Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the short-pulse master mode-locking equation[J]. AIMS Mathematics, 2019, 4(3): 437-462. doi: 10.3934/math.2019.3.437
[1] | Quting Chen, Yadong Shang . Direct similarity reductions and new exact solutions of the short pulse equation. AIMS Mathematics, 2019, 4(2): 231-241. doi: 10.3934/math.2019.2.231 |
[2] | Xinyu Li, Wei Wang, Jinming Liang . Improved results on sampled-data synchronization control for chaotic Lur'e systems. AIMS Mathematics, 2025, 10(3): 7355-7369. doi: 10.3934/math.2025337 |
[3] | Yu Wei, Yahan Wang, Huiqin Lu . Asymptotics for fractional reaction diffusion equations in periodic media. AIMS Mathematics, 2025, 10(2): 3819-3835. doi: 10.3934/math.2025177 |
[4] | Qiulan Zhao, Muhammad Arham Amin, Xinyue Li . Classical Darboux transformation and exact soliton solutions of a two-component complex short pulse equation. AIMS Mathematics, 2023, 8(4): 8811-8828. doi: 10.3934/math.2023442 |
[5] | Boomipalagan Kaviarasan, Ramasamy Kavikumar, Oh-Min Kwon, Rathinasamy Sakthivel . A delay-product-type Lyapunov functional approach for enhanced synchronization of chaotic Lur'e systems using a quantized controller. AIMS Mathematics, 2024, 9(6): 13843-13860. doi: 10.3934/math.2024673 |
[6] | Wenjie You, Tianbo Wang . Master-slave synchronization for uncertain Markov jump neural networks with time-delay based on the sliding mode control. AIMS Mathematics, 2024, 9(1): 257-269. doi: 10.3934/math.2024015 |
[7] | Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268 |
[8] | Changtong Li, Dandan Cheng, Xiaozhou Feng, Mengyan Liu . Complex dynamics of a nonlinear impulsive control predator-prey model with Leslie-Gower and B-D functional response. AIMS Mathematics, 2024, 9(6): 14454-14472. doi: 10.3934/math.2024702 |
[9] | Aníbal Coronel, Alex Tello, Fernando Huancas . A characterization of the reachable profiles of entropy solutions for the elementary wave interaction problem of convex scalar conservation laws. AIMS Mathematics, 2025, 10(2): 3124-3159. doi: 10.3934/math.2025145 |
[10] | Jianxia He, Ming Li . Existence of global solution to 3D density-dependent incompressible Navier-Stokes equations. AIMS Mathematics, 2024, 9(3): 7728-7750. doi: 10.3934/math.2024375 |
In recent years, the ultrafast science has experimentally crossed the threshold from the routine and direct laser production of few-cycle optical pulses in the 5−8 fs regime [29,36,37], to subfemtosecond pulses in the range of hundreds of attoseconds [35,54], leading to the hitherto unexplored field of attosecond physics [24,39,58].
Such short pulse durations and broad spectral content have opened up vast new possibilities for exploring the fundamental nature of atomic and molecular physics at the fastest time scales, including molecular vibrations, chemical reactions, and light-matter interactions. Indeed, even single-electron transition events can now be captured [35] and an absolute measure of time potentially established [23,25].
Yet the achievement of attosecond pulses in experiments also highlights the difficulties in measurement and interpretation, especially as the optical field information is interwoven with the physics of the interaction. Thus, theoretical and experimental methods are needed to help guide the understanding of attosecond science.
A first method is based on the master mode-locking (MML) equation. It was developed by Haus [33,34] and has dominated mode-locking theory for many years.
The Haus theory is fundamentally based upon a center-frequency expansion of the electric field and a derivation of an envelope approximation of the nonlinear Schrödinger equation (NLS) type. Inherent in the model is the assumption that the envelope is slow in comparison to the underlying fast carrier.
In the case of the pulses which contain only a few cycles of the carrier, this approximation fails to hold, even if higher-order terms are incorporated into the NLS-based description. Regardless, the NLS-based approach has been shown to work quantitatively beyond its expected breakdown, into the tens of femtoseconds regime, and has been used extensively for modeling supercontinuum generation [28].
However, when pushed to the extreme of a few femtosecond pulses, the NLS description becomes suspect, and a theory not founded upon a center-frequency expansion is required.
As an alternative to the Haus model, Farnum and Kutz [30,31,32] develop a model to describe the pulses like those described in [29,35,36,37,54] without relying on center-frequency expansion.
The Farnum and Kutz model is based on a short-pulse master mode-locking (SPMML) theory, which derives from the Maxwell equations [1,2,4,5,38,50,51,55,59]. In such theories, it is assumed that the propagation occurs for a broadband pulse so that the center-frequency expansion is circumvented.
From a mathematical point of view, the Farnum and Kutz model is formulated in terms of the following equation:
∂x(∂tu+a∂xu3+bu+cu3)=γu,a,b,c,γ∈R, | (1.1) |
also known as SPMML equation, where u(t,x) is the electric field amplitude, t is the time, x is distance propagated in the laser cavity [55], b is the linear attenuation, c is a cubic gain term giving rise to intensity discrimination (saturable absorption) [33,34] and γ is a real parameter [38,55].
If b=c=0, (1.1) reads
∂x(∂tu+a∂xu3)=γu. | (1.2) |
It was introduced by Kozlov and Sazonov [38] as a model equation describing the nonlinear propagation of optical pulses of a few oscillations duration in dielectric media, and by Schäfer and and Wayne [55] as a model equation describing the propagation of ultra-short light pulses in silica optical fibers. Hence, with respect to Kozlov, Sazonov, Schäfer and Wayne, Farnum and Kutz take into consideration the linear attenuation and the saturable absorption. Moreover, in [42,43,44] the authors show that (1.2) is a non-slowly-varying envelope approximation model that describes the physics of few-cycle-pulse optical solitons.
If we take c=0 in (1.1), we have the short pulse equation with linear attenuation, which is deduced in [63].
It also is interesting to remind that Eq (1.2) was proposed earlier in [48] in the context of plasma physic and that the similar equations describe the dynamics of radiating gases [41,57]. In [62], the authors deduce (1.2) to describe the short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Moreover, [3,13,52,53] show that (1.2) is a particular Rabelo equation which describes pseudospherical surfaces.
In literature, we have the following generalization of (1.2):
∂x(∂tu+a∂xu3−β∂3xxxu)=γu. | (1.3) |
It was derived by Costanzino, Manukian and Jones [22] in the context of the nonlinear Maxwell equations with high-frequency dispersion. Kozlov and Sazonov [38] show that (1.3) is an more general equation than (1.2) to describe the nonlinear propagation of optical pulses of a few oscillations duration in dielectric media.
Recently, wellposedness results for the Cauchy problem of (1.2) are proven in the context of energy spaces (see [26,49,60]). A similar result is proven in [11,16] in the context of the entropy solution, while, in [7,12,18], the wellposedness of the homogeneous initial boundary value problem is studied. Finally, the convergence of a finite difference scheme is studied in [21].
Moreover, mathematical properties of (1.3) are studied in many different contexts, including the local and global wellposedness in energy spaces [22,49] and stability of solitary waves [22,46]. Observe that, letting β→0 in (1.3), we obtain (1.2). Hence, following [9,45,56], in [15,16], the convergence of the solution of (1.3) to the unique entropy solution of (1.2) is proven.
In this papaer, we assume that c>0 and we write c=κ2. Therefore, (1.1) reads
∂x(∂tu+a∂xu3+bu+κ2u3)=γu. | (1.4) |
We are interested in the Cauchy problem for this equation, thus we augment (1.4) with the initial condition
u(0,x)=u0(x),x∈R, | (1.5) |
on which assume that
u0(x)∈L∞(R)∩L1(R),∫Ru0(x)dx=0. | (1.6) |
Following [10,11,16], on the function
P0(x)=∫x−∞u0(y)dy, | (1.7) |
we assume that
‖P0‖2L2(R)=∫R(∫x−∞u0(y)dy)2dx<∞. | (1.8) |
Integrating (1.4) in (0,x), we gain the integro-differential formulation of (1.4) and (1.6).
{∂tu+a∂xu3+bu+κ2u3=γ∫x0udy,t≥0,x∈R,u(0,x)=u0(x),x∈R, | (1.9) |
that is equivalent to
{∂tu+a∂xu3+bu+κ2u3=γP,t≥0,x∈R,∂xP=u,t≥0,x∈R,P(t,0)=0,t≥0,u(0,x)=u0(x),x∈R. | (1.10) |
One of the main issues in the analysis of (1.10) is that the equation is not preserving the L1 norm, as a consequence the nonlocal source term P and the solution u are a priori only locally bounded. Indeed, from (1.9) and (1.10) is clear that we cannot have any L∞ bound without an L1 bound. Since we are interested in the bounded solutions of (1.4), some assumptions on the decay at infinity of the initial condition u0 are needed (see (1.8)).
The unique useful conserved quantities are
t⟼∫u(t,x)dx=0,t⟼∫u2(t,x)dx. | (1.11) |
In the sense that if u(t,⋅) has zero mean at time t=0, then it will have zero mean at any time t>0. In addition, the L2 norm of u(t,⋅) is constant with respect to t. Therefore, we require that initial condition u0 belongs to L2∩L∞ and has zero mean.
Due to the regularizing effect of the P equation in (1.10), we have that
u∈L∞((0,T)×R)⟹P∈L∞((0,T);W1,∞(R)),T>0. | (1.12) |
Following [10,11,16], we give the following definition of solution.
Definition 1. We say that u∈L∞((0,T)×R) is an entropy solution of the initial value problem (1.10) and (1.5) if
i) u is a distributional solution of (1.10);
ii) for every convex function η∈C2(R) the entropy inequality
∂tη(u)+∂xq(u)+bη′(u)u+κ2η′(u)u3−γη′(u)P≤0,q(u)=3a∫uξ2η′(ξ)dξ, | (1.13) |
holds in the sense of distributions in (0,∞)×R.
The main result of this paper is the following theorem.
Theorem 1.1. Assume (1.6) and (1.8). The initial value problem (1.10) and (1.5) possesses an unique entropy solution u in the sense of Definition1. Moreover, if u and v are two entropy solutions (1.10) and (1.5) in the sense of Definition 1, the following inequality holds
‖u(t,⋅)−v(t,⋅)‖L1(−R,R)≤eC(T)t‖u(0,⋅)−v(0,⋅)‖L1(−R−C(T)t,R+C(T)t), | (1.14) |
for almost every 0<t<T, R>0, and some suitable constant C(T)>0.
The paper is organized as follows. In Section 2, we prove several a priori estimates on a vanishing viscosity approximation of (1.10). Those play a key role in the proof of our main result, that is given in Section 3.
Our existence argument is based on passing to the limit in a vanishing viscosity approximation of (1.10).
Fix ε>0 a small number and let uε=uε(t,x) be the unique classical solution of the following mixed problem [14,20]:
{∂tuε+a∂xu3ε+buε+κ2u3ε=γPε+ε∂2xxuε,t>0,x∈R,∂xPε=uε,t>0,x∈R,Pε(t,0)=0,t>0,x∈R,uε(0,x)=uε,0(x),x∈R, | (2.1) |
where uε,0 is a C∞ approximation of u0 such that
‖uε,0‖L∞(R)≤‖u0‖L∞(R),‖uε,0‖L2(R)≤‖u0‖L2(R),‖uε,0‖L4(R)≤‖u0‖L4(R),∫Ruε,0(x)=0,‖Pε,0‖L2(R)≤‖P0‖L2(R),∫RPε,0(x)u3ε,0(x)dx≤C0, | (2.2) |
where C0 is a constant independent on ε.
Let us prove some a priori estimates on uε and Pε, denoting with C0 the constants which depend only on the initial data, and C(T) the constants which depend also on T.
Arguing as in [8,Lemma 2.1], or [10,Lemma 2.1], we have the following result.
Lemma 2.1. Let us suppose that
Pε(t,−∞)=0,t≥0,(or Pε(t,∞)=0). | (2.3) |
Then, the following statements are equivalent
∫Ruε(t,x)dx=0,t≥0, | (2.4) |
ddt‖uε(t,⋅)‖2L2(R)+κ2‖uε(t,⋅)‖4L4(R)+2ε‖∂xuε(t,⋅)‖2L2(R)=2b‖uε(t,⋅)‖2L2(R),t>0. | (2.5) |
Lemma 2.2. For each t∈[0,∞), (2.3) and (2.4) hold. In particular, fixed T≥t≥0, we have that
‖uε(t,⋅)‖2L2(R)+κ2e|b|t∫t0e−|b|s‖uε(s,⋅)‖4L4(R)ds+2εe|b|t∫t0e−|b|s‖∂xuε(s,⋅)‖2L2(R)ds≤C(T). | (2.6) |
Proof. Arguing as in [8,Lemma 2.2], we have (2.3), and (2.4). Lemma 2.1 says that (2.5) also hold. Therefore, we get
ddt‖uε(t,⋅)‖2L2(R)+κ2‖uε(t,⋅)‖4L4(R)+2ε‖∂xuε(t,⋅)‖2L2(R)≤2|b|‖uε(t,⋅)‖2L2(R). |
Fixed T>0, the Gronwall Lemma and (2.2) give
‖uε(t,⋅)‖2L2(R)+κ2e2|b|t∫t0e−2|b|s‖uε(s,⋅)‖4L4(R)ds+2εe2|b|t∫t0e−2|b|s‖∂xuε(s,⋅)‖2L2(R)ds≤‖u0‖2L2(R)e|b|t≤C(T), |
that is (2.6).
Lemma 2.3. Fix T>0. There exists a constant C(T)>0, independent on ε, such that
‖uε(t,⋅)‖4L4(R)+4κ2∫t0‖uε(s,⋅)‖6L6(R)ds+12ε∫t0‖uε(s,⋅)∂xuε(s,⋅)‖2L2(R)ds≤C(T)(1+‖Pε‖L∞((0,T)×R)). | (2.7) |
Proof. Let 0≤t≤T. Multiplying (2.1) by 4u3ε, an integration on R gives
ddt‖uε(t,⋅)‖4L4(R)=4∫Ru3ε∂tuεdx=−12a∫Ru5ε∂xuεdx−4b‖uε(t,⋅)‖4L4(R)−4κ2‖uε(t,⋅)‖6L6(R)+4γ∫RPεu3εdx+4ε∫Ru3ε∂2xxuεdx=−4b‖uε(t,⋅)‖4L4(R)−4κ2‖uε(t,⋅)‖6L6(R)+4γ∫RPεu3εdx−12ε‖uε(t,⋅)∂xuε(t,⋅)‖2L2(R). |
Hence,
ddt‖uε(t,⋅)‖4L4(R)+4κ2‖uε(t,⋅)‖6L6(R)+12ε‖uε(t,⋅)∂xuε(t,⋅)‖2L2(R)=−4b‖uε(t,⋅)‖4L4(R)+4γ∫RPεu3εdx≤4|b|‖uε(t,⋅)‖4L4(R)+4|γ|∫R|Pε||uε|3dx. | (2.8) |
Due to (2.6) and the Young inequality,
4|γ|∫R|Pε||uε|3dx≤4|γ|‖Pε‖L∞(0,T)×R)∫R|uε|3dx≤2|γ|‖Pε‖L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+2|γ|‖Pε‖L∞(0,T)×R)‖uε(t,⋅)‖4L4(R)≤C(T)‖Pε‖L∞((0,T)×R)++2|γ|‖Pε‖L∞((0,T)×R)‖uε(t,⋅)‖4L4(R). |
Consequently, by (2.8),
ddt‖uε(t,⋅)‖4L4(R)+4κ2‖uε(t,⋅)‖6L6(R)+12ε‖uε(t,⋅)∂xuε(t,⋅)‖2L2(R)≤4|b|‖uε(t,⋅)‖4L4(R)+C(T)‖Pε‖L∞((0,T)×R)+2|γ|‖Pε‖L∞((0,T)×R)‖uε(t,⋅)‖4L4(R). |
It follows from (2.2), (2.5) and an integration on (0,t) that
‖uε(t,⋅)‖4L4(R)+4κ2∫t0‖uε(s,⋅)‖6L6(R)ds+12ε∫t0‖uε(s,⋅)∂xuε(s,⋅)‖2L2(R)ds≤C0+4|b|∫t0‖uε(s,⋅)‖4L4(R)ds+C(T)‖Pε‖L∞((0,T)×R)t+2|γ|‖Pε‖L∞((0,T)×R)∫t0‖uε(s,⋅)‖4L4(R)ds≤C0+4|b|e2|b|t∫t0e−2|b|s‖uε(s,⋅)‖4L4(R)ds+C(T)‖Pε‖L∞((0,T)×R)+2|γ|‖Pε‖L∞((0,T)×R)e2|b|t∫t0e−2|b|s‖uε(s,⋅)‖4L4(R)ds≤C(T)(1+‖Pε‖L∞((0,T)×R)), |
which give (2.7).
Lemma 2.4. Fix T>0. For each t∈[0,T], we have that
∫0−∞Pε(t,x)dx≤aγu3ε(t,0)−εγ∂xuε(t,0)+C(T)√(1+‖Pε‖L∞((0,T)×R)), | (2.9) |
∫∞0Pε(t,x)dx≤−aγu3ε(t,0)+εγ∂xuε(t,0)+C(T)√(1+‖Pε‖L∞((0,T)×R)). | (2.10) |
Moreover,
∫RPε(t,x)dx=−κ2γ∫Ru3ε(t,x)dx,t≥0. | (2.11) |
Proof. We begin by observing that, integrating the second equation of (2.1) on (0,x), we have
Pε(t,x)=∫x0uε(t,y)dy. | (2.12) |
Consequently, by (2.3),
∫−∞0uε(t,x)dx=0. | (2.13) |
Differentiating (2.13) with respect to t, we obtain
ddt∫−∞0uε(t,x)dx=∫−∞0∂tuε(t,x)dx=0. | (2.14) |
Integrating the first equation on (0,x), we have that
γ∫x0Pε(t,y)dy=∫x0∂tuε(t,y)dy+au3ε(t,x)−auε(t,0)−ε∂xuε(t,x)+ε∂xuε(t,0)−bPε(t,x)−κ2∫x0u3ε(t,x)dy. | (2.15) |
It follows from (2.3) and the regularity of uε that
limx→−∞(au3ε(t,x)−ε∂xuε(t,x)−bPε(t,x))=0. | (2.16) |
Consequently, by (2.3), (2.14), (2.15) and (2.16),
γ∫−∞0Pε(t,x)dx=−auε(t,0)+ε∂xuε(t,0)−κ2∫−∞0u3ε(t,x)dx, |
that is
∫0−∞Pε(t,x)dx=aγuε(t,0)−εγ∂xuε(t,0)−κ2γ∫0−∞u3ε(t,x)dx | (2.17) |
Due to (2.6), (2.7) and the Hölder inequality,
−κ2γ∫0−∞u3εdx≤κ2|γ|∫R|uε|3dx≤κ2|γ|‖uε(t,⋅)‖L2(R)‖uε(t,⋅)‖2L4(R)≤C(T)‖uε(t,⋅)‖2L4(R)≤C(T)√(1+‖Pε‖L∞((0,T)×R)). | (2.18) |
(2.9) follows from (2.17) and (2.18).
We prove (2.10). By (2.3) and (2.12), we have
∫∞0uε(t,x)dx=0. | (2.19) |
Consequently, differentiating (2.19) with respect to t, we obtain
ddt∫∞0uε(t,x)dx=∫∞0∂tuε(t,x)dx=0. | (2.20) |
(2.3) and the the regularity of uε give
limx→∞(au3ε(t,x)−ε∂xuε(t,x)−bPε(t,x))=0. | (2.21) |
Therefore, by (2.15), (2.20) and (2.21),
∫∞0Pε(t,x)dx=−aγuε(t,0)+εγ∂xuε(t,0)−κ2γ∫∞0u3ε(t,x)dx | (2.22) |
Due to (2.6), (2.7) and the Hölder inequality,
−κ2γ∫∞0u3εdx≤κ2|γ|∫∞0|uε|3dx≤κ2|γ|‖uε(t,⋅)‖L2(R)‖uε(t,⋅)‖2L4(R)≤C(T)‖uε(t,⋅)‖2L4(R)≤C(T)√(1+‖Pε‖L∞((0,T)×R)). | (2.23) |
(2.22) and (2.23) give (2.10).
Finally, we prove (2.11). Thanks to (2.9) and (2.10), we can consider (2.17) and (2.22) which give (2.11).
Following [15,Lemma 2.4], we prove the following result.
Lemma 2.5. Fix T>0. There exists a constant C(T)>0, independent on ε, such that
‖Pε‖L∞((0,T)×R)≤C(T). | (2.24) |
In particular, for every 0≤t≤T, we have
‖Pε(t,⋅)‖2L2(R)≤C(T),∫t0‖Pε(s,⋅)uε(s,⋅)‖2L2(R)ds≤C(T),‖uε(t,⋅)‖L4(R)≤C(T),∫t0‖uε(s,⋅)‖6L6(R)≤C(T),ε∫t0‖uε(s,⋅)∂xuε(s,⋅)‖2L2(R)ds≤C(T). | (2.25) |
Proof. Let 0≤t≤T. We begin by observing that, thanks to (2.9), we can consider the following function
Fε(t,x)=∫x−∞Pε(t,y)dy. | (2.26) |
Integrating the second equation of (2.1), by (2.3), we get
Pε(t,x)=∫x−∞uε(t,y)dy. | (2.27) |
Differentiating (2.27) with respect to t, we obtain that
∂tPε(t,x)=ddt∫x−∞uε(t,y)dy=∫x−∞∂tuε(t,y)dy. | (2.28) |
Integrating the first equation of (2.1) on (−∞,x), from (2.26), (2.27) and (2.28), we have
∂tPε(t,x)=−au3ε(t,x)−bPε(t,x)−κ2∫x−∞u3ε(t,y)dy+γFε(t,x)+ε∂xuε(t,x). | (2.29) |
Multiplying (2.29) by 2Pε, an integration on R give
ddt‖Pε(t,⋅)‖2L2(R)=2∫RPε∂tPεdx=−2a∫RPεu3εdx−2b‖Pε(t,⋅)‖2L2(R)+2ε∫RPε∂xuεdx−2κ2∫RPε(∫x−∞u3ε(t,y)dy)dx+2γ∫RPεFεdx | (2.30) |
Observe that, by (2.11) and (2.26),
2γ∫RPεFεdx=2γ∫RFε∂xFεdx=γF2ε(t,∞)=γ(∫RPε(t,x)dx)2=κ4γ(∫Ru3εdx)2. | (2.31) |
Again by (2.11) and (2.26),
−2κ2∫RPε(∫x−∞u3ε(t,y)dy)dx=−2κ2Fε(t,∞)∫Ru3εdx+2κ2∫RFεu3εdx=−2κ2(∫RPεdx)(∫Ru3εdx)+2κ2∫RFεu3εdx=2κ4γ(∫Ru3εdx)2+2κ2∫RFεu3εdx. | (2.32) |
Moreover, by (2.1) and (2.3),
2ε∫RPε∂xuεdx=−2ε∫R∂xPεuεdx=−2ε‖uε(t,⋅)‖2L2(R). | (2.33) |
Therefore, it follows from (2.30), (2.31), (2.32) and (2.33) that
ddt‖Pε(t,⋅)‖2L2(R)+2ε‖uε(t,⋅)‖2L2(R)=−2a∫RPεu3εdx−2b‖Pε(t,⋅)‖2L2(R)+3κ4γ(∫Ru3εdx)2+2κ2∫RFεu3εdx. | (2.34) |
By (2.29), we have
Fε(t,x)=1γ∂tPε(t,x)+aγu3ε(t,x)+bγPε(t,x)+κ2γ∫x−∞u3ε(t,y)dy−εγ∂xuε(t,x). | (2.35) |
Multiplying (2.35) by 2κ2u3ε, an integration on R gives
2κ2∫RFεu3εdx=2κ2γ∫R∂tPεu3εdx+2aκ2γ‖uε(t,⋅)‖6L6(R)+2κ2bγ∫RPεu3εdx+2κ4γ∫Ru3ε(∫x−∞u3εdy)dx−2κ2εγ∫Ru3ε∂xuεdx. |
Since
2κ4γ∫Ru3ε(∫x−∞u3εdy)dx=κ4γ(∫Ru3εdx)2,−2κ2εγ∫Ru3ε∂xuεdx=0, |
we have that
2κ2∫RFεu3εdx=2κ2γ∫R∂tPεu3εdx+2aκ2γ‖uε(t,⋅)‖6L6(R)+2κ2bγ∫RPεu3εdx+κ4γ(∫Ru3εdx)2. | (2.36) |
Using (2.36) in (2.34), we get
ddt‖Pε(t,⋅)‖2L2(R)+2ε‖uε(t,⋅)‖2L2(R)=2(κ2b−aγ)γ∫RPεu3εdx−2b‖Pε(t,⋅)‖2L2(R)+2aκ2γ‖uε(t,⋅)‖6L6(R)+4κ4γ(∫Ru3εdx)2+2κ2γ∫R∂tPεu3εdx. | (2.37) |
Observe that
∂t(Pεu3ε)=∂tPεu3ε+Pε∂tu3ε=∂tPεu3ε+3Pεu2ε∂tuε. |
Consequently,
2κ2γ∫R∂tPεu3εdx=2κ2γddt∫RPεu3εdx−6κ2γ∫RPεu2ε∂tuεdxdx. | (2.38) |
Using (2.38) in (2.37), we have
dG(t)dt+2ε‖uε(t,⋅)‖2L2(R)=2(κ2b−aγ)γ∫RPεu3εdx−2b‖Pε(t,⋅)‖2L2(R)+2aκ2γ‖uε(t,⋅)‖6L6(R)+4κ4γ(∫Ru3εdx)2−6κ2γ∫RPεu2ε∂tuεdx, | (2.39) |
where
G(t):=‖Pε(t,⋅)‖2L2(R)−2κ2γ∫RPεu3εdx. | (2.40) |
Multiplying the first equation of (2.1) by −6κ2γPεu2ε, an integration on R give
−6κ2γ∫RPεu2ε∂tuεdx=18aκ2γ∫RPεu4ε∂xuεdx+6bκ2γ∫RPεu3εdx+κ4γ∫RPεu5εdx−6κ2‖Pε(t,⋅)uε(t,⋅)‖2L2(R)−6κ2εγ∫RPεu2ε∂2xxuεdx. | (2.41) |
Observe that by (2.1) and (2.3),
18aκ2γ∫RPεu4ε∂xuεdx=−18aκ25γ∫Ru5ε∂xPεdx=−18aκ25γ‖uε(t,⋅)‖6L6(R),−6κ2εγ∫RPεu2ε∂2xxuεdx=6κ2εγ∫R∂xPεu2ε∂xuεdx+12κ2εγ∫RPεuε(∂xuε)2dx=6κ2εγ∫Ru3ε∂xuεdx+12κ2εγ∫RPεuε(∂xuε)2dx=12κ2εγ∫RPεuε(∂xuε)2dx. |
Hence, by (2.41),
−6κ2γ∫RPεu2ε∂tuεdx=−18aκ25γ‖uε(t,⋅)‖6L6(R)+6bκ2γ∫RPεu3εdx+κ4γ∫RPεu5εdx−6κ2‖Pε(t,⋅)uε(t,⋅)‖2L2(R)+12κ2εγ∫RPεuε(∂xuε)2dx. | (2.42) |
Substituting (2.42) in (2.39), we get
dG(t)dt+2ε‖uε(t,⋅)‖2L2(R)+6κ2‖Pε(t,⋅)uε(t,⋅)‖2L2(R)=8κ2b−2aγγ∫RPεu3εdx−2b‖Pε(t,⋅)‖2L2(R)−8aκ2γ‖uε(t,⋅)‖6L6(R)+4κ4γ(∫Ru3εdx)2+κ4γ∫RPεu5εdx+12κ2εγ∫RPεuε(∂xuε)2dx. | (2.43) |
Due to (2.6), (2.7) and the Young inequality and the Hölder inequality,
|8κ2b−2aγ||γ|∫R|Pε||uε|3dx=|8κ2b−2aγ||γ|∫R|Pεuε|u2εdx≤|8κ2b−2aγ|2|γ|∫RP2εu2εdx+|8κ2b−2aγ|2|γ|‖uε(t,⋅)‖4L4(R)≤|8κ2b−2aγ|2|γ|‖Pε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+C(T)(1+‖Pε‖L∞((0,T)×R))≤C(T)‖Pε‖2L∞((0,T)×R)+C(T),κ4|γ|∫R|Pε|uε|5dx=κ4|γ|∫R|√DPεu2ε|u3ε√Ddx≤Dκ42|γ|∫RP2εu4εdx+κ42D|γ|‖uε(t,⋅)‖6L6(R)=∫R|Dκ4P2εu2ε2√E|γ|||√Eu3ε|dx+κ42D|γ|‖uε(t,⋅)‖6L6(R)≤D2κ84Eγ2∫RP4εu2εdx+(E2+κ42D|γ|)‖uε(t,⋅)‖6L6(R)≤D2κ84Eγ2‖Pε‖4L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+(E2+κ42D|γ|)‖uε(t,⋅)‖6L6(R)≤D2C(T)E‖Pε‖4L∞((0,T)×R)+(E2+κ42D|γ|)‖uε(t,⋅)‖6L6(R),12κ2ε|γ|∫RPεuε(∂xuε)2dx=12κ2ε|γ|∫R|Pε∂xuε||uε∂xuε|dx≤6κ2ε|γ|∫RP2ε(∂xuε)2dx+6κ2ε|γ|‖uε(t,⋅)∂xuε(t,⋅)‖2L2(R)≤6κ2ε|γ|‖Pε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R)+6κ2ε|γ|‖uε(t,⋅)∂xuε(t,⋅)‖2L2(R),4κ4|γ|(∫R|uε|3dx)2≤4κ4|γ|(‖uε(t,⋅)‖L2(R)‖uε(t,⋅)‖4L2(R))2≤C(T)‖uε(t,⋅)‖4L4(R)≤C(T)(1+‖Pε‖L∞((0,T)×R))≤C(T)+C(T)‖Pε(t,⋅)‖2L∞((0,T)×R), |
where D,E are two positive constants which will be specified later. Consequently, by (2.43),
dG(t)dt+2ε‖uε(t,⋅)‖2L2(R)+6κ2‖Pε(t,⋅)uε(t,⋅)‖2L2(R)≤2|b|‖Pε(t,⋅)‖2L2(R)+(8|a|κ2|γ|+E2+κ42D|γ|)‖uε(t,⋅)‖6L6(R)+6κ2ε|γ|‖Pε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R)+6κ2ε|γ|‖uε(t,⋅)∂xuε(t,⋅)‖2L2(R)+D2C(T)E‖Pε‖4L∞((0,T)×R)+C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)+C(T). | (2.44) |
Observe that by (2.40),
2|b|‖Pε(t,⋅)‖2L2(R)=2|b|G(t)+4|b|κ2γ∫RPεu3εdx. | (2.45) |
Thanks to (2.6), (2.7) and the Young inequality,
4|b|κ2|γ|∫R|Pε||uε|3dx=4|b|κ2|γ|∫R|Pεuε|u2εdx≤2|b|κ2|γ|∫RP2εu2εdx+2|b|κ2|γ|‖uε(t,⋅)‖4L4(R)≤2|b|κ2|γ|‖Pε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+C(T)(1+‖Pε‖L∞((0,T)×R))≤C(T)‖Pε‖2L∞((0,T)×R)+C(T). | (2.46) |
It follows from (2.44), (2.45) and (2.46) that
dG(t)dt+2ε‖uε(t,⋅)‖2L2(R)+6κ2‖Pε(t,⋅)uε(t,⋅)‖2L2(R)≤2|b|G(t)+(8|a|κ2|γ|+E2+κ42D|γ|)‖uε(t,⋅)‖6L6(R)+6κ2ε|γ|‖Pε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R)+6κ2ε|γ|‖uε(t,⋅)∂xuε(t,⋅)‖2L2(R)+D2C(T)E‖Pε‖4L∞((0,T)×R)+C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)+C(T). |
The Gronwall Lemma, (2.2), (2.6), (2.7), (2.40), (2.46) and the Young inequality give
‖Pε(t,⋅)‖2L2(R)+2εe2|b|t∫t0e−2|b|s‖uε(s,⋅)‖2L2(R)ds+6κ2e2|b|t∫t0e−2|b|s‖Pε(s,⋅)uε(s,⋅)‖2L2(R)ds≤C0+2κ2γ∫RPεu3εdx+(8|a|κ2|γ|+E2+κ42D|γ|)e2|b|t∫t0e−2|b|s‖uε(s,⋅)‖6L6(R)ds+6κ2ε|γ|‖Pε‖2L∞((0,T)×R)e2|b|t∫t0e−2|b|s‖∂xuε(s,⋅)‖2L2(R)ds+6κ2ε|γ|e2|b|t∫t0e−2|b|s‖uε(s,⋅)∂xuε(s,⋅)‖2L2(R)ds+D2C(T)E‖Pε‖4L∞((0,T)×R)e2|b|t∫t0e−2|b|sds+C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)e2|b|t∫t0e−2|b|sds+C(T)e2|b|t∫t0e−2|b|sds≤C(T)(8|a|κ2|γ|+E2+κ42D|γ|)∫t0‖uε(s,⋅)‖6L6(R)ds+C(T)ε∫t0‖uε(s,⋅)∂xuε(s,⋅)‖2L2(R)ds+D2C(T)E‖Pε‖4L∞((0,T)×R)≤C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)+C(T)≤C(T)(E2+κ42D|γ|)(1+‖Pε‖L∞((0,T)×R))+C(T)(1+‖Pε‖L∞((0,T)×R))+D2C(T)E‖Pε‖4L∞((0,T)×R)+C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)+C(T)≤C(T)(E2+κ42D|γ|+1)(1+‖Pε‖2L∞((0,T)×R))+D2C(T)E‖Pε‖4L∞((0,T)×R)+C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)+C(T). | (2.47) |
We prove (2.9). Thanks to (2.1), (2.3), (2.6) and the Hölder inequality,
P2ε(t,x)=2∫x−∞Pε∂xPεdy≤2∫R|Pε||uε|dx≤2‖Pε(t,⋅)‖L2(R)‖uε(t,⋅)‖L2(R)≤C(T)‖Pε(t,⋅)‖L2(R). |
Therefore, by (2.47),
‖Pε‖4L∞((0,T)×R)≤C(T)‖Pε(t,⋅)‖2L2(R)≤C(T)(E2+κ42D|γ|+1)(1+‖Pε‖2L∞((0,T)×R))+D2C(T)E‖Pε‖4L∞((0,T)×R)+C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)+C(T). |
Hence,
(1−D2C(T)E)‖Pε‖4L∞((0,T)×R)−C(T)(E2+κ42D|γ|+1)(1+‖Pε‖2L∞((0,T)×R))−C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)−C(T)≤0. |
Choosing
E=D,D=12C(T), | (2.48) |
we have
12‖Pε‖4L∞((0,T)×R)−C(T)‖Pε(t,⋅)‖2L∞((0,T)×R)−C(T)≤0, |
which gives (2.24).
Finally (2.25) follows from (2.7), (2.24), (2.47) and (2.48).
Following [10,Lemma 3.1], or [19,Lemma 3.1], we prove the following result.
Lemma 2.6. Let T>0. There exists a constant C(T)>0, independent on ε, such that
‖uε‖L∞((0,T)×R)≤C(T), | (2.49) |
for every 0≤t≤T.
Proof. Let 0≤t≤T. We begin by observing that, by (2.9), we have that
|γPε(t,x)|≤|γ|C(T),(t,x)∈(0,T)×R. | (2.50) |
Therefore,
−|γ|C(T)≤γPε(t,x)≤|γ|C(T). | (2.51) |
The proof of (2.49) splits into two parts. In the first part, we consider b≥0. Instead, in the second one, we consider b≤0.
Case b≥0. We assume that
b=α2. | (2.52) |
Therefore, by the first equation of (2.1), (2.51) and (2.52), we have
∂tuε+a∂xu3ε−ε∂2xxuε≤|γ|C(T)−α2uε−κ2u3ε. | (2.53) |
A supersolution of (2.1) satisfies the following ordinary differential equation:
dz1dt+α2z1+κ2z31−|γ|C(T)=0,z1(0)=‖uε,0‖L∞(R). | (2.54) |
We consider the map
Z1(t)=At+A,t≥0. | (2.55) |
where A is a positive constant, which will be specified later. Observe that
dZ1dt+α2Z1+κ2Z31−|γ|C(T)=A+α2A(t+1)+κ2A3(t+1)3−|γ|C(T) |
Choosing
A=|γ|C(T), | (2.56) |
we have that
dZ1dt+α2Z1+κ2Z31−|γ|C(T)=α2|γ|C(T)(t+1)+κ2|γ|3C(T)(t+1)3≥0, | (2.57) |
for every t∈(0,T). Then, Z1(t) is a supersolution of (2.54). (2.56), the comparison principle for parabolic equations and the comparison principle for ordinary differential equations yield
uε(t,x)≤z1(t)≤Z1(t)=|γ|C(T)(t+1),(t,x)∈(0,T)×R. | (2.58) |
Observe that, by the first equation of (2.1), (2.51) and (2.52), we have
∂tuε+a∂xu3ε−ε∂2xxuε≥−|γ|C(T)−α2uε−κ2u3ε. | (2.59) |
Therefore, a subsolution of (2.1) satisfies the following ordinary differential equation:
dz2dt+α2z2+κ2z32+|γ|C(T)=0,z2(0)=‖uε,0‖L∞(R). | (2.60) |
We consider the map
Z2(t)=−Bt−B,t≥0. | (2.61) |
where B is a positive constant, which will be specified later. Observe that
dZ2dt+α2Z2+κ2Z32+|γ|C(T)=−B−α2B(t+1)−κ2B3(t+1)3+|γ|C(T). |
Choosing
B=|γ|C(T), | (2.62) |
we have that
dZ1dt+α2Z1+κ2Z31−|γ|C(T)=−α2|γ|C(T)(t+1)−κ2|γ|3C(T)(t+1)3≤0, | (2.63) |
for every t∈(0,T). Then, Z2(t) is a subsolution of (2.61). (2.52), the comparison principle for parabolic equations and the comparison principle for ordinary differential equations yield
−|γ|C(T)(t+1)=Z2(t)≤z2(t)≤uε(t,x),(t,x)∈(0,T)×R. | (2.64) |
It follows from (2.58) and (2.64) that
|uε(t,x)|≤|γ|C(T)(t+1)≤|γ|C(T)(T+1), | (2.65) |
which give (2.49).
Case b≤0. We assume that
b=−α2. | (2.66) |
Thanks to (2.66), arguing as in previous case, we get
∂tuε+a∂xu3ε−ε∂2xxuε≤|γ|C(T)+α2uε−κ2u3ε. | (2.67) |
A supersolution of (2.1) satisfies the following ordinary differential equation:
dz3dt−α2z3+κ2z33−|γ|C(T)=0,z3(0)=‖uε,0‖L∞(R). | (2.68) |
We consider the map
Z3(t)=Dt+E,t≥0. | (2.69) |
where D,E are two positive constants, which will be specified later. Observe that
dZ3dt−α2Z3+κ2Z33−|γ|C(T)=D−α2(Dt+E)+κ2(Dt+E)3+|γ|C(T)=κ2D3t3+3κ2D2Et2+D(3κ2E2−α2)t+D+κ2E3−α2E−|γ|C(T). | (2.70) |
We search D,E such that,
3κ2E2−α2≥0,D+κ2E3−α2E−|γ|C(T)≥0. | (2.71) |
From the first inequality of (2.71), we obtain that
E≥|α√3κ|. | (2.72) |
Choosing
D=|γ|C(T), | (2.73) |
it follows from the second inequality of (2.71) that
κ2E3−α2E≥0⇒κ2E2−α2≥0, |
that is
E≥|ακ|. | (2.74) |
From (2.72) and (2.74), we get
E≥max{|α√3κ|,|ακ|}=|ακ|. | (2.75) |
Choosing
E=|ακ|, | (2.76) |
from (2.69) and (2.73), we have that
Z3(t)=Dt+E=|γ|C(T)t+|ακ|. | (2.77) |
Moreover, by (2.70), (2.73) and (2.76),
dZ3dt−α2Z3+κ2Z33−|γ|C(T)≥0, |
for every 0≤t≤T. Then, Z3(t) is a supersolution of (2.68). (2.77), the comparison principle for parabolic equations and the comparison principle for ordinary differential equations yield
uε(t,x)≤z3(t)≤Z3(t)=|γ|C(T)t+|ακ|,(t,x)∈(0,T)×R. | (2.78) |
Arguing as in previous case, we have that
∂tuε+a∂xu3ε−ε∂2xxuε≥−|γ|C(T)+α2uε−κ2u3ε. | (2.79) |
Therefore, a subsolution of (2.1) satisfies the following ordinary differential equation:
dz4dt−α2z4+κ2z34+|γ|C(T)=0,z2(0)=‖uε,0‖L∞(R). | (2.80) |
We consider the map
Z4(t)=−Ft−G,t≥0. | (2.81) |
where F,G are two positive constants, which will be specified later. Observe that
dZ4dt−α2Z4+κ2Z34+|γ|C(T)=−F+α2(Ft+G)−κ2(Ft+G)3+|γ|C(T)=−κ2F3t3−3κ2F2Gt2+F(α2−3κ2G2)t−F+α2G−κ2G3+|γ|C(T) | (2.82) |
We search F,G such that
α2−3κ2G2≤0,−F+α2G−κ2G3+|γ|C(T)≤0. | (2.83) |
Choosing
F=|γ|C(T), | (2.84) |
by (2.83), we have
3κ2G2−α2≥0,κ2G3−α2G≥0. |
Arguing as before, we gain
G≥max{|α√3κ|,|ακ|}=|ακ|. | (2.85) |
Choosing
G=|ακ|, | (2.86) |
then, by (2.81) and (2.84),
Z4(t)=−Ft−G=−|γ|C(T)t−|ακ|. | (2.87) |
Moreover, by (2.82), (2.84) and (2.86), we have
dZ4dt−α2Z4+κ2Z34+|γ|C(T)≤0, |
for every 0≤t≤T. Then, Z4(t) is a subsolution of (2.80). (2.87), the comparison principle for parabolic equations and the comparison principle for ordinary differential equations yield
−|γ|C(T)t−|ακ|≤Z4(t)≤z4(t)≤uε(t,x),(t,x)∈(0,T)×R. | (2.88) |
It follows from (2.78) and (2.88) that
−|γ|C(T)t−|ακ|≤uε(t,x)≤|γ|C(T)t+|ακ|. |
Hence,
|uε(t,x)|≤|γ|C(T)t+|ακ|≤|γ|C(T)T+|ακ|, |
which gives (2.49).
This section is devoted to the proof of Theorem 1.1.
Let us begin by proving the existence of a distributional solution to (1.10) satisfying (1.13).
Lemma 3.1. Let T>0. There exists a function u∈L∞((0,T)×R) that is a distributional solution of (2.1) and satisfies (1.13) for every convex entropy η∈C2(R).
We construct a solution by passing to the limit in a sequence {uε}ε>0 of viscosity approximations (2.1). We use the compensated compactness method [61].
Lemma 3.2. Let T>0. There exists a subsequence {uεk}k∈N of {uε}ε>0 and a limit function u∈L∞((0,T)×R) such that
uεk→ua.e.and in Lploc((0,T)×R),1≤p<∞. | (3.1) |
Moreover, we have that
Pεk→P a.e.and in Lploc((0,T);W1,ploc(R)),1≤p<∞, | (3.2) |
where
P(t,x)=∫x0u(t,y)dy,t≥0,x∈R. | (3.3) |
Proof. Let η:R→R be any convex C2 entropy function, and q:R→R be the corresponding entropy flux defined by q′(u)=3au2η′(u). By multiplying the first equation in (2.1) with η′(uε) and using the chain rule, we get
∂tη(uε)+∂xq(uε)=ε∂2xxη(uε)⏟=:L1,ε−εη″(uε)(∂xuε)2⏟=:L2,ε+γη′(uε)Pε⏟=:L3,ε−bη′(uε)uε⏟=:L4,ε−κ2η′(uε)u3ε⏟=:L5,ε |
where L1,ε, L2,ε, L3,ε, L4,ε and L5,ε are distributions. Let us show that
L1,ε→0 in H−1((0,T)×R),T>0. |
Since
ε∂2xxη(uε)=∂x(εη′(uε)∂xuε), |
by (2.6) and Lemma 2.6,
‖εη′(uε)∂xuε‖2L2((0,T)×R)≤ε2‖η′‖2L∞(−C(T),C(T))∫T0‖∂xuε(s,⋅)‖2L2(R)ds≤ε‖η′‖2L∞(−C(T),C(T))C(T)→0. |
We claim that
{L2,ε}ε>0 is uniformly bounded in L1((0,T)×R),T>0. |
Again by (2.6) and Lemma 2.6,
‖εη″(uε)(∂xuε)2‖L1((0,T)×R)≤‖η″‖L∞(−C(T),C(T))ε∫T0‖∂xuε(s,⋅)‖2L2(R)ds≤‖η″‖L∞(−C(T),C(T))C(T). |
We have that
{L3,ε}ε>0 is uniformly bounded in L1loc((0,T)×R),T>0. |
Let K be a compact subset of (0,T)×R. Using (2.24) and Lemma 2.6,
|γ|‖η′(uε)Pε‖L1(K)=|γ|∫∫K|η′(uε)||Pε|dtdx≤|γ|‖η′‖L∞(−C(T),C(T))‖Pε‖L∞((0,T)×R)|K|. |
We show
{L4,ε}ε>0 is uniformly bounded in L1loc((0,T)×R),T>0. |
Let K be a compact subset of (0,T)×R. By Lemma 2.6,
|b|‖η′(uε)uε‖L1(K)=|b|∫∫K|η′(uε)||uε|dtdx≤|b|‖η′‖L∞(−C(T),C(T))‖uε‖L∞((0,T)×R)|K|≤‖η′‖L∞(−C(T),C(T))|K|C(T). |
We claim that
{L5,ε}ε>0 is uniformly bounded in L1loc((0,T)×R),T>0. |
Let K be a compact subset of (0,T)×R. Again by Lemma 2.6,
κ2‖η′(uε)u3ε‖L1(K)=κ2∫∫K|η′(uε)||uε|3dtdx≤κ2‖η′‖L∞(−C(T),C(T))‖uε‖3L∞((0,T)×R)|K|≤‖η′‖L∞(−C(T),C(T))|K|C(T). |
Therefore, Murat's lemma [47] implies that
{∂tη(uε)+∂xq(uε)}ε>0 lies in a compact subset of H−1loc((0,T)×R). | (3.4) |
The L∞ bound stated in Lemma 2.6, (3.4) and the Tartar's compensated compactness method [61] give the existence of a subsequence {uεk}k∈N and a limit function u∈L∞((0,T)×R),T>0, such that (3.1) holds.
Finally, (3.2) follows from (3.1), the Hölder inequality and the identity
Pεk=∫x0uεkdy,∂xPεk=uεk. |
Now, we prove Theorem 1.1.
Proof of Theorem 1.1. Lemma 3.2 gives the existence of an entropy solution u for (1.9), or equivalently (1.10).
We prove that u(t,x) is unique and (1.14) holds. Fix T>0. Let u(t,x) and v(t,x) be two entropy solution of (1.9), or (1.10) such that
u,v∈L∞((0,T)×R) | (3.5) |
Consequently, by (3.5), we have that
|u3−v3|≤C(T)|u−v|, | (3.6) |
where
C(T)=3|a|sup(0,T)×R{u2,v2}. | (3.7) |
We define
Pu=∫x0udy,Pv=∫x0vdy | (3.8) |
Thanks to (3.6), following [6,17,27,40], we can prove that
∂t(|u−v|)+∂x[(au3−av3)sign(u−v)]−sign(u−v)γ(Pu−Pv)−sign(u−v)b(u−v)−sign(u−v)κ2(u3−v3)≤0, |
holds in sense of distributions in (0,∞)×R, and
‖u(t,⋅)−v(t,⋅)‖I(t)≤‖u0−v0‖I(0)+γ∫t0∫I(s)sign(u−v)(Pu−Pv)dsdx+b∫t0∫I(s)sign(u−v)(u−v)dsdx+κ2∫t0∫I(s)sign(u−v)(u3−v3)dsdx, | (3.9) |
for 0<t<T, where
I(s)=[−R−C(T)(t−s),R+C(T)(t−s)]. | (3.10) |
Observe that
b∫t0∫I(s)sign(u−v)(u−v)dsdx≤|b|∫t0∫I(s)|u−v|dsdx=|b|∫t0‖u(s,⋅)−v(s,⋅)‖L1(I(s))ds. | (3.11) |
Instead, thanks to (3.6),
κ2∫t0∫I(s)sign(u−v)(u3−v3)dsdx≤κ2∫t0∫I(s)|u3−v3|dsdx≤C(T)∫t0‖u(s,⋅)−v(s,⋅)‖L1(I(s))ds. | (3.12) |
Since
|I(s)|=2R+2C(T)(t−s)≤2R+2C(T)t≤C(T), | (3.13) |
due to (3.8),
γ∫t0∫I(s)sign(u−v)(Pu−Pv)dsdx≤|γ|∫t0∫I(s)|Pu−Pv|dsdx≤|γ|∫t0∫I(s)(|∫x0|u−v|dy|)dsdx≤|γ|∫t0∫I(s)(|∫I(s)|u−v|dy|)dsdx=|γ|∫t0|I(s)|‖u(s,⋅)−v(s,⋅)‖L1(I(s))ds≤C(T)∫t0‖u(s,⋅)−v(s,⋅)‖L1(I(s))ds. | (3.14) |
Considered the following function,
G1(t)=‖u(t,⋅)−v(t,⋅)‖I(t),t≥0. | (3.15) |
It follows from (3.9), (3.11), (3.12) and (3.14) that
G1(t)≤G1(0)+C(T)∫t0G1(s)ds. | (3.16) |
The Gronwall inequality and (3.15) give
‖u(t,⋅)−v(t,⋅)‖L1(−R,R)≤eC(T)t‖u0−v0‖L1(−R−C(T)t,R+C(T)t), |
that is (1.14).
The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
The authors declare no conflict of interest.
[1] |
S. Amiranashvili, A. G. Vladimirov and U. Bandelow, A model equation for ultrashort optical pulses around the zero dispersion frequency, Eur. Phys. J. D, 58 (2010), 219-226. doi: 10.1140/epjd/e2010-00010-3
![]() |
[2] | S. Amiranashvili, A. G. Vladimirov and U. Bandelow, Solitary-wave solutions for few-cycle optical pulses, Phys. Rev. A, 77 (2008), 063821. |
[3] |
R. Beals, M. Rabelo and K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math., 81 (1989), 125-151. doi: 10.1002/sapm1989812125
![]() |
[4] |
N. R. Belashenkov, A. A. Drozdov, S. A. Kozlov, et al. Phase modulation of femtosecond light pulses whose spectra are superbroadened in dielectrics with normal group dispersion, J. Opt. Technol., 75 (2008), 611-614. doi: 10.1364/JOT.75.000611
![]() |
[5] |
Y. Chung, C. K. R. T. Jones, T. Schäfer, et al. Ultra-short pulses in linear and nonlinear media, Nonlinearity, 18 (2005), 1351-1374. doi: 10.1088/0951-7715/18/3/021
![]() |
[6] | G. M. Coclite and L. di Ruvo, Discontinuous solutions for the generalized short pulse equation, Evol. Equ. Control Theory, 2019, in press. |
[7] | G. M. Coclite and L. di Ruvo, A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation, 2019, in press. |
[8] |
G. M. Coclite and L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differ Equations, 256 (2014), 3245-3277. doi: 10.1016/j.jde.2014.02.001
![]() |
[9] |
G. M. Coclite and L. di Ruvo, Dispersive and diffusive limits for Ostrovsky-Hunter type equations, NoDEA Nonlinear Differ., 22 (2015), 1733-1763. doi: 10.1007/s00030-015-0342-1
![]() |
[10] |
G. M. Coclite and L. di Ruvo, Oleinik type estimates for the Ostrovsky-Hunter equation, J. Math. Anal. Appl., 423 (2015), 162-190. doi: 10.1016/j.jmaa.2014.09.033
![]() |
[11] |
G. M. Coclite and L. di Ruvo, Well-posedness results for the short pulse equation, Z. Angew. Math. Phys., 66 (2015), 1529-1557. doi: 10.1007/s00033-014-0478-6
![]() |
[12] |
G. M. Coclite and L. di Ruvo, Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation, Boll. Unione Mat. Ital., 8 (2015), 31-44. doi: 10.1007/s40574-015-0023-3
![]() |
[13] |
G. M. Coclite and L. di Ruvo, On the well-posedness of the exp-Rabelo equation, Ann. Mat. Pura Appl., 195 (2016), 923-933. doi: 10.1007/s10231-015-0497-8
![]() |
[14] |
G. M. Coclite and L. di Ruvo, Well-posedness of the Ostrovsky-Hunter equation under the combined effects of dissipation and short-wave dispersion, J. Evol. Equ., 16 (2016), 365-389. doi: 10.1007/s00028-015-0306-2
![]() |
[15] |
G. M. Coclite and L. di Ruvo, Convergence of the regularized short pulse equation to the short pulse one, Math. Nachr., 291 (2018), 774-792. doi: 10.1002/mana.201600301
![]() |
[16] |
G. M. Coclite and L. di Ruvo, Well-posedness and dispersive/diffusive limit of a generalized Ostrovsky-Hunter equation, Milan J. Math., 86 (2018), 31-51. doi: 10.1007/s00032-018-0278-0
![]() |
[17] |
G. M. Coclite, L. di Ruvo and K. H. Karlsen, Some wellposedness results for the Ostrovsky-Hunter equation, In: Chen GQ., Holden H., Karlsen K. Editors, Hyperbolic Conservation Laws and Related Analysis with Applications, Heidelberg: Springer, 49 (2014), 143-159. doi: 10.1007/978-3-642-39007-4_7
![]() |
[18] | G. M. Coclite, L. di Ruvo and K. H. Karlsen, The initial-boundary-value problem for an Ostrovsky-Hunter type equation, In: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2018, 97-109. |
[19] |
G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. doi: 10.1137/040616711
![]() |
[20] |
G. M. Coclite, H. Holden and K. H. Karlsen, Wellposedness for a parabolic-elliptic system, Discrete Contin. Dyn. Syst., 13 (2005), 659-682. doi: 10.3934/dcds.2005.13.659
![]() |
[21] |
G. M. Coclite, J. Ridder and N. H. Risebro, A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain, BIT Numer. Math., 57 (2017), 93-122. doi: 10.1007/s10543-016-0625-x
![]() |
[22] |
N. Costanzino, V. Manukian and C. K. R. T. Jones, Solitary waves of the regularized short pulse and Ostrovsky equations, SIAM J. Math. Anal., 41 (2009), 2088-2106. doi: 10.1137/080734327
![]() |
[23] | S. T. Cundiff, Femtosecond comb technology, J. Korean Phys. Soc., 48 (2006), 1181-1187. |
[24] | S. T. Cundiff, Better by half, Nat. Phys., 3 (2007), 16 pages. |
[25] |
S. T. Cundiff, Rulers of light, Nat. Photonics, 13 (2019), 137-137. doi: 10.1038/s41566-019-0388-4
![]() |
[26] |
M. Davidson, Continuity properties of the solution map for the generalized reduced Ostrovsky equation, J. Differ. Equations, 252 (2012), 3797-3815. doi: 10.1016/j.jde.2011.11.013
![]() |
[27] | L. di Ruvo, Discontinuous solutions for the Ostrovsky-Hunter equation and two phase flows, PhD Thesis, University of Bari, 2013. |
[28] |
J. M. Dudley, G. Genty and S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78 (2006), 1135-1184. doi: 10.1103/RevModPhys.78.1135
![]() |
[29] |
R. Ell, G. Angelow, W. Seitz, et al. Quasi-synchronous pumping of modelocked few-cycle Titanium Sapphire lasers, Opt. Express, 13 (2005), 9292-9298. doi: 10.1364/OPEX.13.009292
![]() |
[30] |
E. D. Farnum and J. N. Kutz, Master mode-locking theory for few-femtosecond pulses, Opt. Lett., 35 (2010), 3033-3035. doi: 10.1364/OL.35.003033
![]() |
[31] |
E. D. Farnum and J. N. Kutz, Short-pulse perturbation theory, J. Opt. Soc. Am. B, 30 (2013), 2191-2198. doi: 10.1364/JOSAB.30.002191
![]() |
[32] |
E. D. Farnum and J. N. Kutz, Dynamics of a low-dimensional model for short pulse mode locking, Photonics, 2 (2015), 865-882. doi: 10.3390/photonics2030865
![]() |
[33] |
H. A. Haus, Mode-locking of lasers, IEEE J. Sel. Top. Quantum Electron., 6 (2000), 1173-1185. doi: 10.1109/2944.902165
![]() |
[34] |
H. A. Haus, J. G. Fujimoto and E. P. Ippen, Structures for additive pulse mode locking, J. Opt. Soc. Am. B, 8 (1991), 2068-2076. doi: 10.1364/JOSAB.8.002068
![]() |
[35] |
M. Hentschel, R. Kienberger, C. Spielmann, et al. Attosecond metrology, Nature, 414 (2001), 509-513. doi: 10.1038/35107000
![]() |
[36] |
F. X. Kärtner, U. Morgner, R. Ell, et al. Ultrabroadband double-chirped mirror pairs for generation of octave spectra, J. Opt. Soc. Am. B, 18 (2001), 882-885. doi: 10.1364/JOSAB.18.000882
![]() |
[37] |
U. Keller, Ultrafast solid-state lasers, In: Progress in Optics, Elsevier, 46 (2004), 1-115. doi: 10.1016/S0079-6638(03)46001-0
![]() |
[38] |
S. A. Kozlov and S. V. Sazonov, Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media, J. Exp. Theor. Phys., 84 (1997), 221-228. doi: 10.1134/1.558109
![]() |
[39] |
F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys., 81 (2009), 163-234. doi: 10.1103/RevModPhys.81.163
![]() |
[40] | S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[41] |
C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas, J. Differ. Equations, 190 (2003), 439-465. doi: 10.1016/S0022-0396(02)00158-4
![]() |
[42] | H. Leblond and D. Mihalache, Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models, Phys. Rev. A, 79 (2009), 063835. |
[43] |
H. Leblond and D. Mihalache, Models of few optical cycle solitons beyond the slowly varying envelope approximation, Phys. Rep., 523 (2013), 61-126. doi: 10.1016/j.physrep.2012.10.006
![]() |
[44] |
H. Leblond and F. Sanchez, Models for optical solitons in the two-cycle regime, Phys. Rev. A, 67 (2003), 013804-0138048. doi: 10.1103/PhysRevA.67.013804
![]() |
[45] |
P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal., 36 (1999), 213-230. doi: 10.1016/S0362-546X(98)00012-1
![]() |
[46] |
Y. Liu, D. Pelinovsky and A. Sakovich, Wave breaking in the short-pulse equation, Dynam. Part. Differ. Eq., 6 (2009), 291-310. doi: 10.4310/DPDE.2009.v6.n4.a1
![]() |
[47] | F. Murat, L'injection du cȏne positif de H−1 dans W−1,q est compacte pour tout q<2, J. Math. Pures Appl., 60 (1981), 309-322. |
[48] |
S. P. Nikitenkova, Y. A. Stepanyants and L. M. Chikhladze, Solutions of a modified Ostrovskiĭ equation with a cubic nonlinearity, J. Appl. Math. Mech., 64 (2000), 267-274. doi: 10.1016/S0021-8928(00)00048-4
![]() |
[49] |
D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space, Commun. Partial Differ. Equations, 35 (2010), 613-629. doi: 10.1080/03605300903509104
![]() |
[50] |
D. Pelinovsky and G. Schneider, Rigorous justification of the short-pulse equation, NoDEA Nonlinear Differ., 20 (2013), 1277-1294. doi: 10.1007/s00030-012-0208-8
![]() |
[51] |
M. Pietrzyk, I. Kanattšikov and U. Bandelow, On the propagation of vector ultra-short pulses, J. Nonlinear Math. Phys., 15 (2008), 162-170. doi: 10.2991/jnmp.2008.15.2.4
![]() |
[52] |
M. L. Rabelo, On equations which describe pseudospherical surfaces, Stud. Appl. Math., 81 (1989), 221-248. doi: 10.1002/sapm1989813221
![]() |
[53] | A. Sakovich and S. Sakovich, On transformations of the Rabelo equations, SIGMA, 3 (2007), Article ID: 086, 1-8. |
[54] | K. J. Schafer, M. B. Gaarde, A. Heinrich, et al. Strong field quantum path control using attosecond pulse trains, Phys. Rev. Lett., 92 (2004), 023003. |
[55] |
T. Schäfer and C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Phys. D, 196 (2004), 90-105. doi: 10.1016/j.physd.2004.04.007
![]() |
[56] |
M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Commun. Partial Differ. Equations, 7 (1982), 959-1000. doi: 10.1080/03605308208820242
![]() |
[57] |
D. Serre, L1-stability of constants in a model for radiating gases, Commun. Math. Sci., 1 (2003), 197-205. doi: 10.4310/CMS.2003.v1.n1.a12
![]() |
[58] |
Y. Silberberg, Physics at the attosecond frontier, Nature, 414 (2001), 494-495. doi: 10.1038/35107171
![]() |
[59] | S. A. Skobelev, D. V. Kartashov and A. V. Kim, Few-optical-cycle solitons and pulse self-compression in a Kerr medium, Phys. Rev. Lett., 99 (2007), 203902. |
[60] |
A. Stefanov, Y. Shen and P. G. Kevrekidis, Well-posedness and small data scattering for the generalized Ostrovsky equation, J. Differ. Equations, 249 (2010), 2600-2617. doi: 10.1016/j.jde.2010.05.015
![]() |
[61] | L. Tartar, Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Boston: Pitman, Mass.-London, 39 (1979), 136-212. |
[62] |
N. Tsitsas, T. Horikis, Y. Shen, et al. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials, Phys. Lett. A, 374 (2010), 1384-1388. doi: 10.1016/j.physleta.2010.01.004
![]() |
[63] |
K. K. Victor, B. B. Thomas and T. C. Kofane, On the conversion of high-frequency soliton solutions to a (1+1)-dimensional nonlinear partial differential evolution equation, Chinese Phys. Lett., 25 (2008), 1972-1975. doi: 10.1088/0256-307X/25/6/014
![]() |
1. | Giuseppe Maria Coclite, Lorenzo di Ruvo, On the solutions for an Ostrovsky type equation, 2020, 55, 14681218, 103141, 10.1016/j.nonrwa.2020.103141 | |
2. | Giuseppe Maria Coclite, Lorenzo di Ruvo, Well-Posedness Results for the Continuum Spectrum Pulse Equation, 2019, 7, 2227-7390, 1006, 10.3390/math7111006 | |
3. | Giuseppe Maria Coclite, Lorenzo di Ruvo, A non-local elliptic–hyperbolic system related to the short pulse equation, 2020, 190, 0362546X, 111606, 10.1016/j.na.2019.111606 | |
4. | Giuseppe Coclite, Lorenzo Ruvo, On classical solutions for the fifth‐order short pulse equation, 2021, 0170-4214, 10.1002/mma.7309 | |
5. | Shouming Zhou, Shanshan Zheng, Qualitative analysis for a new generalized 2-component Camassa-Holm system, 2021, 14, 1937-1632, 4659, 10.3934/dcdss.2021132 | |
6. | Lianhong Wang, Fengquan Li, Well-posedness and blow-up for a non-local elliptic–hyperbolic system related to short-pulse equation, 2022, 73, 0044-2275, 10.1007/s00033-022-01816-7 | |
7. | Giuseppe Maria Coclite, Lorenzo di Ruvo, On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation, 2022, 3, 2662-2963, 10.1007/s42985-022-00208-w | |
8. | Giuseppe Maria Coclite, Lorenzo di Ruvo, H 2 -solutions for an Ostrosky–Hunter type equation , 2024, 0003-6811, 1, 10.1080/00036811.2024.2384539 |