Research article

Green synthesis and use of Fe2O3 nanoparticles in the treatment of petroleum effluents by heterogeneous photocatalysis

  • Published: 02 February 2026
  • The objective of this study was to develop a treatment for petroleum effluents via the use of Fe2O3 nanoparticles biosynthesized from extracts of A. alboviolaceum leaves as reducing and stabilizing agents. The obtained nanoparticles were characterized via ultraviolet (UV)‒visible spectroscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) to determine their structural and morphological properties. Their photocatalytic activity was evaluated by the degradation of hydrocarbons in petroleum effluents under solar irradiation for 180 min. The results obtained by UV‒visible spectroscopy revealed a surface plasmon resonance band at 515 nm. XRD was used to identify the nanoparticles that crystallized in a cubic crystal system (inverse spinel), whereas X-ray fluorescence and EDX were used to identify the chemical composition of the synthesized nanoparticles. The spherical morphology was determined via TEM. The average size of the nanoparticles, 70.43 nm, was determined via ImageJ software. The hemolytic activity of the biosynthesized nanomaterials revealed that they are not hemotoxic in vitro, and hydrocarbon degradation was observed after 120 min of sunlight irradiation in the presence of Fe2O3 nanoparticles, with a high degradation rate (71.9%). Compared with other chemical and physical methods, this study proposes a much simpler and less expensive method for synthesizing nanoparticles. This nanotechnological approach makes it possible to clean up hydrocarbon-contaminated effluents, thereby contributing to environmental protection.

    Citation: Clément L. Inkoto, Dorothée D. Tshilanda, Carlos N. Kabengele, Giresse N. Kasiama, Christophe Kaki, Koto-Te-Nyiwa Ngbolua, Waris Kéwouyèmi Chouti, Damien S-T. Tshibangu, Pius T. Mpiana, Daouda Mama. Green synthesis and use of Fe2O3 nanoparticles in the treatment of petroleum effluents by heterogeneous photocatalysis[J]. AIMS Materials Science, 2026, 13(1): 148-167. doi: 10.3934/matersci.2026009

    Related Papers:

  • The objective of this study was to develop a treatment for petroleum effluents via the use of Fe2O3 nanoparticles biosynthesized from extracts of A. alboviolaceum leaves as reducing and stabilizing agents. The obtained nanoparticles were characterized via ultraviolet (UV)‒visible spectroscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) to determine their structural and morphological properties. Their photocatalytic activity was evaluated by the degradation of hydrocarbons in petroleum effluents under solar irradiation for 180 min. The results obtained by UV‒visible spectroscopy revealed a surface plasmon resonance band at 515 nm. XRD was used to identify the nanoparticles that crystallized in a cubic crystal system (inverse spinel), whereas X-ray fluorescence and EDX were used to identify the chemical composition of the synthesized nanoparticles. The spherical morphology was determined via TEM. The average size of the nanoparticles, 70.43 nm, was determined via ImageJ software. The hemolytic activity of the biosynthesized nanomaterials revealed that they are not hemotoxic in vitro, and hydrocarbon degradation was observed after 120 min of sunlight irradiation in the presence of Fe2O3 nanoparticles, with a high degradation rate (71.9%). Compared with other chemical and physical methods, this study proposes a much simpler and less expensive method for synthesizing nanoparticles. This nanotechnological approach makes it possible to clean up hydrocarbon-contaminated effluents, thereby contributing to environmental protection.



    加载中


    [1] Benosman Née Bengrine A (2016) Contribution à l'étude de la rétention des polluants par des réseaux de polymères. Thèse de doctorat, Université Abou-Bekr Belkaid–Tlemcen, Algérie. Available from: https://dspace.univ-tlemcen.dz/handle/112/15224.
    [2] Dezani C (2020) Photocatalyse hétérogène en réacteurs ouverts pour la gestion de la ressource solaire: expérimentation sur différents médias et modélisation. Thèse de doctorat, Université de Perpignan, France. Available from: https://theses.hal.science/tel-03105379v1/file/These_Chloe_Dezani_2020.pdf.
    [3] Amiard JC (2011) Les risques chimiques environnementaux: Méthodes d'évaluation et impacts sur les organismes. Lavoisier, Paris, France. Available from: https://www.sudoc.fr/232749213.
    [4] Zhuang Y, Zhu Q, Li G, et al. (2022) Photocatalytic degradation of organic dyes using covalent triazine-based framework. Mater Res Bull 146: 111619. https://doi.org/10.1016/j.materresbull.2021.111619 doi: 10.1016/j.materresbull.2021.111619
    [5] Fatima Z, Loubna H (2016) Traitement des eaux contaminées par les produits pétroliers: cas du complexe de Rhourde-Nouss. Mémoire de master, Université Larbi Ben M'hidi, Oum El Bouaghi, Algérie.
    [6] Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresource Technol 223: 277–286. https://doi.org/10.1016/j.biortech.2016.10.037 doi: 10.1016/j.biortech.2016.10.037
    [7] Ite AE, Ibok UJ, Ite MU, et al. (2013) Petroleum exploration and production: Past and present environmental issues in the Nigeria's Niger Delta. Am J Environ Prot 4: 78–90. https://doi.org/10.12691/env-1-4-2 doi: 10.12691/env-1-4-2
    [8] Msaboue ML, Merragueb AK (2022) Traitement des effluents de l'industrie pétrolière par procédé membranaire. Mémoire de master, Université de Tissemsilt, Algérie.
    [9] Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63: 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001 doi: 10.1016/j.surfrep.2008.10.001
    [10] Ahmad W, Joshi HC, Pandey S, et al. (2022) An overview of green methods for Fe2O3 nanoparticle synthesis and their applications. Int Nano Lett 13: 2. https://doi.org/10.1007/s40089-022-00386-w doi: 10.1007/s40089-022-00386-w
    [11] Sibhatu AS, Weldegebrieal KG, Sgaradevan S, et al. (2022) Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere 299: 134623. https://doi.org/10.1016/j.chemosphere.2022.134623 doi: 10.1016/j.chemosphere.2022.134623
    [12] Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31: 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003 doi: 10.1016/j.biotechadv.2013.01.003
    [13] Aisida SO, Ugwu K, Nwanya AC, et al. (2021) Dry Gongronema latifolium aqueous extract mediated silver nanoparticles by one-step in-situ biosynthesis for antibacterial activities. Surf Interfaces 24: 101116. https://doi.org/10.1016/j.surfin.2021.101116 doi: 10.1016/j.surfin.2021.101116
    [14] Inkoto CL, Ngbolua KN, Kilembe JT, et al. (2021) A mini review on the phytochemistry and pharmacology of Aframomum alboviolaceum (Zingiberaceae). South Asian Research J Nat Prod 4: 24–35. Available from: https://www.tropicalplantresearch.com/download/135/24.pdf.
    [15] Khan MA, Ahmed M, Abu-Hussien SH, et al. (2025) Green synthesis of iron oxide nanoparticles (Fe2O3-NPs) from Citrus limetta agrowaste for biological and photocatalytic applications. Sci Rep 15: 33107. https://doi.org/10.1038/s41598-025-17750-3 doi: 10.1038/s41598-025-17750-3
    [16] Ngbolua KN, Shetonde OM, Inkoto CL, et al. (2016) Ethno-botanical survey of plant species used in traditional medicine in Kinshasa city (Democratic Republic of the Congo). Trop Plant Res 3: 413–422.
    [17] Inkoto CL, Bongo GN, Kapepula PM, et al. (2017) Microscopic features and chromatographic fingerprints of selected Congolese medicinal plants. Emerg Life Sci Res 4: 1–10. https://doi.org/10.31783/elsr.2018.410110 doi: 10.31783/elsr.2018.410110
    [18] Kabengele CN, Kasiama GN, Ngoyi EM, et al. (2023) Biogenic synthesis, characterization and effects of Mn–CuO composite nanocatalysts on methylene blue photodegradation and human erythrocytes. AIMS Mater Sci 10: 356–369. https://doi.org/10.3934/matersci.2023019 doi: 10.3934/matersci.2023019
    [19] Kasiama GN, Kabengele CN, Kilembe JT, et al. (2023) Green synthesis, characterization and evaluation of biological activities of Ag–MnO nanocomposites from Cyttaranthus congolensis. Diyala J Eng Sci 16: 24–36. https://doi.org/10.24237/djes.2023.16303 doi: 10.24237/djes.2023.16303
    [20] Chen LQ, Li F, Ling J, et al. (2015) Nanotoxicity of silver nanoparticles to red blood cells: Size-dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28: 501–509. https://doi.org/10.1021/tx500479m doi: 10.1021/tx500479m
    [21] Gbolo BZ, Ciala BN, Ngbolua JKN, et al. (2022) Profilage phytochimique par chromatographie sur couche mince haute performance d'extraits de flavonoïdes totaux du Drepanoalpha® et évaluation de leur activité antidrépanocytaire in vitro. Ann Afr Med 16: e4882–e4898. https://doi.org/10.4314/aamed.v16i1.3 doi: 10.4314/aamed.v16i1.3
    [22] Bongo G, Inkoto C, Masengo C, et al. (2017) Antisickling, antioxidant and antibacterial activities of Aframomum alboviolaceum, Annona senegalensis and Mondia whitei. American J of Lab Med 2: 52–59. https://doi.org/10.11648/J.AJLM.20170204.13 doi: 10.11648/J.AJLM.20170204.13
    [23] Djeussi DE, Noumedem JAK, Seukep JA, et al. (2013) Antibacterial activities of selected edible plant extracts against multidrug-resistant gram-negative bacteria. BMC Complement Altern Med 13: 164. https://doi.org/10.1186/1472-6882-13-164 doi: 10.1186/1472-6882-13-164
    [24] Singh PK, Bhardwaj K, Dubey P, et al. (2015) UV-assisted size sampling and antibacterial screening of Lantana camara leaf extract synthesized silver nanoparticles. RSC Adv 5: 24513–24520. https://doi.org/10.1039/C4RA17233G doi: 10.1039/C4RA17233G
    [25] Tyavambiza C, Elbagory AM, Madiehe AM, et al. (2021) The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesized from Cotyledon orbiculata aqueous extract. Nanomaterials 11: 1343. https://doi.org/10.3390/nano11051343 doi: 10.3390/nano11051343
    [26] Bouafia A, Laouini SE (2020) Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha pulegium L. : Effect of ferric chloride concentration on the type of product. Mater Lett 265: 127364. https://doi.org/10.1016/j.matlet.2020.127364 doi: 10.1016/j.matlet.2020.127364
    [27] Bouafia A, Laouini SE, Khelef A, et al. (2020) Effect of ferric chloride concentration on the type of magnetite (Fe3O4) nanoparticles biosynthesized by aqueous leaves extract of Artemisia and assessment of their antioxidant activities. J Cluster Sci 32: 1033–1041. https://doi.org/10.1007/s10876-020-01868-7 doi: 10.1007/s10876-020-01868-7
    [28] Yufanyi D, Ondoh A, Foba-Tendo J, et al. (2015) Effect of decomposition temperature on the crystallinity of α-Fe2O3 (hematite) obtained from an iron(Ⅲ)-hexamethylenetetramine precursor. Am J Chem 5: 1–9. https://doi.org/10.5923/j.chemistry.20150501.01 doi: 10.5923/j.chemistry.20150501.01
    [29] Lokole PB, Ngombe NK, Motomba DI, et al. (2024) Preparation and characterization of micellar nanoparticles using crude saponins from five Congolese plant species. PHSA 2: 100055. https://doi.org/10.1016/j.pscia.2024.100055 doi: 10.1016/j.pscia.2024.100055
    [30] Abdul MF, Naz F, Jamro HA, et al. (2021) Facile green synthesis of iron oxide nanoparticles using Phoenix dactylifera L. seed extract and their antibacterial applications. J Pharm Res Int 33: 21–29. https://doi.org/10.9734/jpri/2021/v33i26B31478 doi: 10.9734/jpri/2021/v33i26B31478
    [31] Leonov NB (2020) Influence of adsorbed metal atoms on light absorption by a fused silica surface. Opt Spectrosc 128: 2046–2249. https://doi.org/10.1134/S0030400X20120954 doi: 10.1134/S0030400X20120954
    [32] Khalaf A, Abu-Dalo D, AlShamaileh E (2024) Synthesis, characterization, and application of Fe2O3 nanophotocatalyst for the treatment of various pollutants in aqueous phase: A systematic review. Sci World J 2024: 8644322. https://doi.org/10.1155/2024/8644322 doi: 10.1155/2024/8644322
    [33] Aremu OH, Akintayo CO, Naidoo EB, et al. (2021) Synthesis and applications of nanosized zinc oxide in wastewater treatment: A review. Int J Environ Sci Technol https://doi.org/10.1007/s13762-020-03069-1
    [34] Akintayo CO, Aremu OH, Igboama WN, et al. (2021) Performance evaluation of ultraviolet light and iron oxide nanoparticles for the treatment of synthetic petroleum wastewater: Kinetics of COD removal. Materials 14: 5012. https://doi.org/10.3390/ma14175012 doi: 10.3390/ma14175012
    [35] Bolade OP, Adeniyi KO, Williams A, et al. (2021) Remediation and optimization of petroleum hydrocarbons degradation in contaminated water using alkaline activated persulphate. J Environ Chem Eng 9: 105801. https://doi.org/10.1016/j.jece.2021.105801 doi: 10.1016/j.jece.2021.105801
    [36] Muthukumar B, Duraimurugan R, Parthipan P, et al. (2024) Synthesis and characterization of iron oxide nanoparticles from Lawsonia inermis and its effect on the biodegradation of crude oil hydrocarbon. Sci Rep 14: 111. https://doi.org/10.1038/s41598-024-61760-6 doi: 10.1038/s41598-024-61760-6
    [37] Tran HD, Nguyen DQ, Do PT, et al. (2023) Kinetics of photocatalytic degradation of organic compounds: A mini-review and new approach. RSC Adv 13: 25. https://doi.org/10.1039/D3RA01970E doi: 10.1039/D3RA01970E
    [38] Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4: 26–49. https://doi.org/10.1002/smll.200700595 doi: 10.1002/smll.200700595
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4) PDF downloads(0) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog