Processing math: 26%
Research article

Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity

  • In this paper, we deal with the existence of nontrivial solutions for the following Kirchhoff-type equation M(R2N|u(x)u(y)|p|xy|N+spdxdy)(Δ)spu+V(x)|u|p2u=λf(x,u),inRN, where 0<s<1<p<, sp<N, λ>0 is a real parameter, (Δ)sp is the fractional p-Laplacian operator, V:RNRN is a potential function, M is a Kirchhoff function, the nonlinearity f:RN×RR is a continuous function and just super-linear in a neighborhood of u=0. By using an appropriate truncation argument and the mountain pass theorem, we prove the existence of nontrivial solutions for the above equation, provided that λ is sufficiently large. Our results extend and improve the previous ones in the literature.

    Citation: Liu Gao, Chunfang Chen, Jianhua Chen, Chuanxi Zhu. Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity[J]. AIMS Mathematics, 2021, 6(2): 1332-1347. doi: 10.3934/math.2021083

    Related Papers:

    [1] Xin Jin, Ruoli Tang, Tingzhe Pan, Xin Li, Zongyi Wang, Chao Jiang, Rui Zhang . Optimal operation of flexible IES based on energy hub and demand-side response. AIMS Energy, 2025, 13(3): 569-589. doi: 10.3934/energy.2025022
    [2] Badr Ouhammou, Fatima Zohra Gargab, Samir El idrissi kaitouni, Slimane Smouh, Rachid El mrabet, Mohammed Aggour, Abdelmajid Jamil, Tarik Kousksou . Energy saving potential diagnosis for Moroccan university campuses. AIMS Energy, 2023, 11(3): 576-611. doi: 10.3934/energy.2023030
    [3] Mohamed G Moh Almihat, MTE Kahn . Centralized control system for islanded minigrid. AIMS Energy, 2023, 11(4): 663-682. doi: 10.3934/energy.2023033
    [4] Panagiotis Fragkos . Analysing the systemic implications of energy efficiency and circular economy strategies in the decarbonisation context. AIMS Energy, 2022, 10(2): 191-218. doi: 10.3934/energy.2022011
    [5] Jin H. Jo, Jamie Cross, Zachary Rose, Evan Daebel, Andrew Verderber, David G. Loomis . Financing options and economic impact: distributed generation using solar photovoltaic systems in Normal, Illinois. AIMS Energy, 2016, 4(3): 504-516. doi: 10.3934/energy.2016.3.504
    [6] Tiansong Cui, Yanzhi Wang, Shahin Nazarian, Massoud Pedram . Profit maximization algorithms for utility companies in an oligopolistic energy market with dynamic prices and intelligent users. AIMS Energy, 2016, 4(1): 119-135. doi: 10.3934/energy.2016.1.119
    [7] Gustavo Henrique Romeu da Silva, Andreas Nascimento, Christoph Daniel Baum, Nazem Nascimento, Mauro Hugo Mathias, Mohd Amro . Renewable energy perspectives: Brazilian case study on green hydrogen production. AIMS Energy, 2025, 13(2): 449-470. doi: 10.3934/energy.2025017
    [8] Feng Tian . A wind power prediction model with meteorological time delay and power characteristic. AIMS Energy, 2025, 13(3): 517-539. doi: 10.3934/energy.2025020
    [9] Akash Talwariya, Pushpendra Singh, Mohan Lal Kolhe, Jalpa H. Jobanputra . Fuzzy logic controller and game theory based distributed energy resources allocation. AIMS Energy, 2020, 8(3): 474-492. doi: 10.3934/energy.2020.3.474
    [10] Jiashen Teh, Ching-Ming Lai, Yu-Huei Cheng . Composite reliability evaluation for transmission network planning. AIMS Energy, 2018, 6(1): 170-186. doi: 10.3934/energy.2018.1.170
  • In this paper, we deal with the existence of nontrivial solutions for the following Kirchhoff-type equation M(R2N|u(x)u(y)|p|xy|N+spdxdy)(Δ)spu+V(x)|u|p2u=λf(x,u),inRN, where 0<s<1<p<, sp<N, λ>0 is a real parameter, (Δ)sp is the fractional p-Laplacian operator, V:RNRN is a potential function, M is a Kirchhoff function, the nonlinearity f:RN×RR is a continuous function and just super-linear in a neighborhood of u=0. By using an appropriate truncation argument and the mountain pass theorem, we prove the existence of nontrivial solutions for the above equation, provided that λ is sufficiently large. Our results extend and improve the previous ones in the literature.


    A piezoelectric-type tensor is a third-order tensor, which plays an important role in physics [1,2,3,4,5,6] and engineering [7,8,9,10,11]. In particular, the largest C-eigenvalue of a piezoelectric tensor and its associated left and right C-eigenvectors play an important role in the piezoelectric effect and the converse piezoelectric effect in the solid crystal [12,13]. Moreover, in the process of manufacturing and developing micro/nano-electromechanical devices, the development of new multifunctional intelligent structures needs consideration piezoelectric effect [14,15]. In order to explore more information about piezoelectric-type tensors, Chen et al. [12] introduced piezoelectric-type tensors and their C-eigentriples.

    Definition 1.1. [12,Definition 2.1] Let A=(aijk)Rn×n×n be a third-order n-dimensional tensor. If the latter two indices of A are symmetric, i.e., aijk=aikj, where i,j,k[n]:={1,2,,n}, then A is called a piezoelectric-type tensor. When n=3, A is called a piezoelectric tensor.

    Definition 1.2. [12,Definition 2.2] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. If there is a real number λR, two vectors x:=(x1,x2,,xn)Rn{0} and y:=(y1,y2,,yn)Rn{0} such that

    {Ayy=λx,(1.1)xAy=λy,(1.2)xx=1,(1.3)yy=1,(1.4)

    where

    (Ayy)i:=j,k[n]aijkyjyk,(xAy)k:=i,j[n]aijkxiyj,

    then λ is called a C-eigenvalue of A, and x and y are its associated left and right C-eigenvectors, respectively. Then, (λ,x,y) is called a C-eigentriple of A and σ(A) is used to denote the spectrum of A, which is a set of all C-eigenvalues of A.

    Chen et al. provided the following results for the C-eigenvalues and C-eigenvectors of a piezoelectric-type tensor.

    Property 1.1. [12,Theorem 2.3] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.

    (a) The C-eigenvalues of A and their associated left and right C-eigenvectors always exist.

    (b) Let λ be a C-eigenvalue and (x,y) be its associated left and right C-eigenvectors. Then

    λ=xAyy:=i,j,k[n]aijkxiyjyk.

    Furthermore, (λ,x,y), (λ,x,y) and (λ,x,y) are also C-eigentriples of A.

    (c) Let λ be the largest C-eigenvalue of A. Then

    λ=max{xAyy:xx=1,yy=1}.

    As we all know, the largest C-eigenvalue of a piezoelectric-type tensor and its associated C-eigenvectors constitute the best rank-one piezoelectric-type approximation. In view of this, Liang and Yang [16,17] designed two methods to calculate the largest C-eigenvalue of a piezoelectric-type tensor. Later, Zhao and Luo [18] provided a method to calculate all C-eigentriples of a piezoelectric-type tensor by converting the C-eigenvalue problem to the Z-eigenvalue problem of tensors. Moreover, many researchers considered the C-eigenvalue localization problem and provided many C-eigenvalue localization sets [19,20,21,22,23,24]. For instance, Che et al. [25] presented the following Geršgorin-type C-eigenvalue localization set.

    Theorem 1.1. [25,Theorem 2.1] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Γ(A):=j[n]Γj(A),

    where

    Γj(A):={zR:|z|Rj(A)}andRj(A):=l,k[n]|alkj|.

    Definition 1.2 and Property 1.1 indicate that a C-eigenvalue λ is real and both λ and λ are C-eigenvalues, which implies that a C-eigenvalue localization set is always symmetric with respect to the origin. Therefore, the result of Theorem 1.1 is equivalent to σ(A)[ρΓ,ρΓ], where ρΓ=maxj[n]{Rj(A)}.

    The remainder of the paper is organized as follows. In Section 2, we construct a new C-eigenvalue localization set and prove that it is sharper than some existing sets. In Section 3, we provide a direct method to find all C-eigentriples when n=3. In Section 4, we reviewed the practical application of C-eigentriples of a piezoelectric-type tensor to the piezoelectric effect and converse piezoelectric effect. In Section 5, we verify the effectiveness of obtained results by numerical examples. In Section 6, we give a summary of this paper.

    In this section, we provide a new C-eigenvalue localization set and prove that it is sharper than the set in Theorem 1.1. Before that, the following lemma is needed.

    Lemma 2.1. [26,pp. 10, Cauchy-Schwarz inequality] Let x=(x1,x2,,xn)Rn and y=(y1,y2,,yn)Rn. Then

    (i[n]xiyi)2i[n]x2ii[n]y2i.

    Theorem 2.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Ω(A):=(i[n]ˆΩi(A))(i,j[n],ij(˜Ωi,j(A)Ki(A))),

    where

    ˆΩi(A):={zR:|z|¯rii(A)},˜Ωi,j(A):={zR:(|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A)},Ki(A):={zR:|z|ri(A)},

    and

    ¯rij(A):=l[n]a2lij,˜rij(A):=l[n](k[n],ki|alkj|)2,ri(A):=l[n](k[n]|alki|)2,i,j[n].

    Proof. Let (λ,x,y) be a C-eigentriple of A. Let |yt||ys|maxk[n],kt,ks{|yk|}. Then 0|yt|1. From (1.2), we have

    λyt=l,k[n]alktxlyk=l[n]alttxlyt+l,k[n],ktalktxlyk.

    Taking the modulus in above equation and using the triangle inequality and Lemma 2.1, we have

    |λ||yt|l,k[n]|alkt||xl||yt|=|yt|l[n](|xl|k[n]|alkt|)|yt|l[n]|xl|2l[n](k[n]|alkt|)2=|yt|l[n](k[n]|alkt|)2,

    i.e.,

    |λ|l[n](k[n]|alkt|)2=rt(A),

    which implies that λKt(A), and

    |λ||yt|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||yk|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||ys|=|yt|l[n]|altt||xl|+|ys|l[n](|xl|k[n],kt|alkt|)|yt|l[n]a2lttl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alkt|)2=|yt|l[n]a2ltt+|ys|l[n](k[n],kt|alkt|)2=¯rtt(A)|yt|+˜rtt(A)|ys|,

    i.e.,

    (|λ|¯rtt(A))|yt|˜rtt(A)|ys|. (2.1)

    If |ys|=0 in (2.1), we have |λ|¯rtt(A), which implies that λˆΩt(A)Ω(A).

    If |ys|>0 in (2.1), then |λ|¯rtt(A)+˜rtt(A)rt(A), which implies that λKt(A). Now, suppose that λˆΩt(A), i.e., |λ|>¯rtt(A). The s-th equation of (1.2) is

    λys=l,k[n]alksxlyk=l[n]altsxlyt+l,k[n],ktalksxlyk,

    which implies that

    |λ||ys|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||yk|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||ys|=|yt|l[n]|alts||xl|+|ys|l[n](|xl|k[n],kt|alks|)|yt|l[n]a2ltsl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alks|)2=|yt|l[n]a2lts+|ys|l[n](k[n],kt|alks|)2=¯rts(A)|yt|+˜rts(A)|ys|,

    i.e.,

    (|λ|˜rts(A))|ys|¯rts(A)|yt|. (2.2)

    By multiplying (2.1) and (2.2) and eliminating |ys||yt|>0, we have

    (|λ|¯rtt(A))(|λ|˜rts(A))˜rtt(A)¯rts(A),

    which implies that λ(˜Ωt,s(A)Kt(A))Ω(A), and consequently, σ(A)Ω(A) by the arbitrariness of λ.

    Next, we discuss the relationship between the set Ω(A) in Theorem 2.1 and the set Γ(A) in Theorem 1.1.

    Theorem 2.2. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    Ω(A)Γ(A).

    Proof. Let zΩ(A). By Theorem 2.1, there exists i,j[n] such that zˆΩi(A) or z(˜Ωi,j(A)Ki(A)).

    Case Ⅰ. If zˆΩi(A), then

    |z|¯rii(A)Ri(A),

    which implies that zΓ(A).

    Case Ⅱ. If z(˜Ωi,j(A)Ki(A)), then z˜Ωi,j(A) and zKi(A). If z˜Ωi,j(A), then

    (|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A).

    If ˜rii(A)¯rij(A)=0, then

    |z|¯rii(A)Ri(A)or|z|˜rij(A)Rj(A),

    which implies that zΓ(A).

    If ˜rii(A)¯rij(A)>0, then

    |z|¯rii(A)˜rii(A)|z|˜rij(A)¯rij(A)1.

    Therefore,

    |z|¯rii(A)˜rii(A)1or|z|˜rij(A)¯rij(A)1,

    i.e.,

    |z|¯rii(A)+˜rii(A)Ri(A)or|z|˜rij(A)+¯rij(A)Rj(A),

    and consequently zΓ(A).

    When zKi(A), we have

    |z|ri(A)Ri(A),

    then zΓ(A). Hence, Ω(A)Γ(A).

    Similarly, we can write the set Ω(A) as [ρΩ,ρΩ], where

    ρΩ:=max{maxi[n]{¯rii(A)},maxi,j[n],ijmin{12νi,j(A),ri(A)}}, (2.3)

    and

    νi,j(A):=˜rij(A)+¯rii(A)+(˜rij(A)¯rii(A))2+4˜rii(A)¯rij(A).

    Theorem 2.2 indicates that ρΩρΓ and [ρΩ,ρΩ][ρΓ,ρΓ].

    By the idea to find all M-eigenpairs of a fourth-order tensor in Theorem 7 of [27], we in this section present a direct method to find all C-eigenpair when n=3.

    Theorem 3.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.Then all C-eigentriples are given as follows:

    (a) If a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) (λ,x,y) is a C-eigentriple of A, where

    λ=a111x1+a211x2+a311x3,

    and

    x=(x1,x2,x3),y=(±1,0,0),

    x1, x2 and x3 are the real roots of the following equations:

    {a211x1a111x2=0,(3.1)a311x1a111x3=0,(3.2)a112x1+a212x2+a312x3=0,a113x1+a213x2+a313x3=0,x21+x22+x23=1.

    (c) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3,

    and

    x=(1,0,0),y=(y1,y2,y3),

    y1, y2 and y3 are the real roots of the following equations:

    {a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112y21+(a122a111)y1y2+a132y1y3a121y22a131y2y3=0,(3.3)a113y21+(a133a111)y1y3+a123y1y2a121y2y3a131y23=0,(3.4)y21+y22+y23=1.

    (d) (λ,x,y) is a C-eigentriple of A, where

    λ=a112x1t+a122x1+a222x2+a212x2t+a322x3+a312x3t,

    and

    x=(x1,x2,x3),y=±(t,1,0)t2+1,

    x1, x2 and x3 and t are the real roots of the following equations:

    {a222x1+a211x1t2+2a221x1ta111x2t2a122x22a112tx2=0,(3.5)a311t2x1+a322x1+2a321x1ta111x3t2a122x32a112x3t=0,(3.6)a112x1t2+(a122a111)x1t+(a222a211)x2t+(a322a311)x3t+a212x2t2+a312x3t2a321x3a221x2a121x1=0,(3.7)a113x1t+a123x1+a223x2+a213x2t+a313x3t+a323x3=0,x21+x22+x23=1.

    (e) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=t2+1(a222y22+a211y22+a233y23+2a221y1y2+2a232y2y3+2a231y1y3), (3.8)

    and

    x=(t,1,0)t2+1,y=(y1,y2,y3),

    y1, y2, y3 and t are the real roots of the following equations:

    {a222y22t+a211y21t+a233y23t+2a221y2y1t+2a232y3y2t+2a231y3y1ta111y21a122y22a133y232a112y1y22a113y1y32a123y2y3=0,(3.9)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112ty21+(a122a111)ty1y2+a132ty1y3+(a222a211)y2y1+a212y21+a232y1y3a121ty22a131y2ty3a221y22a231y2y3=0,(3.10)a113ty21+(a133a111)ty1y3+a123ty1y2+a223y1y2+a213y21+(a233a211)y1y3a121ty2y3a131ty23a221y2y3a231y23=0,(3.11)y21+y22+y23=1.

    (f) (λ,x,y) is a C-eigentriple of A, where

    λ=±(a113u1v1+a123u1v2+a133u1+a213u2v1+a223u2v2+a233u2+a313v1+a323v2+a333)/u21+u22+1, (3.12)

    and

    x=±(u1,u2,1)u21+u22+1,y=±(v1,v2,1)v21+v22+1, (3.13)

    u1, u2, v1 and v2 are the real roots of the following equations:

    {a222u1v22+a211v21u1+a233u1+2a221v1u1v2+2a232u1v2+2a231v1u1a111u2v21a122u2v22a133u22a112u2v1v22a113u2v12a123u2v2=0,(3.14)a333u1+a311u1v21+a322u1v22+2a331u1v1+2a323u1v2+2a321u1v1v2a111v21a122v22a1332a112v1v22a113v12a123v2=0,(3.15)a112u1v21+(a122a111)u1v1v2+a132v1u1+(a222a211)u2v1v2+a212u2v21+a232v1u2+a332v1+(a322a311)v1v2+a312v21a121u1v22a131u1v2a221u2v22a231v2u2a331v2a321v22=0,(3.16)a113u1v21+(a133a111)u1v1+a123v1u1v2+a223v1u2v2+a323v1v2+(a233a211)u2v1+a213u2v21+(a333a311)v1+a313v21a121u1v2a131u1a221u2v2a231u2a331a321v2=0.(3.17)

    Proof. When n=3, the specific form of (1.1)–(1.4) is

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λx1,(3.18)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,(3.19)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=λx3,(3.20)a111x1y1+a121x1y2+a131x1y3+a221x2y2+a211x2y1+a231x2y3+a331x3y3+a311x3y1+a321x3y2=λy1,(3.21)a112x1y1+a122x1y2+a132x1y3+a222x2y2+a212x2y1+a232x2y3+a332x3y3+a322x3y2+a312x3y1=λy2,(3.22)a113x1y1+a133x1y3+a123x1y2+a223x2y2+a233x2y3+a213x2y1+a333x3y3+a313x3y1+a323x3y2=λy3,(3.23)x21+x22+x23=1,(3.24)y21+y22+y23=1.(3.25)

    To proceed, we break the arguments into six Cases.

    (a) Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Hence, if a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) Assume that y=(±1,0,0). Then (3.18)–(3.25) becomes

    {a111=λx1,(3.26)a211=λx2,(3.27)a311=λx3,(3.28)a111x1+a211x2+a311x3=λ,(3.29)a112x1+a212x2+a312x3=0,(3.30)a113x1+a213x2+a313x3=0,(3.31)x21+x22+x23=1.

    By (3.26) and (3.27), we have (3.1). By (3.26) and (3.28), we have (3.2). Next, solving (3.1), (3.2), (3.30), (3.31) and (3.24), we can obtain x1, x2 and x3, which implies that x=(x1,x2,x3) and y=(±1,0,0) are a pair of C-eigenvectors. Furthermore, by (3.29), we can get a C-eigenvalue λ of A.

    (c) Assume that x=(1,0,0). Then (3.18)–(3.25) becomes

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λ,(3.32)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,(3.33)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,(3.34)a111y1+a121y2+a131y3=λy1,(3.35)a112y1+a122y2+a132y3=λy2,(3.36)a113y1+a133y3+a123y2=λy3,(3.37)y21+y22+y23=1.

    By (3.35) and (3.36), we have (3.3). By (3.35) and (3.37), we have (3.4). Next, solving (3.3), (3.4), (3.25), (3.33) and (3.34), we can obtain y1, y2 and y3, which implies that x=(1,0,0) and y=(y1,y2,y3) are a pair of C-eigenvectors. Furthermore, by (3.32), we can get a C-eigenvalue λ of A.

    Assume that x=(1,0,0). Similarly, we have

    λ=(a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3),

    with its a pair of C-eigenvectors are x=(1,0,0) and y=(y1,y2,y3), which also satisfies (3.3), (3.4), (3.25), (3.33) and (3.34).

    (d) Assume that y=(y1,y2,0), where y20. Then (3.18)–(3.25) becomes

    {a111y21+a122y22+2a112y1y2=λx1,a222y22+a211y21+2a221y2y1=λx2,a311y21+a322y22+2a321y2y1=λx3,a111x1y1+a121x1y2+a221x2y2+a211x2y1+a311x3y1+a321x3y2=λy1,a112x1y1+a122x1y2+a222x2y2+a212x2y1+a322x3y2+a312x3y1=λy2,a113x1y1+a123x1y2+a223x2y2+a213x2y1+a313x3y1+a323x3y2=0,x21+x22+x23=1,y21+y22=1.

    Let t = \frac{y_{1}}{y_{2}} . Then the above equations become

    \left\{ {\begin{array}{*{20}{l}} {(a_{111}t^{2}+a_{122}+2a_{112}t)y_{2}^{2} = \lambda x_1, }&{}&{}&{\left( {3.38} \right)}\\ {(a_{222}+a_{211}t^{2}+2a_{221}t)y_{2}^{2} = \lambda x_2, }&{}&{}&{\left( {3.39} \right)}\\ {(a_{311}t^{2}+a_{322}+2a_{321}t)y_{2}^{2} = \lambda x_3, }&{}&{}&{\left( {3.40} \right)}\\ {a_{111}x_1t+a_{121}x_1+a_{221}x_2+a_{211}x_2t+a_{311}x_3t+a_{321}x_3 = \lambda t, }&{}&{}&{\left( {3.41} \right)}\\ {a_{112}x_1t+a_{122}x_1+a_{222}x_2+a_{212}x_2t+a_{322}x_3+a_{312}x_3t = \lambda, }&{}&{}&{\left( {3.42} \right)}\\ {a_{113}x_1t+a_{123}x_1+a_{223}x_2+a_{213}x_2t+a_{313}x_3t+a_{323}x_3 = 0, }&{}&{}&{\left( {3.43} \right)}\\ { x_{1}^2+x_{2}^2+x_{3}^2 = 1.}&{}&{}&{} \end{array}} \right.

    By (3.38) and (3.39), we have (3.5). By (3.38) and (3.40), we have (3.6). By (3.4) and (3.42), we have (3.7). Next, solving (3.5)–(3.7), (3.24) and (3.43), we can obtain x_1 , x_2 , x_3 and t , which leads to its a pair of C-eigenvectors x = (x_1, x_2, x_3)^\top and y = \pm\frac{(t, 1, 0)^{\top}}{\sqrt{t^2+1}} . Furthermore, by (3.42), we can get a C-eigenvalue \lambda of \mathcal{A} .

    (e) Assume that x = (x_1, x_2, 0)^\top , where x_2\neq 0 . Then (3.18)–(3.25) becomes

    \left\{ \begin{array}{l} a_{111}y_{1}^{2}+a_{122}y_{2}^{2}+a_{133}y_{3}^{2}+2a_{112}y_{1}y_{2}+2a_{113}y_{1}y_{3}+2a_{123}y_{2}y_{3} = \lambda x_{1}, \\ a_{222}y_{2}^{2}+a_{211}y_{1}^{2}+a_{233}y_{3}^{2}+2a_{221}y_{2}y_{1}+2a_{232}y_{3}y_{2}+2a_{231}y_{3}y_{1} = \lambda x_{2}, \\ a_{333}y_{3}^{2}+a_{311}y_{1}^{2}+a_{322}y_{2}^{2}+2a_{331}y_{3}y_{1}+2a_{323}y_{2}y_{3}+2a_{321}y_{2}y_{1} = 0, \\ a_{111}x_{1}y_{1}+a_{121}x_{1}y_{2}+a_{131}x_{1}y_{3}+a_{221}x_{2}y_{2}+a_{211}x_{2}y_{1}+a_{231}x_{2}y_{3} = \lambda y_{1}, \\ a_{112}x_{1}y_{1}+a_{122}x_{1}y_{2}+a_{132}x_{1}y_{3}+a_{222}x_{2}y_{2}+a_{212}x_{2}y_{1}+a_{232}x_{2}y_{3} = \lambda y_{2}, \\ a_{113}x_{1}y_{1}+a_{133}x_{1}y_{3}+a_{123}x_{1}y_{2}+a_{223}x_{2}y_{2}+a_{233}x_{2}y_{3}+a_{213}x_{2}y_{1} = \lambda y_{3}, \\ x_{1}^2+x_{2}^2 = 1, \\ y_{1}^2+y_{2}^2+y_{3}^2 = 1. \end{array} \right.

    Let t = \frac{x_{1}}{x_{2}} . Then the above equations become

    \left\{ {\begin{array}{*{20}{l}} {a_{111}y_1^{2}+a_{122}y_2^{2}+a_{133}y_3^{2}+2a_{112}y_1y_2+2a_{113}y_1y_3+2a_{123}y_2y_3 = \lambda tx_{2}, }&{}&{}&{\left( {3.44} \right)}\\ {a_{222}y_2^{2}+a_{211}y_1^{2}+a_{233}y_3^{2}+2a_{221}y_2y_1+2a_{232}y_3y_2+2a_{231}y_3y_1 = \lambda x_{2}, }&{}&{}&{\left( {3.45} \right)}\\ {a_{333}y_3^{2}+a_{311}y_1^{2}+a_{322}y_2^{2}+2a_{331}y_3y_1+2a_{323}y_2y_3+2a_{321}y_2y_1 = 0, }&{}&{}&{\left( {3.46} \right)}\\ {a_{111}tx_{2}y_1+a_{121}tx_{2}y_2+a_{131}tx_{2}y_3+a_{221}x_{2}y_2+a_{211}x_{2}y_1+a_{231}x_{2}y_3 = \lambda y_1, }&{}&{}&{\left( {3.47} \right)}\\ {a_{112}tx_{2}y_1+a_{122}tx_{2}y_2+a_{132}tx_{2}y_3+a_{222}x_{2}y_2+a_{212}x_{2}y_1+a_{232}x_{2}y_3 = \lambda y_2, }&{}&{}&{\left( {3.48} \right)}\\ {a_{113}tx_{2}y_1+a_{133}tx_{2}y_3+a_{123}tx_{2}y_2+a_{223}x_{2}y_2+a_{233}x_{2}y_3+a_{213}x_{2}y_1 = \lambda y_3, }&{}&{}&{\left( {3.49} \right)}\\ {y_1^2+y_2^2+y_3^2 = 1.}&{}&{}&{} \end{array}} \right.

    By (3.44) and (3.45), we have (3.9). By (3.47) and (3.48), we have (3.10). By (3.47) and (3.49), we have (3.11). Next, solving (3.9)–(3.11), (3.25) and (3.46), we can obtain y_1 , y_2 , y_3 and t . And then, by x_1^2+x_2^2 = 1 , we have x_2 = \pm \frac{1}{\sqrt{t^{2}+1}} . Furthermore, by (3.45), we can get a C-eigenvalue \lambda of \mathcal{A} in (3.8) and its a pair of C-eigenvectors x = \pm\frac{(t, 1, 0)^\top}{\sqrt{t^{2}+1}} and y = (y_1, y_2, y_3)^{\top} .

    (f) Assume that x = (x_1, x_2, x_3)^{\top} and y = (y_1, y_2, y_3)^{\top} , where x_3\neq 0 and y_3\neq 0 . Let

    \begin{align*} u_{1} = \frac{x_{1}}{x_{3}}, \quad u_{2} = \frac{x_{2}}{x_{3}}, \quad v_{1} = \frac{y_{1}}{y_{3}}, \quad v_{2} = \frac{y_{2}}{y_{3}}. \end{align*}

    Then (3.18)–(3.25) becomes

    \left\{ {\begin{array}{*{20}{l}} {a_{111}v_{1}^{2}y_{3}^{2}+a_{122}v_{2}^{2}y_{3}^{2}+a_{133}y_{3}^{2}+2a_{112}v_{1}v_{2}y_{3}^{2}+2a_{113}v_{1}y_{3}^{2}+2a_{123}v_{2}y_{3}^{2} = \lambda u_{1}x_{3}, }&{}&{}&{\left( {3.50} \right)}\\ {a_{222}v_{2}^{2}y_{3}^{2}+a_{211}v_{1}^{2}y_{3}^{2}+a_{233}y_{3}^{2}+2a_{221}v_{1}v_{2}y_{3}^{2}+2a_{232}v_{2}y_{3}^{2}+2a_{231}v_{1}y_{3}^{2} = \lambda u_{2}x_{3}, }&{}&{}&{\left( {3.51} \right)}\\ {a_{333}y_{3}^{2}+a_{311}v_{1}^{2}y_{3}^{2}+a_{322}v_{2}^{2}y_{3}^{2}+2a_{331}v_{1}y_{3}^{2}+2a_{323}v_{2}y_{3}^{2}+2a_{321}v_{1}v_{2}y_{3}^{2} = \lambda x_{3}, }&{}&{}&{\left( {3.52} \right)}\\ {a_{111}u_{1}v_{1}x_{3}+a_{121}u_{1}v_{2}x_{3}+a_{131}u_{1}x_{3}+a_{221}u_{2}v_{2}x_{3}+a_{211}u_{2}v_{1}x_{3}+a_{231}u_{2}x_{3}}&{}&{}&{}\\ {\quad+ a_{331}x_{3}+a_{311}v_{1}x_{3}+a_{321}v_{2}x_{3} = \lambda v_{1}, }&{}&{}&{\left( {3.53} \right)}\\ {a_{112}u_{1}v_{1}x_{3}+a_{122}u_{1}v_{2}x_{3}+a_{132}u_{1}x_{3}+a_{222}u_{2}v_{2}x_{3}+a_{212}u_{2}v_{1}x_{3}+a_{232}u_{2}x_{3}}&{}&{}&{}\\ {\quad +a_{332}x_{3}+a_{322}v_{2}x_{3}+a_{312}v_{1}x_{3} = \lambda v_{2}, }&{}&{}&{\left( {3.54} \right)}\\ {a_{113}u_{1}v_{1}x_{3}+a_{133}u_{1}x_{3}+a_{123}u_{1}v_{2}x_{3}+a_{223}u_{2}v_{2}x_{3}+a_{233}u_{2}x_{3}+a_{213}u_{2}v_{1}x_{3}}&{}&{}&{}\\ {\quad +a_{333}x_{3}+a_{313}v_{1}x_{3}+a_{323}v_{2}x_{3} = \lambda.}&{}&{}&{\left( {3.55} \right)} \end{array}} \right.

    By (3.50) and (3.51), we have (3.14). By (3.50) and (3.52), we have (3.15). By (3.53) and (3.54), we have (3.16). By (3.53) and (3.55), we have (3.17). Next, solving (3.14)–(3.17), we can obtain u_1 , u_2 , v_1 and v_2 . Furthermore, by x_1^2+x_2^2+x_3^2 = 1 and y_1^2+y_2^2+y_3^2 = 1 , we can get x and y in (3.13); by (3.55), we can get a C-eigenvalue \lambda of \mathcal{A} in (3.12).

    Remark 3.1. ⅰ) Solving the system of nonlinear equations in (b) of Theorem 3.1, we can choose any three of the first four equations to form a system of linear equations. If the determinant of the coefficient matrix of the system of linear equations is not equal to 0, then the system of linear equations has only zero solution and obviously it is not the solution of the last equation in the system of nonlinear equations, which implies that the system of nonlinear equations in (b) has no solution. If the determinant is equal to 0, then we need to verify that whether this solution satisfies the other two equations.

    ⅱ) Solving these system of nonlinear equations in (c)–(f) of Theorem 3.1, we can use the resultant method in algebraic geometry [28] to find their solutions, which has been verified and is feasible in finding all M-eigenpairs of an order 4 dimension 2 tensor in Theorem 7 of [27].

    Given two polynomials f(x) and g(x) , where

    \begin{align*} f(x)& = a_{0}x^{n}+a_{1}x^{n-1}+\cdots+a_{n}, \; \; a_{0}\neq0, \; \; n > 0.\\ g(x)& = b_{0}x^{m}+b_{1}x^{m-1}+\cdots+b_{m}, \; \; b_{0}\neq0, \; \; m > 0. \end{align*}

    Then the resultant of f(x) and g(x) is represented by {\text{Res}}_x(f, g) , that is, the determinant of (n + m)\times(n + m) is as follows:

    {\text{Res}}_x(f, g) = \det\begin{array}{c} \underbrace{\left(\begin{array}{cccc} a_0 & & & \\ a_1 &a_0 & & \\ a_2 &a_1 &\ddots& \\ \vdots&a_2 &\ddots&a_0 \\ a_m &\vdots&\ddots&a_1 \\ &a_m & &a_2 \\ & &\ddots&\vdots\\ & & &a_m \\ \end{array}\right.}_{n\; \rm{columns}} \underbrace{\left.\begin{array}{cccc} d_0 & & & \\ d_1 &d_0 & & \\ d_2 &d_1 &\ddots& \\ \vdots&d_2 &\ddots&b_0 \\ d_n &\vdots&\ddots&b_1 \\ &d_n & &b_2 \\ & &\ddots&\vdots\\ & & &b_n \\ \end{array}\right)}_{m\; \rm{columns}} \end{array},

    where the blank spaces are filled with zeros. It is showed in [28,pp. 78] that over the complex field f(x) and g(x) have a common root if and only if their resultant is zero.

    Solving the systems (3.14)–(3.17) with four variables u_1 , u_2 , v_1 and v_2 , we can obtain its solutions by successive elimination of variables as follows:

    Step 1: Mark the four equations in the systems (3.14)–(3.17) as f_{1}(u_{1}, u_{2}, v_{1}, v_{2}) , f_{2}(u_{1}, u_{2}, v_{1}, v_{2}) , f_{3}(u_{1}, u_{2}, v_{1}, v_{2}) and f_{4}(u_{1}, u_{2}, v_{1}, v_{2}) in turn, and regard f_{1} , f_{2} , f_{3} and f_{4} as functions with u_1 as a variable and u_2 , v_1 and v_2 as their coefficients. If {\text{Res}}_{u_1}(f_1, f_2) = 0 , which is a function with u_2 , v_1 and v_2 as three variables, then f_1 and f_2 have a common root. Similarly, {\text{Res}}_{u_1}(f_1, f_3) = 0 and {\text{Res}}_{u_1}(f_1, f_4) = 0 can be obtained and they are functions with u_2 , v_1 and v_2 as three variables.

    Step 2: Let

    \begin{align*} g_1(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_2) = 0, \quad g_2(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_3) = 0, \end{align*}

    and

    \begin{align*} g_3(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_4) = 0, \end{align*}

    and g_1 , g_2 and g_3 be regarded as functions with u_2 as a variable and v_1 and v_2 as their coefficients. If {\text{Res}}_{u_2}(g_1, g_2) = 0 , which is a function with v_1 and v_2 as two variables, then g_1 and g_2 have a common root. Similarly, {\text{Res}}_{u_2}(g_1, g_3) = 0 can be obtained and it is a function with v_1 and v_2 as two variables.

    Step 3: Let

    \begin{align*} h_1(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_2) = 0\quad\rm{and}\quad h_2(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_3) = 0. \end{align*}

    and h_1 and h_2 be regarded as functions with v_1 as a variable and v_2 as a coefficient. If {\text{Res}}_{v_1}(h_1, h_2) = 0 , which is a function with v_2 as a variable, then h_1 and h_2 have a common root.

    Step 4: Solving the function {\text{Res}}_{v_1}(h_1, h_2) = 0 with v_2 as a variable by Matlab command '\mathtt {solve}', its all real solutions v_2 can be obtained.

    Step 5: Substituting v_2 to h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 to find all their real solutions v_1 . And then, substituting v_2 and v_1 to g_1(u_2, v_1, v_2) = 0 , g_2(u_2, v_1, v_2) = 0 and g_3(u_2, v_1, v_2) = 0 to find all their real solutions u_2 . Furthermore, substituting v_2 , v_1 and u_2 to f_i(u_1, u_2, v_1, v_2) = 0 for i\in [4] to find all their real solutions u_1 . Then, all real roots u_1 , u_2 , v_1 and v_2 of (3.14)–(3.17) are obtained. Finally, by (3.12) and (3.13), we can find all C-eigentriples of \mathcal{A} in the Case (f) in Theorem 3.1.

    It is shown in [12,29] that the largest C-eigenvalue \lambda^* of a piezoelectric tensor determines the highest piezoelectric coupling constant, and its corresponding C-eigenvector y^* is the corresponding direction of the stress where this appears. In this section, let's review its physical background, which is shown in [29].

    In physics, for non-centrosymmetric materials, we can write the linear piezoelectric equation as

    \begin{eqnarray*} p_i = \sum\limits_{j, k\in[3]}a_{ijk}T_{jk}, \end{eqnarray*}

    where \mathcal{A} = (a_{ijk})\in\mathbb{R}^{3\times3\times3} is a piezoelectric tensor, T = (T_{jk})\in\mathbb{R}^{3\times3} is the stress tensor, and p = (p_i) \in \mathbb{R}^3 is the electric change density displacement.

    Now, it is worth considering, under what conditions can the maximal piezoelectricity be triggered under a unit uniaxial stress? In this case, the stress tensor T can be rewritten as T = yy^{\top} with y^{\top}y = 1 . Then, this maximal piezoelectricity problem can be formulated into an optimization model

    \left\{ {\begin{array}{*{20}{l}} {\max}&{\|p\|_2}\\ {s.t.}&{ p = \mathcal{A}yy, }\\ {}&{y^{\top}y = 1.} \end{array}} \right.

    By a dual norm, \|p\|_2 = \max\limits_{x^{\top}x = 1}x^{\top}p = \max\limits_{x^{\top}x = 1}x\mathcal{A}yy is derived and hence the above optimization model is converted to the following optimization problem

    \begin{eqnarray*} \max\; \; \; \; x\mathcal{A}yy \qquad {\text{s.t.}}\; \; x^{\top}x = 1, \; \; y^{\top}y = 1. \end{eqnarray*}

    If (x^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = x^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} and y^* is the unit uniaxial direction that the maximal piezoelectric effect take place along.

    Theorem 4.1. [29,Theorem 7.12] Let \lambda^* be the largest C-eigenvalue, x^* and y^* be the associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the maximum value of the 2-norm of the electric polarization under a unit uniaxial stress along the optimal axial direction y^* .

    Moreover, the linear equation of the inverse piezoelectric effect is

    \begin{eqnarray*} S_{jk} = \sum\limits_{i}a_{ijk}e_{i}, \end{eqnarray*}

    where S = (S_{jk})\in\mathbb{R}^{3\times3} is the strain tensor and e = (e_i) \in \mathbb{R}^3 is the electric field strength. Next, the following maximization problem is considered:

    \left\{ {\begin{array}{*{20}{l}} { \max}&{\|S\|_2: = \max\limits_{y^{\top}y = 1}y^{\top}Sy}\\ {s.t.}&{S_{jk} = \sum\limits_{i\in [3]}e_ia_{ijk}, \forall j, k\in [3], }\\ {}&{e^{\top}e = 1.} \end{array}} \right.

    By \|S\|_2 = \max\limits_{y^{\top}y = 1}y^{\top}Sy = \max\limits_{y^{\top}y = 1}e\mathcal{A}yy , the above maximization problem is rewritten as

    \begin{eqnarray*} \max\{e\mathcal{A}yy:\quad e^{\top}e = 1, \quad y^{\top}y = 1\}. \end{eqnarray*}

    If (e^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = e^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} , e^* and y^* are its associated C-eigenvectors.

    Theorem 4.2. [29,Theorem 7.13] Let \lambda^* be the largest C-eigenvalue and x^* and y^* be its associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the largest spectral norm of a strain tensor generated by the converse piezoelectric effect under unit electric field strength \|x^*\| = 1 .

    In this section, numerical examples are given to verify the obtained theoretical results.

    Example 1. Consider the eight piezoelectric tensors in [12,Examples 1-8].

    (a) The first piezoelectric tensor is \mathcal{A}_{\rm VFeSb} with its nonzero entries

    \begin{eqnarray*} a_{123} = a_{213} = a_{312} = -3.68180667. \end{eqnarray*}

    (b) The second piezoelectric tensor \mathcal{A}_{\rm SiO_2} with its nonzero entries

    \begin{eqnarray*} a_{111} = -a_{122} = -a_{212} = -0.13685, \quad a_{123} = -a_{213} = -0.009715. \end{eqnarray*}

    (c) The third piezoelectric tensor \mathcal{A}_{\rm Cr_2AgBiO_8} with its nonzero entries

    \begin{align*} a_{123}& = a_{213} = -0.22163, \quad a_{113} = -a_{223} = 2.608665, \\ a_{311}& = -a_{322} = 0.152485, \quad a_{312} = -0.37153. \end{align*}

    (d) The fourth piezoelectric tensor \mathcal{A}_{\rm RbTaO_3} with its nonzero entries

    \begin{align*} a_{113}& = a_{223} = -8.40955, \quad a_{311} = a_{322} = -4.3031, \\ a_{222}& = -a_{212} = -a_{211} = -5.412525, \quad a_{333} = -5.14766. \end{align*}

    (e) The fifth piezoelectric tensor \mathcal{A}_{\rm NaBiS_2} with its nonzero entries

    \begin{align*} a_{113}& = -8.90808, \quad a_{223} = -0.00842, \quad a_{311} = -7.11526, \\ a_{322}& = -0.6222, \quad a_{333} = -7.93831. \end{align*}

    (f) The sixth piezoelectric tensor \mathcal{A}_{\rm LiBiB_2O_5} with its nonzero entries

    \begin{align*} a_{112}& = 0.34929, \quad a_{211} = 0.16101, \quad a_{222} = 0.12562, \quad a_{312} = 2.57812, \\ a_{123}& = 2.35682, \quad a_{213} = -0.05587, \quad a_{233} = 0.1361, \quad a_{323} = 6.91074. \end{align*}

    (g) The seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} with its nonzero entries

    \begin{align*} a_{111}& = 12.64393, \quad a_{211} = 2.59187, \quad a_{311} = 1.51254, \quad a_{123} = 1.59052, \\ a_{122}& = 1.08802, \quad a_{212} = 0.10570, \quad a_{312} = 0.08381, \quad a_{233} = 0.81041, \\ a_{113}& = 1.96801, \quad a_{213} = 0.71432, \quad a_{313} = 0.39030, \quad a_{333} = -0.23019, \\ a_{112}& = 0.22465, \quad a_{222} = 0.08263, \quad a_{322} = 0.68235, \quad a_{323} = 0.19013, \\ a_{133}& = 4.14350, \quad a_{223} = 0.51165. \end{align*}

    (h) The eigth piezoelectric tensor \mathcal{A}_{\rm BaNiO_3} with its nonzero entries

    \begin{align*} a_{113} = 0.038385, \; a_{223} = 0.038385, \; a_{311} = a_{322} = 6.89822, \; a_{333} = 27.4628. \end{align*}

    Ⅰ. Localization for all C-eigenvalues of the above eight piezoelectric tensors.

    Now, we use these C-eigenvalues intervals in Theorems 2.1 and 1.1, Theorems 1 and 2 of [20], Theorem 2.1 of [13], Theorems 2.2 and 2.4 of [25], Theorem 2.1 of [24], Theorem 2.1 of [23], Theorem 5 of [19], Theorem 7 of [21], Theorems 2.3–2.5 of [18] and Theorem 2.1 of [22] to locate all Ceigenvalues of the above eight piezoelectric tensors. Numerical results are shown in Table 1. Since these intervals are symmetric about the origin, only their right boundaries are listed in Table 1.

    Table 1.  Comparison among \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} , \rho_{\Omega^{S}} , \rho_{C} , \rho_{G} , \rho_{B} , \rho_{\min} , \rho_{\Psi} , \rho_{\Omega} and \lambda^{*} .
    \mathcal{A}_{\rm VFeSb} \mathcal{A}_{\rm SiO_2} \mathcal{A}_{\rm Cr_2AgBiO_8} \mathcal{A}_{\rm RbTaO_3} \mathcal{A}_{\rm NaBiS_2} \mathcal{A}_{\rm LiBiB_2O_5} \mathcal{A}_{\rm KBi_2F_7} \mathcal{A}_{\rm BaNiO_3}
    \varrho 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 33.7085
    \varrho_{\min} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \widetilde{\varrho}_{\min} 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
    \rho_{\Gamma} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \rho_{\mathcal{L}} 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
    \rho_{\mathcal{M}} 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
    \rho_{\Upsilon} 7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
    \rho_{\gamma} 7.3636 0.2744 4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
    \rho_{\Omega^{S}} 7.3636 0.2744 4.2732 23.0353 16.4486 10.2581 17.7874 27.4629
    \rho_C 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
    \rho_G 6.3771 0.2506 4.0455 21.5313 13.9063 9.8718 14.2574 29.1441
    \rho_B 5.2069 0.2345 4.0026 19.4558 13.4158 10.0289 15.3869 27.5396
    \rho_{\min} 6.5906 0.1942 3.5097 18.0991 11.9324 8.1373 14.3299 27.4725
    \rho_{\Psi} 6.5906 0.1942 4.2909 18.9140 11.9319 8.1501 14.0690 27.4629
    \rho_{\Omega} 5.2069 0.2005 3.5097 19.2688 11.9319 8.6469 13.6514 27.4629
    \lambda^{*} 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628

     | Show Table
    DownLoad: CSV

    In Table 1, \lambda^{*} is the largest C-eigenvalue of a piezoelectric tensor; \varrho and \varrho_{\min} are respectively the right boundaries of the interval [-\varrho, \varrho] and [-\varrho_{\min}, \varrho_{\min}] obtained by Theorems 1 and 2 in [20]; \widetilde{\varrho}_{\min} are respectively the right boundary of the interval [-\widetilde{\varrho}_{\min}, \widetilde{\varrho}_{\min}] obtained by Theorem 2.1 of [13]; \rho_{\mathcal{L}} and \rho_{\mathcal{M}} are respectively the right boundaries of the intervals [-\rho_{\mathcal{L}}, \rho_{\mathcal{L}}] and [-\rho_{\mathcal{M}}, \rho_{\mathcal{M}}] obtained by 2.2 and 2.4 in [25]; \rho_{\Upsilon} is the right boundary of the interval [-\rho_{\Upsilon}, \rho_{\Upsilon}] obtained by Theorem 2.1 of [24]; \rho_{\gamma} is the right boundary of the interval [-\rho_{\gamma}, \rho_{\gamma}] obtained by Theorem 2.1 of [23]; \rho_{\Omega^{S}} is the right boundary of the interval [-\rho_{\Omega^{S}}, \rho_{\Omega^{S}}] obtained by Theorem 5 of [19]; \rho_{C} is the right boundary of the interval [-\rho_{C}, \rho_{C}] obtained by Theorem 7 of [21]; \rho_{G} , \rho_{B} and \rho_{\min} are respectively the right boundaries of the intervals [-\rho_{G}, \rho_{G}] , [-\rho_{B}, \rho_{B}] and [-\rho_{\min}, \rho_{\min}] obtained by Theorems 2.3–2.5 in [18]; \rho_{\Psi} is the right boundary of the interval [-\rho_{\Psi}, \rho_{\Psi}] obtained by Theorem 2.1 of [22]; \rho_{\Gamma} is the right boundary of the interval [-\rho_{\Gamma}, \rho_{\Gamma}] obtained by Theorem 1.1; \rho_{\Omega} is the right boundary of the interval [-\rho_{\Omega}, \rho_{\Omega}] obtained by Theorem 2.1.

    From Table 1, it can be seen that:

    ⅰ) \rho_{\Omega} is smaller than \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} for the eight piezoelectric tensors.

    ⅱ) \rho_{\Omega}\leq \rho_{\Omega^S} , \rho_{\Omega}\leq \rho_B for the eight piezoelectric tensors.

    ⅲ) For some tensors, \rho_{\Omega} is smaller than \rho_C , \rho_G , \rho_{\min} and \rho_{\Psi} .For the other tensors, \rho_{\Omega} is bigger than or equal to \rho_{C} , \rho_{G} , \rho_{\min} and \rho_{\Psi} .For examples, for \mathcal{A}_{\rm VFeSb} , \rho_{\Omega} < \rho_C , \rho_\Omega < \rho_G , \rho_\Omega < \rho_{\min} and \rho_\Omega < \rho_{\Psi} ; For \mathcal{A}_{\rm SiO_2} , \rho_{\Omega} > \rho_C , \rho_\Omega > \rho_{\min} and \rho_\Omega > \rho_{\Psi} ; For \mathcal{A}_{\rm BaNiO_3} , \rho_{\Omega} > \rho_G .

    Ⅱ. Calculation for all C-eigentriples of the seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} are obtained by Theorem 3.1 and are showen in Table 2. And the calculation process is shown in Appendix.

    Table 2.  All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} .
    \lambda x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}
    13.50214 0.97050 0.20974 0.11890 0.97226 0.05065 0.22836
    13.50214 0.97050 0.20974 0.11890 -0.97226 -0.05065 -0.22836
    4.46957 0.98196 0.18905 -0.00362 0.22771 -0.41491 -0.88091
    4.46957 0.98196 0.18905 -0.00362 -0.22771 0.41491 0.88091
    0.54486 0.75981 -0.36879 0.53544 0.06168 0.87047 -0.48833
    0.54486 0.75981 -0.36879 0.53544 -0.06168 -0.87047 0.48833
    -0.54486 -0.75981 0.36879 -0.53544 0.06168 0.87047 -0.48833
    -0.54486 -0.75981 0.36879 -0.53544 -0.06168 -0.87047 0.48833
    -4.46957 -0.98196 -0.18905 0.00362 0.22771 -0.41491 -0.88091
    -4.46957 -0.98196 -0.18905 0.00362 -0.22771 0.41491 0.88091
    -13.50214 -0.97050 -0.20974 -0.11890 0.97226 0.05065 0.22836
    -13.50214 -0.97050 -0.20974 -0.11890 -0.97226 -0.05065 -0.22836

     | Show Table
    DownLoad: CSV

    Let \mathcal{A}\in \mathbb{R}^{n\times n\times n} be a piezoelectric-type tensor. In this paper, we in Theorem 2.1 constructed a C-eigenvalue interval \Omega(\mathcal{A}) to locate all C-eigenvalues of \mathcal{A} and proved that it is tighter than that in [25,Theorem 2.1]. Subsequently, we in Theorem 3.1 provided a direct method to find all C-eigentriples of \mathcal{A} when n = 3 . Although the method in Theorem 3.1 is divided into six Cases, it is indeed a little complicated, but it can be seen from Example 1 that this method is feasible.

    The authors are very grateful to the five anonymous referees for their insightful comments and constructive suggestions, which considerably improve our manuscript. Caili Sang's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2021]YB013). Jianxing Zhao's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2022]YB215).

    The author declares there is no confict of interest.

    The following is the calculation process for all C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    (a) Because a_{211}\neq 0 , Case (a) in Theorem 3.1 does not holds.

    (b) The system in Case (b) of Theorem 3.1 is

    \left\{ {\begin{array}{*{20}{l}} { 2.59187x_{1}-12.64393x_{2} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.1}}} \right)}\\ {1.51254x_{1}-12.64393x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.2}}} \right)}\\ {1.08802x_{1}+0.10570x_{2}+0.08381x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.3}}} \right)}\\ { 1.96801x_{1}+0.71432x_{2}+0.39030x_{3} = 0, }&{}&{}&{}\\ {x_1^2+x_2^2+x_3^2 = 1.}&{}&{}&{} \end{array}} \right.

    The three Eqs (A.1)–(A.3) yield a linear system of equation Ax = 0 , where x = (x_{1}, x_{2}, x_{3})^{\top} and

    \begin{equation*} A = \left( \begin{array}{ccc} 2.59187&-12.64393&0\\ 1.51254&0&-12.64393\\ 1.08802&0.10570&0.08381 \end{array} \right). \end{equation*}

    From \det(A) = 179.0074\neq 0 , the solution of Ax = 0 is x = (x_1, x_2, x_3)^\top = (0, 0, 0)^\top , which contradicts with x_1^2+x_2^2+x_3^2 = 1 . Hence, the system in Case (b) of Theorem 3.1 has no solution.

    (c) The system in Case (c) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(y_1, y_2, y_3) = 0.08263y_2^2+2.59187y_1^{2}+0.81041y_3^{2}+0.2114y_1y_2\\ +1.0233y_2y_3+1.42864y_1y_3 = 0, \\ f_2(y_1, y_2, y_3) = -0.23019y_3^{2}+1.51254y_1^{2}+0.68235y_2^{2}+0.7806y_1y_3\\ + 0.38026y_2y_3+0.16762y_1y_2 = 0, \\ f_3(y_1, y_2, y_3) = 0.22465y_1^2-0.22465y_2^{2}-11.55591y_1y_2+1.59052y_1y_3\\ -1.96801y_2y_3 = 0, \\ f_4(y_1, y_2, y_3) = 1.96801y_1^{2}-1.96801y_3^{2}-8.50043y_1y_3+a_{123}y_1y_2\\ -0.22465y_2y_3 = 0, \\ f_5(y_1, y_2, y_3) = y_1^2+y_2^2+y_3^2 = 1. \end{array} \right.

    We now regard f_i(y_1, y_2, y_3) , i\in [5] as a function with y_1 as a variable and y_2 and y_3 as two coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{y_1}(f_1, f_2) = &2.68640y_2^4-1.92404y_3y_2^3-5.51122y_2^2y_3^2+2.09880y_3^3y_2+3.18879y_3^4, \\ {\text{Res}}_{y_1}(f_1, f_3) = &27.58122y_2^4+331.64703y_3y_2^3+134.75405y_3^2y_2^2-55.45236y_3^3y_2 +4.93315y_3^4. \end{align*}

    Let g_1(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_2) , g_2(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_3) , and its resultant

    \begin{align*} {\text{Res}}_{y_2}(g_1, g_2) = 95376348203.97653y_3^{16} = 0. \end{align*}

    Then y_3 = 0 . Substituting y_3 = 0 into g_1 and g_2 , we have

    \begin{align*} g_1(y_2, y_3) = 2.68640y_2^4, \quad g_2(y_2, y_3) = 27.58122y_2^4. \end{align*}

    Let g_1(y_2, y_3) = 0 and g_2(y_2, y_3) = 0 . We have y_2 = 0 . Substituting y_2 = 0 and y_3 = 0 into f_1 , we have f_1(y_1, y_2, y_3) = 2.59187y_1^2 . Solving f_1(y_1, y_2, y_3) = 0 , we have y_1 = 0 . However, y_1 = y_2 = y_3 = 0 is not solution of y_1^2+y_2^2+y_3^2 = 1 . Hence, the system in Case (c) of Theorem 3.1 has no solution.

    (d) Similar to solution for Case (c), the system in Case (d) of Theorem 3.1 has no solution.

    (e) Similar to solution for Case (c), the system in Case (e) of Theorem 3.1 has no solution.

    (f) The system in Case (f) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(u_{1}, u_{2}, v_{1}, v_{2}): = 0.08263u_{1}v_{2}^{2}+2.59187v_{1}^{2}u_{1}+0.81041u_{1}+ 0.21140v_{1}u_{1}v_{2}\\ +1.02330u_{1}v_{2}+1.42864v_{1}u_{1}-12.64393u_{2}v_{1}^{2}-1.08802u_{2}v_{2}^{2}\\ -4.14350u_{2}-0.44930u_{2}v_{1}v_{2}-3.93602u_{2}v_{1}-3.18104u_{2}v_{2} = 0, \\ f_2(u_{1}, u_{2}, v_{1}, v_{2}): = -0.23019u_{1}+1.51254u_{1}v_{1}^{2}+0.68235u_{1}v_{2}^{2}+0.78060u_{1}v_{1}\\ +0.38026u_{1}v_{2}+0.16762u_{1}v_{1}v_{2}-12.64393v_{1}^{2}-1.08802v_{2}^{2}\\ -0.44930v_{1}v_{2}-3.93602v_{1}-3.18104v_{2}-4.14350 = 0, \\ f_3(u_{1}, u_{2}, v_{1}, v_{2}): = 0.22465u_{1}v_{1}^{2}-11.55591u_{1}v_{1}v_{2}+1.59052v_{1}u_{1}\\ -2.50924u_{2}v_{1}v_{2}+0.10570u_{2}v_{1}^{2}+0.51165v_{1}u_{2}+0.19013v_{1}\\ -0.83019v_{1}v_{2}+0.08381v_{1}^{2}-0.22465u_{1}v_{2}^{2}-1.96801u_{1}v_{2}\\ -0.10570u_{2}v_{2}^{2}-0.71432v_{2}u_{2}-0.39030v_{2}-0.08381v_{2}^{2} = 0, \\ f_4(u_{1}, u_{2}, v_{1}, v_{2}): = 1.96801u_{1}v_{1}^{2}-8.50043u_{1}v_{1}+1.59052v_{1}u_{1}v_{2}+0.51165v_{1}u_{2}v_{2}\\ +0.19013v_{1}v_{2}-1.78146u_{2}v_{1}+0.71432u_{2}v_{1}^{2}-1.742730v_{1}\\ +0.39030v_{1}^{2}-0.22465u_{1}v_{2}-1.96801u_{1}-0.10570u_{2}v_{2}\\ -0.71432u_{2}-0.08381v_{2}-0.39030 = 0. \end{array} \right.

    We now regard f_i(u_1, u_2, v_1, v_2) , i\in [4] as a function with u_1 as a variable and u_2 , v_1 and v_2 as three coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_2) = &(0.84336v_{2}-0.95379+2.32838v_{1}+3.78649v_{2}^2+2.58431v_{2}^3\nonumber\\ &+0.74241v_{2}^4+6.42916v_{1}^2+15.82324v_{1}^3+19.12445v_{1}^4+10.62991v_{2}v_{1}^2\nonumber\\ &+4.23911v_{2}^2v_{1}+2.79896v_{2}v_{1}^3+ 0.48895v_{2}^3v_{1}+10.34857v_{2}^2v_{1}^2\nonumber\\ &+4.57094v_{2}v_{1})u_{2}-9.10936v_{1}-3.95976v_{2}^2v_{1}^2-6.81799v_{2}\nonumber\\ &-9.81234v_{2}v_{1}-22.65734v_{2}v_{1}^2-3.01186v_{2}^2v_{1}-3.83745v_{2}v_{1}^3\nonumber\\ &-0.26713v_{2}^3v_{1}-4.47928v_{2}^2-1.37622v_{2}^3-0.08990v_{2}^4-26.60934v_{1}^2\nonumber\\ &-28.26528v_{1}^3-32.771423v_{1}^4-3.35793 = 0, \end{align*}
    \begin{align*} {\text{Res}}_{u_1}(f_1, f_3) = &(-8.73334v_{2}+7.00497v_{1}-8.00778v_{2}^2-3.02304v_{2}^3-0.25316v_{2}^4\nonumber\\ &+8.00778v_{1}^2+22.47179v_{1}^3+3.11442v_{1}^4-74.15833v_{2}v_{1}^2-39.62519v_{2}^2v_{1}\nonumber\\ &-152.49246v_{2}v_{1}^3-12.90368v_{2}^3v_{1}-8.58379v_{2}^2v_{1}^2-53.09898v_{2}v_{1})u_{2}\nonumber\\ &+0.15408v_{1}-0.31630v_{2}-0.38580v_{2}^2v_{1}^2-1.03583v_{2}v_{1}-2.07169v_{2}v_{1}^2\nonumber\\ &-1.03607v_{2}^2v_{1}-2.13403v_{2}v_{1}^3- 0.08632v_{2}^3v_{1}-0.46731v_{2}^2-0.11801v_{2}^3\nonumber\\ &-0.00693v_{2}^4+0.33955v_{1}^2+0.61253v_{1}^3+0.21722v_{1}^4 = 0, \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_4) = &(-8.73334-8.00778v_{2}-45.43188v_{1}-3.02304v_{2}^2-0.25316v_{2}^3\nonumber\\ &-54.00439v_{1}^2-103.32952v_{1}^3+26.73481v_{1}^4+6.67230v_{2}v_{1}^2\nonumber\\ &-3.93604v_{2}^2v_{1}+22.47179v_{2}v_{1}^3+1.77280v_{2}^3v_{1}+ 3.02304v_{2}^2v_{1}^2\nonumber\\ &-23.92868v_{2}v_{1})u_{2}+0.07244v_{2}^2v_{1}^2-1.96992v_{1}-0.46731v_{2}\nonumber\\ &-1.83150v_{2}v_{1}+0.08538v_{2}v_{1}^2+0.03284v_{2}^2v_{1}+0.57530v_{2}v_{1}^3\nonumber\\ &+0.01571v_{2}^3v_{1}-0.11801v_{2}^2-0.00693v_{2}^3-3.18504v_{1}^2-3.95933v_{1}^3\\ &+1.01161v_{1}^4-0.31630 = 0. \end{align*}

    Let

    \begin{align*} &g_1(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_2), \quad g_2(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_3), \\ &g_3(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_4). \end{align*}

    Then their resultants are

    \begin{align*} {\text{Res}}_{u_{2}}(g_1, g_2) = &106.21826v_{1}^8+(-5025.64756v_{2}+839.61383)v_{1}^7+(-865.25666v_{2}^2\nonumber\\ &-6653.08038v_{2}+998.05266)v_{1}^6+(-1083.52137v_{2}^3-5229.62871v_{2}^2\nonumber\\ &-7381.37411v_{2}+1094.99786)v_{1}^5+(-137.50780v^4-1593.23550v_{2}^3\nonumber\\ &-4933.36887v_{2}^2-4733.12663v_{2}+632.08073)v_{1}^4+(-70.75506v_{2}^5\nonumber\\ &-741.31965v_{2}^4-2567.50800v_{2}^3-4243.14169v_{2}^2-2467.61827v_{2}\nonumber\\ &+335.99902)v_{1}^3+(-5.62145v_{2}^6-90.33840v_{2}^5-524.86290v_{2}^4\nonumber\\ &-1366.09759v_{2}^3-1783.36316v_{2}^2-843.25156v_{2}+90.73526)v_{1}^2\nonumber\\ &+(-1.29518v_{2}^7-23.97008v_{2}^6-135.36791v_{2}^5-405.58564v_{2}^4\nonumber\\ &-682.18237v_{2}^3-624.18604v_{2}^2-209.71678v_{2}+23.37525)v_{1}\nonumber\\ &+(-0.02790v_{2}^8-0.72569v_{2}^7-6.69240v_{2}^6-28.96790v_{2}^5\nonumber\\ &-72.02906v_{2}^4-105.34644v_{2}^3-86.25447v_{2}^2-29.02430v_{2}) = 0 \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_2}(g_1, g_3) = &895.48403v_{1}^8+(852.85983v_{2}-2690.30193)v_{1}^7+(304.63154v_{2}^2\nonumber\\ &+1073.45667v_{2}-4096.10056)v_{1}^6+(172.77376v_{2}^3+134.01848v_{2}^2\nonumber\\ &-2360.05799v_{2}-5632.48044)v_{1}^5+(29.00602v_{2}^4+203.47367v_{2}^3\nonumber\\ &-304.10992v_{2}^2-2878.73753v_{2}-3926.74222)v_{1}^4+(10.47279v_{2}^5\nonumber\\ &+55.51707v_{2}^4-189.59056v_{2}^3-1392.51379v_{2}^2-3083.36023v_{2}\nonumber\\ &-2315.99105)v_{1}^3+(0.80682v_{2}^6+8.30736v_{2}^5-4.53864v_{2}^4\nonumber\\ &-259.96426v_{2}^3-927.90427v_{2}^2-1442.92349v_{2}-831.16935)v_{1}^2\nonumber\\ &+(0.17104v_{2}^7+2.07986v_{2}^6-2.49973v_{2}^5-63.10600v_{2}^4\nonumber\\ &-263.71529v_{2}^3-525.06788v_{2}^2-551.19369v_{2}-230.96997)v_{1}\nonumber\\ &+(-0.02790v_{2}^7-0.72569v_{2}^6-6.69240v_{2}^5-28.96790v_{2}^4\nonumber\\ &-72.02906v_{2}^3-105.34644v_{2}^2-86.25447v_{2}-29.02430) = 0. \end{align*}

    Let

    \begin{align*} h_1(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_2)\quad\rm{and}\quad h_2(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_3). \end{align*}

    Their results are

    \begin{align*} {\text{Res}}_{v_1}(h_1, h_2) = &-1.62711\times10^{-46}v_{2}^{64}-1.18415\times10^{-44}v_{2}^{63}-4.48673\times10^{-43}v_{2}^{62}\nonumber\\ &-1.18681\times10^{-41}v_{2}^{61}- 2.43052\times10^{-40}v_{2}^{60}-4.06317\times10^{-39}v_{2}^{59}\nonumber\\ &-5.7302\times10^{-38}v_{2}^{58}-6.93518\times10^{-37}v_{2}^{57}-7.24748\times10^{-36}v_{2}^{56}\nonumber\\ &- 6.49253\times10^{-35}v_{2}^{55}-4.87257\times10^{-34}v_{2}^{54}-2.98951\times10^{-33}v_{2}^{53}\nonumber\\ &-1.49477\times10^{-32}v_{2}^{52}-6.3372\times10^{-32}v_{2}^{51}- 2.51516\times10^{-31}v_{2}^{50}\nonumber\\ &-1.06401\times10^{-30}v_{2}^{49}-5.02246\times10^{-30}v_{2}^{48}- 2.43069\times10^{-29}v_{2}^{47}\nonumber\\ &-1.09655\times10^{-28}v_{2}^{46}- 4.44371\times10^{-28}v_{2}^{45}-1.60392\times10^{-27}v_{2}^{44}\nonumber\\ &-5.08938\times10^{-27}v_{2}^{43}- 1.39566\times10^{-26}v_{2}^{42}-3.2426\times10^{-26}v_{2}^{41}\nonumber\\ &- 6.05752\times10^{-26}v_{2}^{40}-7.48945\times10^{-26}v_{2}^{39}+1.29902\times10^{-26}v_{2}^{38}\nonumber\\ &+ 4.01056\times10^{-25}v_{2}^{37}+1.382\times10^{-24}v_{2}^{36}+3.13265\times10^{-24}v_{2}^{35}\nonumber\\ &+ 5.06222\times10^{-24}v_{2}^{34}+4.80914\times10^{-24}v_{2}^{33}-1.80398\times10^{-24}v_{2}^{32}\nonumber\\ &-1.82876\times10^{-23}v_{2}^{31}-4.38298\times10^{-23}v_{2}^{30}-7.14302\times10^{-23}v_{2}^{29}\nonumber\\ &- 8.82265\times10^{-23}v_{2}^{28}-7.81232\times10^{-23}v_{2}^{27}-3.29361\times10^{-23}v_{2}^{26}\nonumber\\ &+1.21659\times10^{-23}v_{2}^{25}-5.53171\times10^{-23}v_{2}^{24}-2.91829\times10^{-22}v_{2}^{23}\nonumber\\ &-3.73689\times10^{-22}v_{2}^{22}+1.93914\times10^{-22}v_{2}^{21}+1.01905\times10^{-21}v_{2}^{20}\nonumber\\ &+8.28494\times10^{-22}v_{2}^{19}-4.6185\times10^{-22}v_{2}^{18}-1.27125\times10^{-21}v_{2}^{17}\nonumber\\ &-9.35242\times10^{-22}v_{2}^{16}-3.19849\times10^{-22}v_{2}^{15}+7.28108\times10^{-24}v_{2}^{14}\nonumber\\ &+6.11682\times10^{-23}v_{2}^{13}+6.78336\times10^{-24}v_{2}^{12}+1.47291\times10^{-24}v_{2}^{11}\nonumber\\ &+8.0039\times10^{-24}v_{2}^{10}-2.71136\times10^{-24}v_{2}^{9}-1.27876\times10^{-24}v_{2}^{8}\nonumber\\ &+1.35623\times10^{-24}v_{2}^{7}+3.48519\times10^{-25}v_{2}^{6}+2.48651\times10^{-26}v_{2}^{5}\nonumber\\ &-2.61144\times10^{-26}v_{2}^{4}-1.87784\times10^{-27}v_{2}^{3}-6.6019\times10^{-29}v_{2}^{2}\nonumber\\ &+2.43536\times10^{-29}v_{2}- 6.98911\times10^{-31}. \label{v2} \end{align*}

    Next, we obtain the solution of the system (f) by the following steps:

    Step 1. Solving {\text{Res}}_{v_1}(h_1, h_2) = 0 , we have

    \begin{align*} v_{2} = &-0.85035, \quad 0.22179, \quad -7.79725, \quad -1.78254, \quad -11.53378, \\ &-0.75907, \quad -0.70532, \quad 0.47100. \end{align*}

    Step 2. Substituting v_2 = -0.85035 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or v_1 = 4.25751 . Substituting v_2 = -0.85035 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.48184 , -0.17296 , 0.0000000000038876, or 5.04918. It is easy to see that h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 have no common solution, which implies that v_2 = -0.85035 is not a solution of the system (f).

    Step 3. Substituting v_2 = 0.22179 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or 4.25751. substituting v_2 = 0.22179 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.24034 or 4.25751. It is easy to see that v_1 = 4.25751 is a common solution of h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 .

    Step 4. Substituting v_2 = 0.22179 and v_1 = 4.25751 into g_1(u_2, v_1, v_2) , g_2(u_2, v_1, v_2) and g_3(u_2, v_1, v_2) , and letting g_1(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_2(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_3(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 . Hence, the common solution of g_1(u_2, v_1, v_2) = 0 , g_2(u_2, v_1, v_2) = 0 and g_3(u_2, v_1, v_2) = 0 is u_2 = 1.76393 .

    Step 5. Substituting v_2 = 0.22179 , v_1 = 4.25751 and u_2 = 1.76393 into f_1 , and letting f_1(u_1, u_2, v_1, v_2) = 0 , we can get its all real roots u_1 = 8.16186 .

    Step 6. By v_2 = 0.22179 , v_1 = 4.25751 , u_2 = 1.76393 , u_1 = 8.16186 , (3.2) and (3.3), we can get the corresponding C-eigentriples as follows:

    \bullet \lambda = 13.50214 and its C-eigenvectors are

    \begin{align*} x = (0.97050, 0.20974, 0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    \bullet \lambda = -13.50214 and its C-eigenvectors are

    \begin{align*} x = (-0.97050, -0.20974, -0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    Step 7. For other values of v_2 , such as, -7.79725 , -1.78254 , -11.53378 , -0.75907 , -0.70532 , 0.47100, we can also obtain their corresponding C-eigentriples by using the method similar to Steps 3–6.

    Finally, we find all C-eigentriples, which is listed in Table 2.



    [1] V. Ambrosio, R. Servadei, Supercritical fractional Kirchhoff type problems, Fract. Calc. Appl. Anal., 22 (2019), 1351-1377. doi: 10.1515/fca-2019-0071
    [2] G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in \mathbb{R}^N, J. Differ. Equ., 255 (2013), 2340-2362. doi: 10.1016/j.jde.2013.06.016
    [3] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problem on \mathbb{R}^N, Commun. Partial Differ. Equ., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149
    [4] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math., 4 (1983), 17-26.
    [5] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306
    [6] X. J. Chang, Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involoving the fractional Laplacian, J. Differ. Equ., 256 (2014), 479-494.
    [7] K. Cheng, Q. Gao, Sign-changing solutions for the stationary Kirchhoff problems involving the fractional laplacian in \mathbb{R}^N, Acta Math. Sci., 38 (2018), 1712-1730. doi: 10.1016/S0252-9602(18)30841-5
    [8] D. G. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787-794.
    [9] E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev space, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [10] A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal., 8 (2017), 645-660. doi: 10.1515/anona-2017-0075
    [11] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Adv. Nonlinear Anal., 94 (2014), 156-170. doi: 10.1016/j.na.2013.08.011
    [12] G. Z. Gu, X. H. Tang, The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity, Adv. Nonlinear Stud., 19 (2019), 779-795. doi: 10.1515/ans-2019-2045
    [13] C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705-727. doi: 10.1016/j.jmaa.2018.11.048
    [14] H. Jin, W. B. Liu, Fractional Kirchhoff equation with a general critical nonlinearity, Appl. Math. Lett., 74 (2017), 140-146. doi: 10.1016/j.aml.2017.06.003
    [15] G. Kirchhoff, Vorlesungen Uber Mechanik, Teubner, Leipzig, 1883.
    [16] A. R. Li, J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in \mathbb{R}^3, Z. Angew. Math. Phys., 66 (2015), 3147-3158. doi: 10.1007/s00033-015-0551-9
    [17] Q. Q. Li, K. M. Teng, X. Wu, Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations with critical or supercritical growth, Math. Methods Appl. Sci., 41 (2017), 1136-1144.
    [18] J. L. Lions, On some questions in boundary value problems of mathematical physics, In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, NorthHolland, Amsterdam, 1978.
    [19] G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^3, J. Differ. Equ., 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011
    [20] G. Molica Bisci, V. D. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, Cambridge Univ. Press., Cambridge, 2016.
    [21] D. Naimen, M. Shibata, Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension, Nonlinear Anal., 186 (2019), 187-208. doi: 10.1016/j.na.2019.02.003
    [22] N. Nyamoradi, L. I. Zaidan, Existence and multiplicity of solutions for fractional p-Laplacian Schrödinger-Kirchhoff type equations, Complex Var. Elliptic Equ., 63 (2017), 346-359.
    [23] R. C. Pei, Y. Zhang, J. H. Zhang, Ground state solutions for fractional p-Kirchhoff equation with subcritical and critical exponential growth, Bull. Malays. Math. Sci. Soc., 43 (2020), 355-377. doi: 10.1007/s40840-018-0686-x
    [24] S. I. Pohozǎev, A certain class of quasilinear hyperbolic equations, Mat. Sb., 96 (1975), 152-166.
    [25] P. Pucci, M. Q. Xiang, B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \mathbb{R}^N, Calc. Var. Partial Differ. Equ., 54 (2015), 2785-2806. doi: 10.1007/s00526-015-0883-5
    [26] P. Pucci, M. Q. Xiang, B. L. Zhang, Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian, Adv. Calc. Var., 12 (2019), 253-275. doi: 10.1515/acv-2016-0049
    [27] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacia, Trans. Amer. Math. Soc., 367 (2015), 67-102.
    [28] J. Simon, Régularité de la solution d'une équation non linéaire dans \mathbb{R}^N, Lecture Notes in Math., 665 (1978), 205-227. doi: 10.1007/BFb0061807
    [29] M. Q. Xiang, B. L. Zhang, X. Y. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem, Nonlinear Anal., 120 (2015), 299-313. doi: 10.1016/j.na.2015.03.015
    [30] M. Q. Xiang, B. L. Zhang, V. D. Rădulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690- 709.
    [31] M. Q. Xiang, B. L. Zhang, D. Repovš, Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Truding-Moser nonlinearity, Nonlinear Anal., 186 (2019), 74-98.
    [32] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
    [33] J. Zhang, Z. L. Lou, Y. J. Ji, W. Shao, Ground state of Kirchhoff type fractional Schrödinger equations with critical growth, J. Math. Anal. Appl., 462 (2018), 57-83. doi: 10.1016/j.jmaa.2018.01.060
  • This article has been cited by:

    1. Menglu Lu, Tianqi Yang, Wenkui Zhang, Yang Xia, Xinping He, Xinhui Xia, Yongping Gan, Hui Huang, Jun Zhang, Hydrogen-bond enhanced urea-glycerol eutectic electrolyte to boost low-cost and long-lifespan aqueous sodium-ion batteries, 2025, 20954956, 10.1016/j.jechem.2025.01.004
    2. Yingjie Zhu, Wan Zuha Wan Hasan, Hafiz Rashidi Harun Ramli, Nor Mohd Haziq Norsahperi, Muhamad Saufi Mohd Kassim, Yiduo Yao, Deep Reinforcement Learning of Mobile Robot Navigation in Dynamic Environment: A Review, 2025, 25, 1424-8220, 3394, 10.3390/s25113394
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4533) PDF downloads(201) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog