decreasing, then
[
Φ′(ζ)

]q̌
=

[ d
dζ Φ̄(q̌, ζ), d

dζΦ(q̌, ζ)
]
, we have[(

D
ϑ,q,β

σ+
1

Φ
)
(ζ)

]q̌
=

[
I
q(1−ϑ),β
σ+

1
Dβ(I(1−q)(1−ϑ),β

σ+
1

Φ̄
)
(q̌, ζ),Iq(1−ϑ),β

σ+
1

Dβ(I(1−q)(1−ϑ),β
σ+

1
Φ
)
(q̌, ζ)

]
=

[
D

ϑ,q,β

σ+
1

Φ̄(q̌, ζ),Dϑ,q,β

σ+
1

Φ(q̌, ζ)
]
.

This completes the proof. �

Lemma 2.16. For β ∈ (0, 1], ϑ ∈ (0, 1). If Φ ∈ AC([σ1, σ2],E) is a d-monotone fuzzy function. We take

z1(ζ) :=
(
I
ϑ,β

σ+
1
Φ
)
(ζ) =

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1Φ(ν)dν,

and

z(1−ϑ),β
1 :=

(
I

(1−ϑ),β
σ+

1
Φ
)
(ζ) =

1
β1−ϑΓ(1 − ϑ)

ϑ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑΦ′gH(ν)dν,

is d-increasing on (σ1, σ2], then

(
I
ϑ,β

σ+
1
D

ϑ,q,β

σ+
1

Φ
)
(ζ) = Φ(ζ) 	

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1,

and (
D

ϑ,q,β

σ+
1
I
ϑ,β

σ+
1
Φ
)
(ζ) = Φ(ζ).

Proof. If z1(ζ) is d-increasing on [σ1, σ2] or z1(ζ) is d-decreasing on [σ1, σ2] and z(1−ϑ),β
1 (ζ) is

d-increasing on (σ1, σ2].
Utilizing the Definitions 2.6, 2.10 and Lemma 2.13 with the initial condition (I1−γ,β

σ+
1

Φ)(σ1) = 0,
we have (

I
ϑ,β

σ+
1
D

ϑ,q,β

σ+
1

Φ
)
(ζ) =

(
I
ϑ,β

σ+
1
I
q(1−ϑ),β
σ+

1
DβI

(1−q)(1−ϑ),β
σ+

1
Φ

)
(ζ)

=

(
I
γ,β

σ+
1
DβI

1−γ,β
σ+

1
Φ

)
(ζ)

=

(
I
γ,β

σ+
1
D

γ,β

σ+
1
Φ

)
(ζ)

= Φ(ζ) 	
I

1−γ,β
σ+

1
Φ

βγ−1Γ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1. (2.13)
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Now considering Proposition 1, Lemma 2.13 and Lemma 2.14, we obtain

(
D

ϑ,q,β

σ+
1
I
ϑ,β

σ+
1
Φ
)
(ζ) =

(
I
q(1−ϑ),β
σ+

1
D
q(1−ϑ),β
σ+

1
Φ

)
(ζ)

= Φ(ζ) 	

(
I

1−q(1−ϑ),β
σ+

1
Φ
)
(σ1)e

β−1
β (ζ − σ1)

βq(1−ϑ)Γ(q(1 − ϑ))
(ζ − σ1)q(1−ϑ)−1

= Φ(ζ).

On contrast, since Φ ∈ AC([σ1, σ2],E), there exists a constantK such thatK = sup
ζ∈[σ1,σ2]

D̄0[Φ(ζ), 0̂].

Then

D̄0[Iϑ,β
σ+

1
Φ(ζ), 0̂] ≤ K

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1dν

≤ K
1

βϑΓ(ϑ)

ζ∫
σ1

∣∣∣e β−1
β (ζ−ν)

∣∣∣(ζ − ν)ϑ−1dν

=
K

βϑΓ(ϑ + 1)
(ζ − σ1)ϑ,

where we have used the fact
∣∣∣e β−1

β ζ
∣∣∣ < 1 and Iϑ,β

σ+
1
Φ(ζ) = 0 and ζ = σ1.

This completes the proof. �

Lemma 2.17. Let there be a continuous mapping Φ : [σ1, σ2]→ R+ on [σ1, σ2] and holdDϑ,q,β

σ+
1

Φ(ζ) ≤
F (ξ,Φ(ξ)), ξ ≥ σ1, where F ∈ C([σ1, σ1] × R+,R+). Assume that m(ζ) = m(ζ, σ1, ξ0) is the maximal
solution of the IVP

D
ϑ,q,β

σ+
1
ξ(ζ) = F (ζ, ξ),

(
I

1−γ,β
σ+

1
ξ
)
(σ1) = ξ0 ≥ 0, (2.14)

on [σ1, σ2]. Then, if Φ(σ1) ≤ ξ0, we have Φ(ζ) ≤ m(ζ), ζ ∈ [σ1, σ2].

Proof. The proof is simple and can be derived as parallel to Theorem 2.2 in [53]. �

Lemma 2.18. Assume the IVP described as:

D
ϑ,q,β

σ+
1

Φ(ζ) = F (ζ,Φ(ζ)),
(
I

1−γ,β
σ+

1
Φ
)
(σ1) = Φ0 = 0, ζ ∈ [σ1, σ2]. (2.15)

Let α > 0 be a given constant and B(Φ0, α) =
{
Φ ∈ R : |Φ − Φ0| ≤ α

}
. Assume that the real-valued

functions F : [σ1, σ2] × [0, α]→ R+ satisfies the following assumptions:
(i) F ∈ C

(
[σ1, σ2] × [0, α],R+

)
, F (ζ, 0) ≡ 0, 0 ≤ F (ζ,Φ) ≤ MF for all (ζ,Φ) ∈ [σ1, σ2] × [0, α];

(ii) F (ζ,Φ) is nondecreasing in Φ for every ζ ∈ [σ1, σ2]. Then the problem (2.15) has at least one
solution defined on [σ1, σ2] and Φ(ζ) ∈ B(Φ0, α).

Proof. The proof is simple and can be derived as parallel to Theorem 2.3 in [53]. �
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3. Main results and discussion

In this investigation, we find the existence and uniqueness of solution to problem 1.3 by utilizing
the successive approximation technique by considering the generalized Lipschitz condition of the right-
hand side.

Lemma 3.1. For γ = ϑ + q(1 − ϑ), ϑ ∈ (0, 1), q ∈ [0, 1] with β ∈ (0, 1], and let there is a fuzzy
function F : (σ1, σ2] × E → E such that ζ → F (ζ,Φ) belongs to Cβγ([σ1, σ2],E) for any Φ ∈ E. Then
a d-monotone fuzzy function Φ ∈ C([σ1, σ2],E) is a solution of IVP (1.3) if and only if Φ satisfies the
integral equation

Φ(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

=
1

βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν)

)
dν, ζ ∈ [σ1, σ2], j = 1, 2, ...,m. (3.1)

and the fuzzy function ζ → I1−γ
σ+

1
F (ζ,Φ) is d-increasing on (σ1, σ2].

Proof. Let Φ ∈ C([σ1, σ2],E) be a d-monotone solution of (1.3), and considering z1(ζ) := Φ(ζ) 	gH(
I

1−γ,β
σ+

1
Φ
)
(σ1), ζ ∈ (σ1, σ2]. Since Φ is d-monotone on [σ1, σ2], it follows that ζ → z1(ζ) is d-increasing

on [σ1, σ2] (see [43]).
From (1.3) and Lemma 2.16, we have

(
I
ϑ,β

σ+
1
D

ϑ,q,β

σ+
1

Φ
)
(ζ) = Φ(ζ) 	

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1, ∀ζ ∈ [σ1, σ2]. (3.2)

Since F (ζ,Φ) ∈ Cγ([σ1, σ2],E) for any Φ ∈ E, and from (1.3), observes that

(
I
ϑ,β

σ+
1
D

ϑ,q,β

σ+
1

Φ
)
(ζ) = I

ϑ,β

σ+
1
F (ζ,Φ(ζ)) =

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν)

)
dν, ∀ζ ∈ [σ1, σ2]. (3.3)

Additionally, since z1(ζ) is d-increasing on (σ1, σ2]. Also, we observe that ζ → F ϑ,β(ζ,Φ) is also
d-increasing on (σ1, σ2].

Reluctantly, merging (3.2) and (3.3), we get the immediate consequence.
Further, suppose Φ ∈ C([σ1, σ2],E) be a d-monotone fuzzy function fulfills (3.1) and such that

ζ → F ϑ,β(ζ,Φ) is d-increasing on (σ1, σ2]. By the continuity of the fuzzy mapping F , the fuzzy
mapping ζ → F ϑ,β(ζ,Φ) is continuous on (σ1, σ2] with F ϑ,β(σ1,Φ(σ1)) = lim

ζ→σ+
1

F ϑ,β(ζ,Φ) = 0. Then
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Φ(ζ) =

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1 +

(
I
ϑ,β

σ+
1
F

(
ζ, ζ

))
(ζ),

I
1−γ,β
σ+

1
Φ(ζ) =

m∑
j=1

R jΦ(ζ j) +
(
I

1−q(1−ϑ)
σ+

1
F (ζ,Φ(ζ))

)
(ζ),

and

I
1−γ,β
σ+

1
Φ(0) =

m∑
j=1

R jΦ(ζ j).

Moreover, since ζ → F ϑ,β(ζ,Φ) is d-increasing on (σ1, σ2]. Applying, the operator Dϑ,q,β

σ+
1

on (3.1),
yields

D
ϑ,q,β

σ+
1

(
Φ(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

)
= D

ϑ,q,β

σ+
1

( 1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν)

)
dν

)
= F

(
ζ,Φ(ζ)

)
.

This completes the proof. �

In our next result, we use the following assumption. For a given constant ~ > 0 , and let B(Φ0, ~) ={
Φ ∈ E : D̄0[Φ,Φ0] ≤ ~

}
.

Theorem 3.2. Let F ∈ C
(
[σ1, σ2] ×B(Φ0, ~),E

)
and suppose that the subsequent assumptions hold:

(i) there exists a positive constant MF such that D̄0[F (ζ, z1), 0̂] ≤ MF , for all (ζ, z1) ∈ [σ1, σ2] ×
B(Φ0, ~);
(ii) for every ζ ∈ [σ1, σ2] and every z1, ω ∈ B(Φ0, ~),

D̄0
[
F (ζ, z1),F (ζ, ω)

]
≤ g(ζ, D̄0[z1, ω]), (3.4)

where g(ζ, .) ∈ C
(
[σ1, σ2]×[0, β],R+

)
satisfies the assumption in Lemma 2.18 given that problem (2.15)

has only the solution φ(ζ) ≡ 0 on [σ1, σ2]. Then the subsequent successive approximations given by
Φ0(ζ) = Φ0 and for n = 1, 2, ...,

Φn(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

=
1

βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φn−1(ν)

)
dν,

converges consistently to a fixed point of problem (1.3) on certain interval [σ1,T ] for some T ∈
(σ1, σ2] given that the mapping ζ → Iϑ,β

σ+
1
F (ζ,Φn(ζ)) is d-increasing on [σ1,T ].
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Proof. Take σ1 < ζ∗ such that ζ∗ ≤
[βϑ~.Γ(1+ϑ)

M
+ σ1

] 1
ϑ , where M = max

{
Mg,MF

}
and put T :=

min{ζ∗, σ2}. Let S be a set of continuous fuzzy functions Φ such that ω(σ1) = Φ0 and ω(ζ) ∈ B(Φ0, ~)
for all ζ ∈ [σ1,T ]. Further, we suppose the sequence of continuous fuzzy function {Φn}∞n=0 given by
Φ0(ζ) = Φ0, ∀ζ ∈ [σ1,T ] and for n = 1, 2, ..,

Φn(ζ) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

=
1

βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φn−1(ν)

)
dν. (3.5)

Firstly, we show that Φn(ζ) ∈ C([σ1,T ],B(Φ0, ~)). For n ≥ 1 and for any ζ1, ζ2 ∈ [σ1,T ] with
ζ1 < ζ2, we have

D̄0

(
Φn(ζ1) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1,Φn(ζ2) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

)

≤
1

βϑΓ(ϑ)

ζ1∫
σ1

[
e
β−1
β (ζ1−ν)(ζ1 − ν)ϑ−1 − e

β−1
β (ζ2−ν)(ζ2 − ν)ϑ−1

]
D̄0

[
F

(
ν,Φn−1(ν)

)
, 0̂

]
dν

+
1

βϑΓ(ϑ)

ζ2∫
ζ1

e
β−1
β (ζ2−ν)(ζ2 − ν)ϑ−1D̄0

[
F

(
ν,Φn−1(ν)

)
, 0̂

]
dν.

Using the fact that |e
β−1
β ζ
| < 1, then, on the right-hand side from the last inequality, the subsequent

integral becomes 1
βϑΓ(1+ϑ) (ζ2 − ζ1)ϑ. Therefore, with the similar assumption as we did above, the first

integral reduces to 1
βϑΓ(1+ϑ)

[
(ζ1 − σ1)ϑ − (ζ2 − σ1)ϑ + (ζ2 − ζ1)ϑ

]
. Thus, we conclude

D̄0
[
Φn((ζ1),Φn(ζ2)

)]
≤

MF

βϑΓ(1 + ϑ)
[
(ζ1 − σ1)ϑ − (ζ2 − σ1)ϑ + 2(ζ2 − ζ1)ϑ

]
≤

2MF

βϑΓ(1 + ϑ)
(ζ2 − ζ1)ϑ.

In the limiting case as ζ1 → ζ2, then the last expression of the above inequality tends to 0, which
shows Φn is a continuous function on [σ1,T ] for all n ≥ 1.

Moreover, it follows that Φn ∈ B(Φ0, ~) for all n ≥ 0, ζ ∈ [σ1,T ] if and only if

Φn(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ) e
β−1
β (ζ−σ1)(ζ − σ1)γ−1 ∈ B(0, ~) for all ζ ∈ [σ1,T ] and for all n ≥ 0.

Also, if we assume that Φn−1(ζ) ∈ S for all ζ ∈ [σ1,T ], n ≥ 2, then
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D̄0

[
Φn(ζ) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1, 0̂

]
≤

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1D̄0

[
F

(
ν,Φn−1(ν)

)
, 0̂

]
dν

=
MF (ζ − σ1)ϑ

βϑΓ(1 + ϑ)
≤ ~.

It follows that Φn(ζ) ∈ S, ∀ ∈ [σ1,T ].
Henceforth, by mathematical induction, we have Φn(ζ) ∈ S, ∀ζ ∈ [σ1,T ] and ∀ n ≥ 1.
Further, we show that the sequence Φn(ζ) converges uniformly to a continuous function

Φ ∈ C([σ1,T ],B(Φ0, ~)). By assertion (ii) and mathematical induction, we have for ζ ∈ [σ1,T ]

D̄0

[
Φn+1(ζ) 	gH

m∑
j=1

R jΦ
n(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1,Φn(ζ) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

]
≤ φn(ζ), n = 0, 1, 2, ..., (3.6)

where φn(ζ) is defined as follows:

φn(ζ) =
1

βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1

g
(
ν, φn−1(ν)

)
dν, (3.7)

where we have used the fact that |e
β−1
β ζ
| < 1 and φ0(ζ) =

M(ζ−σ1)ϑ

βϑΓ(ϑ+1) . Thus, we have, for ζ ∈ [σ1,T ] and
for n = 0, 1, 2, ...,

D̄0
[
D

ϑ,q

σ+
1
Φn+1(ζ),Dϑ,q

σ+
1
Φn(ζ)

]
≤ D̄0

[
F (ζ,Φn(ζ)),F (ζ,Φn−1(ζ))

]
≤ g

(
ζ, D̄0

[
Φn(ζ),Φn−1(ζ)

])
≤ g

(
ζ, φn−1(ζ)

)
.

Let n ≤ m and ζ ∈ [σ1,T ], then one obtains

D
ϑ,q

σ+
1
D̄0

[
Φn(ζ),Φm(ζ)

]
≤ D̄0

[
D

ϑ,q

σ+
1
Φn(ζ),Dϑ,q

σ+
1
Φm(ζ)

]
≤ D̄0

[
D

ϑ,q

σ+
1
Φn(ζ),Dϑ,q

σ+
1
Φn+1(ζ)

]
+ D̄0

[
D

ϑ,q

σ+
1
Φn+1(ζ),Dϑ,q

σ+
1
Φm+1(ζ)

]
+D̄0

[
D

ϑ,q

σ+
1
Φm+1(ζ),Dϑ,q

σ+
1
Φm(ζ)

]
≤ 2g(ζ, φn−1(ζ)) + g

(
ζ, D̄0[Φn(ζ),Φm(ζ)]

)
.

From (ii),we observe that the solution φ(ζ) = 0 is a unique solution of problem (2.15) and g(., φn−1) :
[σ1,T ]→ [0,Mg] uniformly converges to 0, for every ε > 0, there exists a natural number n0 such that

D
ϑ,q

σ+
1
D̄0

[
Φn(ζ),Φm(ζ)

]
≤ g

(
ζ, D̄0[Φn(ζ),Φm(ζ)]

)
+ ε, f or n0 ≤ n ≤ m.
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Using the fact that D̄0
[
Φn(σ1),Φm(σ1)

]
= 0 < ε and by using Lemma 2.17, we have for ζ ∈ [σ1,T ]

D̄0
[
Φn(ζ),Φm(ζ)

]
≤ δε(ζ), n0 ≤ n ≤ m, (3.8)

where δε(ζ) is the maximal solution to the following IVP :(
D

ϑ,q

σ+
1
δε

)
(ζ) = g(ζ, δε(ζ)) + ε,

(
I

1−γ
σ+

1
δε

)
= ε.

Taking into account Lemma 2.17, we deduce that [φε(., ω)] converges uniformly to the maximal
solution φ(ζ) ≡ 0 of (2.15) on [σ1,T ] as ε → 0.

Therefore, in view of (3.8), we can obtain n0 ∈ N is large enough such that, for n0 < n,m,

sup
ζ∈[σ1,T ]

D̄0

[
Φn(ζ) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1,Φm(ζ) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

]
≤ ε. (3.9)

Since (E, D̄0) is a complete metric space and (3.9) holds, thus
{
Φn(ζ)} converges uniformly to Φ ∈

C([σ1, σ2],B(Φ0, ~)). Hence

Φ(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1 = lim

n→∞

(
Φn(ζ) 	gH

m∑
j=1

R jΦ
n−1(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

)
=

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φn−1(ν)

)
dν. (3.10)

Because of Lemma 3.1, the function Φ(ζ) is the solution to (1.3) on [σ1,T ].
In order to find the unique solution, assume that Ψ : [σ1,T ] → E is another solution of

problem (1.3) on [σ1,T ]. We denote κ(ζ) = D̄0[Φ(ζ),Ψ(ζ)]. Then κ(σ1) = 0 and for every
ζ ∈ [σ1,T ], we have

D
ϑ,q,β

σ+
1
κ(ζ) ≤ D̄0

[
F (ζ,Φ(ζ)),F (ζ,Ψ(ζ))

]
≤ g(ζ, κ(ζ)). (3.11)

Further, using the comaprison Lemma 2.17, we get κ(ζ) ≤ m(ζ), where m is a maximal solution
of the IVP Dϑ,q,β

σ+
1

m(ζ) ≤ g(ζ,m(ζ)),
(
I

1−γ
σ+

1
m
)
(σ1) = 0. By asseration (ii), we have m(ζ) = 0 and hence

Φ(ζ) = Ψ(ζ), ∀ ∈ [σ1,T ].
This completes the proof. �

Corollary 1. For β ∈ (0, 1] and let C([σ1, σ2],E). Assume that there exist positive constants L,MF

such that, for every z1, ω ∈ E,

D̄0
[
F (ζ, z1),F (ζ, ω)

]
≤ LD̄0[z1, ω], D̄0

[
F (ζ, z1), 0̂

]
≤ MF .
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Then the subsequent successive approximations given by Φ0(ζ) = Φ0 and for n = 1, 2, ..

Φn(ζ) 	gH Φ0 =
1

βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φn−1(ν)

)
dν,

converges consistently to a fixed point of problem (1.3) on [σ1,T ] for certain T ∈ (σ1, σ2] given that
the mapping ζ → Iϑ,β

σ+
1
F (ζ,Φn(ζ)) is d-increasing on [σ1,T ].

Example 3.3. For β ∈ (0, 1], γ = ϑ + q(1 − ϑ), ϑ ∈ (0, 1), q ∈ [0, 1] and δ ∈ R. Assume that the linear
fuzzy GPF -FDE under Hilfer-GPF -derivative and moreover, the subsequent assumptions hold:

(
D

ϑ,q

σ+
1
Φ
)
(ζ) = δΦ(ζ) + η(ζ), ζ ∈ (σ1, σ2],(

I
1−γ,β
σ+

1
Φ
)
(σ1) = Φ0 =

m∑
j=1
R jΦ(ζ j), γ = ϑ + q(1 − ϑ).

(3.12)

Applying Lemma 3.1, we have

Φ(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

= δ
1

βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1Φ(ν)dν +

1
βϑΓ(ϑ)

ζ∫
σ1

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1η(ν)dν, ζ ∈ [σ1, σ2]

= δ
(
I
ϑ,β

σ+
1
Φ
)
(ζ) +

(
I
ϑ,β

σ+
1
η
)
(ζ),

where η ∈ C((σ1, σ2],E) and furthermore, assuming the diameter on the right part of the
aforementioned equation is increasing. Observing F (ζ,Φ) := δΦ + η fulfill the suppositions of
Corollary 1.

In order to find the analytical view of (3.12), we utilized the technique of successive approximation.
Putting Φ0(ζ) = Φ0 and

Φn(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

= δ
(
I
ϑ,β

σ+
1
Φn−1)(ζ) +

(
I
ϑ,β

σ+
1
η
)
(ζ), n = 1, 2, ...

Letting n = 1, δ > 0, assuming there is a d-increasing mapping Φ, then we have

Φ1(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

= δ

m∑
j=1

R jΦ(ζ j)
(ζ − σ1)ϑ

βϑΓ(ϑ + 1)
+

(
I
ϑ,β

σ+
1
η
)
(ζ).
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In contrast, if we consider δ < 0 and Φ is d-decreasing, then we have

(−1)
( m∑

j=1
R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1 	gH Φ1(ζ)

)
= δ

m∑
j=1

R jΦ(ζ j)
(ζ − σ1)ϑ

βϑΓ(ϑ + 1)
+

(
I
ϑ,β

σ+
1
η
)
(ζ).

For n = 2, we have

Φ2(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

=

m∑
j=1

R jΦ(ζ j)
[
δ(ζ − σ1)ϑ

βϑΓ(ϑ + 1)
+
δ2(ζ − σ1)2ϑ

β2ϑΓ(2ϑ + 1)

]
+

(
I
ϑ,β

σ+
1
η
)
(ζ) +

(
I

2ϑ,β
σ+

1
η
)
(ζ),

if δ > 0 and there is d-increasing mapping Φ, we have

(−1)
( m∑

j=1
R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1 	gH Φ2(ζ)

)
=

m∑
j=1

R jΦ(ζ j)
[
δ(ζ − σ1)ϑ

βϑΓ(ϑ + 1)
+
δ2(ζ − σ1)2ϑ

β2ϑΓ(2ϑ + 1)

]
+

(
I
ϑ,β

σ+
1
η
)
(ζ) +

(
I

2ϑ,β
σ+

1
η
)
(ζ),

and there is δ < 0, and d-increasing mapping Φ. So, continuing inductively and in the limiting case,
when n→ ∞, we attain the solution

Φ(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

=

m∑
j=1

R jΦ(ζ j)
∞∑

l=1

δl(ζ − σ1)lϑ

βlϑΓ(lϑ + 1)
+

ζ∫
σ1

∞∑
l=1

δl−1(ζ − σ1)lϑ − 1
βlϑ−1Γ(lϑ)

η(ν)dν

=

m∑
j=1

R jΦ(ζ j)
∞∑

l=1

δl(ζ − σ1)lϑ

βlϑΓ(lϑ + 1)
+

ζ∫
σ1

∞∑
l=0

δl(ζ − σ1)lϑ+(ϑ−1)

βlϑ + (ϑ − 1)Γ(lϑ + ϑ)
η(ν)dν

=

m∑
j=1

R jΦ(ζ j)
∞∑

l=1

δl(ζ − σ1)lϑ

βlϑΓ(lϑ + 1)
+

1
βϑ−1

ζ∫
σ1

(ζ − σ1)ϑ−1
∞∑

l=0

δl(ζ − σ1)lϑ

βlϑΓ(lϑ + ϑ)
η(ν)dν,

for every δ > 0 and Φ is d-increasing, or δ < 0 and Φ is d-decreasing, accordingly. Therefore, by means

of Mittag-Leffler function Eϑ,q(Φ) =
∞∑

l=1

Φκ

Γ(lϑ+q) , ϑ, q > 0, the solution of problem (3.12) is expressed by
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Φ(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

=

m∑
j=1

R jΦ(ζ j)Eϑ,1
(
δ(ζ − σ1)ϑ

)
+

1
βϑ−1

ζ∫
σ1

(ζ − σ1)ϑ−1Eϑ,ϑ

(
δ(ζ − σ1)ϑ

)
η(ν)dν,

for every of δ > 0 and Φ is d-increasing. Alternately, if δ < 0 and Φ is d-decreasing, then we get the
solution of problem (3.12)

Φ(ζ) 	gH

m∑
j=1

R jΦ(ζ j)

βγΓ(γ)
e
β−1
β (ζ−σ1)(ζ − σ1)γ−1

=

m∑
j=1

R jΦ(ζ j)Eϑ,1
(
δ(ζ − σ1)ϑ

)
	 (−1)

1
βϑ−1

ζ∫
σ1

(ζ − σ1)ϑ−1Eϑ,ϑ

(
δ(ζ − σ1)ϑ

)
η(ν)dν.

4. Fuzzy generalized proportional FVFIDE

Consider IVP 
(
gHD

ϑ,β

σ+
1
Φ
)
(ζ) = F

(
ζ,Φ(ζ),H1Φ(ζ),H2Φ(ζ)

)
, ζ ∈ [ζ0,T ]

Φ(ζ0) = Φ0 ∈ E,
(4.1)

where β ∈ (0, 1] and ϑ ∈ (0, 1) is a real number and the operation gHDϑ
σ+

1
denote the GPF derivative of

order ϑ, F : [ζ0,T ] × E × E × E → E is continuous in ζ which fulfills certain supposition that will be
determined later, and

H1Φ(ζ) =

ζ∫
ζ0

H1(ζ, s)Φ(s)ds, H2Φ(ζ) =

T∫
ζ0

H2(ζ, s)Φ(s)ds, (4.2)

withH1,H2 : [ζ0,T ] × [ζ0,T ]→ R such that

H∗1 = sup
ζ∈[ζ0,T ]

ζ∫
ζ0

|H1(ζ, s)|ds, H∗2 = sup
ζ∈[ζ0,T ]

T∫
ζ0

|H2(ζ, s)|ds.

Now, we investigate the existence and uniqueness of the solution of problem (4.1). To establish the
main consequences, we require the following necessary results.

Theorem 4.1. Let F : [σ1, σ2]→ E be a fuzzy-valued function on [σ1, σ2]. Then
(i) F is [(i) − gH]-differentiable at c ∈ [σ1, σ2] iff F is GPF[(i) − gH]-differentiable at c.
(ii) F is [(ii) − gH]-differentiable at c ∈ [σ1, σ2] iff F is GPF[(ii) − gH]-differentiable at c.
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Proof. In view of Definition 2.18 and Definition 2.11, the proof is straightforward. �

Lemma 4.2. ( [44]) Let there be a fuzzy valued mapping F : [ζ0,T ] → E such that F ′
gH ∈ E ∩

χr
c(σ1, σ2), then

I
ϑ,β
ζ0

(
gHD

ϑ,β

σ+
1
F

)
(ζ) = F (ζ) 	gH F (ζ0). (4.3)

Lemma 4.3. The IVP (4.1) is analogous to subsequent equation

Φ(ζ) = Φ0 +
1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν, (4.4)

if Φ(ζ) be GPF[(i) − gH]-differentiable,

Φ(ζ) = Φ0 	
−1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν, (4.5)

if Φ(ζ) be GPF[(ii) − gH]-differentiable, and

Φ(ζ) =


Φ0 + 1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν, ζ ∈ [σ1, σ3],

Φ0 	
−1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν, ζ ∈ [σ3, σ2],

(4.6)

if there exists a point σ3 ∈ (σ1, σ2) such that Φ(ζ) is GPF[(i) − gH]-differentiable on [σ1, σ3] and
GPF[(ii) − gH]-differentiable on [σ3, σ2] and F (σ3,Φ(σ3,Φ(σ3),H1Φ(σ3)) ∈ R.

Proof. By means of the integral operator (2.6) on both sides of (4.1), yields

I
ϑ,β
ζ0

(
gHD

ϑ,β

σ+
1
Φ(ζ)

)
= I

ϑ,β
ζ0

(
F (ζ,Φ(ζ),H1Φ(ζ),H2Φ(ζ)

)
. (4.7)

Utilizing Lemma 4.2 and Definition 2.6, we gat

Φ(ζ) 	gH Φ0 =
1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν. (4.8)

In view of Defnition 2.17 and Theorem 4.1, if Φ(ζ) be GPF[(i) − gH]-differentiable,

Φ(ζ) = Φ0 +
1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν (4.9)

and if Φ(ζ) be GPF[(ii) − gH]-differentiable

Φ(ζ) = Φ0 	
−1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν. (4.10)
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In addition, when we have a switchpoint σ3 ∈ (σ1, σ2) of type (I) the GPF[gH]-differentiability
changes from type (I) to type (II) at ζ = σ3. Then by (4.9) and (4.10) and Definition 2.12, The proof
is easy to comprehend. �

Also, we proceed with the following assumptions:
(A1). F : [ζ0,T ] × E × E × E → E is continuous and there exist positive real functions L1,L2,L3

such that

D̄0

(
F (ζ,Φ(ζ),H1Φ(ζ),H2Φ(ζ)),F (ζ,Ψ(ζ),H1Ψ(ζ),H2Ψ(ζ))

)
≤ L1(ζ)D̄0(Φ,Ψ) +L2(ζ)D̄0(H1Φ,H1Ψ) +L3(ζ)D̄0(H2Φ,H2Ψ).

(A2). There exist a number ε such that δ ≤ ε < 1, ζ ∈ [ζ0,T ]

δ = I
ϑ,β
ζ0
P(1 +H∗1 +H∗2 )

and

I
ϑ,β
ζ0
P = sup

ζ∈[0,T ]

{
I
ϑ,β
ζ0
L1,I

ϑ,β
ζ0
L2,I

ϑ,β
ζ0
L3

}
.

Theorem 4.4. Let F : [ζ0,T ] × E × E × E → E be a bounded continuous functions and holds (A1).
Then the IVP (4.1) has a unique solution which is GPF[(i) − gH]-differentiable on [ζ0,T ], given that
δ < 1, where δ is given in (A2).

Proof. Assuming Φ(ζ) is GPF[(i) − gH]-differentiability and Φ0 ∈ E be fixed. Propose a mapping
F : C([ζ0,T ],E)→ C([ζ0,T ],E) by

(
FΦ

)
(ζ) = Φ0 +

1
βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν, f or all ζ ∈ [ζ0,T ]. (4.11)

Next we prove that F is contraction. For Φ,Ψ ∈ C([ζ0,T ],E) by considering of (A1) and by distance
properties (2.3), one has

D̄0
(
FΦ(ζ),FΨ(ζ)

)
≤

1
βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣D̄0

(
F (ζ,Φ(ζ),H1Φ(ζ),H2Φ(ζ)),F (ζ,Ψ(ζ),H1Ψ(ζ),H2Ψ(ζ))

)
dν

≤
1

βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣[L1D̄0(Φ,Ψ) +L2D̄0(H1Φ,H1Ψ) +L3D̄0(H2Φ,H2Ψ)

]
dν

≤
1

βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L1D̄0(Φ,Ψ)dν +

1
βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L2D̄0(H1Φ,H1Ψ)dν

+
1

βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L3D̄0(H2Φ,H2Ψ)dν. (4.12)

Now, we find that
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1
βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L2D̄0(H1Φ,H1Ψ)dν

≤
1

βϑΓ(q)

ζ∫
ζ0

(∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L2D̄0(Φ,Ψ)

ν∫
ζ0

|H1(ν, x)|dx
)
dν

≤ I
ϑ,β
ζ0
L2H

∗
1 .D̄0(Φ,Ψ). (4.13)

Analogously,
1

βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L3D̄0(H2Φ,H2Ψ)dν ≤ Iϑ,βζ0

L3H
∗
1 .D̄0(Φ,Ψ),

1
βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L1D̄0(Φ,Ψ)dν = I

ϑ,β
ζ0
L1D̄0(Φ,Ψ). (4.14)

Then we have

D̄0
(
FΦ,FΨ

)
≤ I

ϑ,β
ζ0
L1D̄0(Φ,Ψ) + I

ϑ,β
ζ0
L2H

∗
1 .D̄0(Φ,Ψ) + I

ϑ,β
ζ0
L3H

∗
2 .D̄0(Φ,Ψ)

≤ I
ϑ,β
ζ0
P(1 +H∗1 +H∗2 )D̄0(Φ,Ψ)

< D̄0(Φ,Ψ). (4.15)

Consequently, F is a contraction mapping on C([ζ0,T ],E) having a fixed point FΦ(ζ) = Φ(ζ).
Henceforth, the IVP (4.1) has unique solution. �

Theorem 4.5. For β ∈ (0, 1] and let F : [ζ0,T ] × E × E × E → E be a bounded continuous functions
and satisfies (A1). Let the sequence Φn : [ζ0,T ]→ E is given by

Φn+1(ζ) = Φ0 	
−1

βϑΓ(ϑ)

ζ∫
ζ0

(ζ − ν)ϑ−1F
(
ν,Φn(ν),H1Φn(ν),H2Φn(ν)

)
dν,

Φ0(ζ) = Φ0, (4.16)

is described for any n ∈ N. Then the sequence {Φn} converges to fixed point of problem (4.1) which is
GPF[(ii) − gH]-differentiable on [ζ0,T ], given that δ < 1, where δ is defined in (A2).

Proof. We now prove that the sequence {Φn}, given in (4.16), is a Cauchy sequence in C([ζ0,T ],E). To
do just that, we’ll require

D̄0(Φ1,Φ0) = D̄0

(
Φ0 	

−1
βϑΓ(ϑ)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ0(ν),H1Φ0(ν),H2Φ0(ν)

)
dν,Φ0

)

≤
1

βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣D̄0

(
F

(
ν,Φ0(ν),H1Φ0(ν),H2Φ0(ν)

)
, 0̂

)
dν

≤ I
ϑ,β
ζ0
M, (4.17)
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whereM = supζ∈[ζ0,T ] D̄0
(
F (ζ,Φ,H1Φ,H2Φ), 0̂

)
.

Since F is Lipschitz continuous, In view of Definition (2.3), we show that

D̄0(Φn+1,Φn)

≤
1

βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣D̄0

(
F

(
ν,Φn(ν),H1Φn(ν),H2Φn(ν)

)
,F

(
ν,Φn−1(ν),H1Φn−1(ν),H2Φn−1(ν)

))
dν

≤
1

βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L1.D̄0

(
Φn,Φn−1

)
dν

+
1

βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L2.D̄0

(
H1Φn,H1Φn−1

)
dν

+
1

βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L3.D̄0

(
H2Φn,H2Φn−1

)
dν

≤ I
ϑ,β
ζ0
P(1 +H∗1 +H∗2 )D̄0(Φn,Φn−1) ≤ δD̄0(Φn,Φn−1) ≤ δnD̄0(Φ1,Φ0) ≤ δnI

ϑ,β
ζ0
M. (4.18)

Since δ < 1 promises that the sequence {Φn} is a Cauchy sequence in C([ζ0,T ],E). Consequently,
there exist Φ ∈ C([ζ0,T ],E) such that {Φn} converges to Φ. Thus, we need to illustrate that Φ is a
solution of the problem (4.1).

D̄0

(
Φ(ζ) +

−1
βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν,Φ0

)

= D̄0

(
Φ(ζ) +

−1
βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν,Φn+1

+
−1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φn(ν),H1Φn(ν),H2Φn(ν)

)
dν

)

≤ D̄0
(
Φ(ζ),Φn+1

)
+

1
βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L1.D̄0

(
Φ(ν),Φn

)
dν

+
1

βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L2.D̄0

(
H1Φ(ν),H1Φn

)
dν

+
1

βϑΓ(ϑ)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣L3.D̄0

(
H2Φ(ν),H2Φn

)
dν

≤ D̄0
(
Φ(ζ),Φn+1

)
+ I

ϑ,β
ζ0
P(1 +H∗1 +H∗2 )D̄0(Φ(ζ),Φn). (4.19)

In the limiting case, when n→ ∞. Thus we have
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Φ(ζ) +
−1

βϑΓ(q)

ζ∫
ζ0

e
β−1
β (ζ−ν)(ζ − ν)ϑ−1F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν)

)
dν = Φ0. (4.20)

By Lemma 4.3, we prove that Φ is a solution of the problem (4.1). In order to prove the uniqness
of Φ(ζ), let Ψ(ζ) be another solution of problem (4.1) on [ζ0,T ]. Utilizing Lemma 4.3, gets

D̄0(Φ,Ψ) ≤
1

βϑΓ(q)

ζ∫
ζ0

∣∣∣e β−1
β (ζ−ν)

∣∣∣∣∣∣(ζ − ν)ϑ−1
∣∣∣D̄0

(
F

(
ν,Φ(ν),H1Φ(ν),H2Φ(ν),F

(
ν,Ψ(ν),H1Ψ(ν),H2Ψ(ν)

))
dν.

Analogously, by employing the distance properties D̄0 and Lipschitiz continuity ofF , consequently,
we deduce that (1 − δ)D̄0(Φ,Ψ) ≤ 0, since δ < 1, we have Φ(ζ) = Ψ(ζ) for all ζ ∈ [ζ0,T ]. Hence, the
proof is completed. �

Example 4.6. Suppose the Cauchy problem by means of differential operator (2.4)

Dϑ,β
z Φ(z) = F (z,Φ(z)), (4.21)

where F (z,Φ(z)) is analytic in Φ and Φ(z) is analytic in the unit disk. Therefore, F can be written as

F (z,Φ) = ϕΦ(z).

ConsiderZ = zϑ. Then the solution can be formulated as follows:

Φ(Z) =

∞∑
j=0

Φ jZ
j, (4.22)

where Φ j are constants. Putting (4.22) in (4.21), yields

∂

∂z

∞∑
j=0

Υϑ,β, jΦ jZ
j − ϕ

∞∑
j=0

Φ jZ
j = 0.

Since

Υϑ,β, j =
βϑΓ

( jϑ
β

+ 1
)

jΓ
( jϑ
β

+ 1 − ϑ
) ,

then the simple computations gives the expression

βϑΓ
( jϑ
β

+ 1
)

Γ
( jϑ
β

+ 1 − ϑ
)Φ j − ϕΦ j−1 = 0.

Consequently, we get

Φ j =
( ϕ
βϑ

) j Γ
( ( j−1)ϑ

β
+ 1 − ϑ

)
Γ
( jϑ
β

+ 1 − ϑ
)

Γ
( ( j−1)ϑ

β
+ 1

)
Γ
( jϑ
β

+ 1
) .
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Therefore, we have the subsequent solution

Φ(Z) =

∞∑
j=0

( ϕ
βϑ

) j Γ
( ( j−1)ϑ

β
+ 1 − ϑ

)
Γ
( jϑ
β

+ 1 − ϑ
)

Γ
( ( j−1)ϑ

β
+ 1

)
Γ
( jϑ
β

+ 1
) Z j,

or equivalently

Φ(Z) =

∞∑
j=0

( ϕ
βϑ

) j Γ( j + 1)Γ
( ( j−1)ϑ

β
+ 1 − ϑ

)
Γ
( jϑ
β

+ 1 − ϑ
)

Γ
( ( j−1)ϑ

β
+ 1

)
Γ
( jϑ
β

+ 1
) Z j

j!
,

where ϕ is assumed to be arbitrary constant, we take

ϕ := βϑ.

Therefore, for appropriate ϑ, we have

Φ(Z) =

∞∑
j=0

( ϕ
βϑ

) j Γ( j + 1)Γ
( ( j−1)ϑ

β
+ 1 − ϑ

)
Γ
( jϑ
β

+ 1 − ϑ
)

Γ
( ( j−1)ϑ

β
+ 1

)
Γ
( jϑ
β

+ 1
) Z j

j!

= 3Ψ2


(1, 1),

(
1 − ϑ − ϑ

β
, ϑ
β

)
,
(
1 − ϑ, ϑ

β

)
;

Z(
1 − ϑ

β
, ϑ
β
,
)
,
(
1, ϑ

β

)
;


= 3Ψ2


(1, 1),

(
1 − ϑ − ϑ

β
, ϑ
β

)
,
(
1 − ϑ, ϑ

β

)
;

zϑβ(
1 − ϑ

β
, ϑ
β
,
)
,
(
1, ϑ

β

)
;

 ,
where |z| < 1.

5. Conclusions

The present investigation deal with an IVP for GPF fuzzy FDEs and we employ a new scheme of
successive approximations under generalized Lipschitz condition to obtain the existence and
uniqueness consequences of the solution to the specified problem. Furthermore, another method to
discover exact solutions of GPF fuzzy FDEs by utilizing the solutions of integer order differential
equations is considered. Additionally, the existence consequences for FVFIDEs under GPF -HD
with fuzzy initial conditions are proposed. Also, the uniqueness of the so-called integrodifferential
equations is verified. Meanwhile, we derived the equivalent integral forms of the original fuzzy
FVFIDEs whichis utilized to examine the convergence of these arrangements of conditions. Two
examples enlightened the efficacy and preciseness of the fractional-order HD and the other one
presents the exact solution by means of the Fox-Wright function. For forthcoming mechanisms, we
will relate the numerical strategies for the estimated solution of nonlinear fuzzy FDEs.
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