Review

Polymer/carbon nanotube composites: A comprehensive review on fabrication techniques and their consequences

  • Received: 28 May 2025 Revised: 12 August 2025 Accepted: 18 August 2025 Published: 27 August 2025
  • Polymers have attracted significant attention in recent years due to their light weight, low cost, favorable strength-to-weight ratio, and ease of fabrication. Their mechanical and thermal properties have been significantly tailored by reinforcing carbon-based and metal nanofiller materials that possess excellent mechanical and thermal properties. In addition, excellent morphological properties and good aspect ratio of carbon nanotubes (CNTs), graphene, graphene nanoplatelets (GNP), graphene oxide (GO), etc., make them ideal candidates for reinforcement purposes. CNTs/GO have been widely used for the synthesis of polymeric-based composite materials. Moreover, high modulus, better strength, and thermal stability at extremely high temperatures of CNTs/GO motivated various researchers and scientists to make them useful for engineering applications. Their composites with polymer-based composite materials have opened several avenues of application for the automobile, aircraft, textile industries, and biomedical applications. However, during the synthesis of composites, the uniform dispersion into the polymer matrix is a challenge to achieve. Therefore, numerous techniques have been developed by researchers to disperse CNTs/GO throughout the polymer matrix. The selection of the fabrication technique is critically important as the overall performance of the final and developed product is highly dependent on the quality/degree of dispersion, i.e., to what extent carbon particles are dispersed within the matrix. In this review, various fabrication methods for different polymeric composite materials were thoroughly reviewed, and their impact on mechanical and thermal properties were discussed. The review highlights processing methods suitable for the synthesis of polymer composites depending on their applications.

    Citation: Dinesh Kumar, Amika, Deepak Kumar, Parminder Singh, Arvind Singh Chauhan, Sahil Kapoor, Suneev Anil Bansal. Polymer/carbon nanotube composites: A comprehensive review on fabrication techniques and their consequences[J]. AIMS Materials Science, 2025, 12(4): 813-844. doi: 10.3934/matersci.2025035

    Related Papers:

  • Polymers have attracted significant attention in recent years due to their light weight, low cost, favorable strength-to-weight ratio, and ease of fabrication. Their mechanical and thermal properties have been significantly tailored by reinforcing carbon-based and metal nanofiller materials that possess excellent mechanical and thermal properties. In addition, excellent morphological properties and good aspect ratio of carbon nanotubes (CNTs), graphene, graphene nanoplatelets (GNP), graphene oxide (GO), etc., make them ideal candidates for reinforcement purposes. CNTs/GO have been widely used for the synthesis of polymeric-based composite materials. Moreover, high modulus, better strength, and thermal stability at extremely high temperatures of CNTs/GO motivated various researchers and scientists to make them useful for engineering applications. Their composites with polymer-based composite materials have opened several avenues of application for the automobile, aircraft, textile industries, and biomedical applications. However, during the synthesis of composites, the uniform dispersion into the polymer matrix is a challenge to achieve. Therefore, numerous techniques have been developed by researchers to disperse CNTs/GO throughout the polymer matrix. The selection of the fabrication technique is critically important as the overall performance of the final and developed product is highly dependent on the quality/degree of dispersion, i.e., to what extent carbon particles are dispersed within the matrix. In this review, various fabrication methods for different polymeric composite materials were thoroughly reviewed, and their impact on mechanical and thermal properties were discussed. The review highlights processing methods suitable for the synthesis of polymer composites depending on their applications.



    加载中


    [1] Hsissou R, Seghiri R, Benzekri Z, et al. (2021) Polymer composite materials: A comprehensive review. Compos Struct 262: 113640. https://doi.org/10.1016/j.compstruct.2021.113640 doi: 10.1016/j.compstruct.2021.113640
    [2] Dagdag O, Safi Z, Hsissou R, et al. (2019) Epoxy pre-polymers as new and effective materials for corrosion inhibition of carbon steel in acidic medium: Computational and experimental studies. Sci Rep 9: 1–14. https://doi.org/10.1038/s41598-019-48284-0 doi: 10.1038/s41598-019-48284-0
    [3] Khalil HPSA, Tehrani MA, Davoudpour Y, et al. (2013) Natural fiber reinforced poly(vinyl chloride) composites: A review. J Reinf Plast Compos 32: 330–356. https://doi.org/10.1177/0731684412458553 doi: 10.1177/0731684412458553
    [4] Hsissou R, Abbout S, Seghiri R, et al. (2020) Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [1 M] HCl: Computational studies (DFT, MC and MD simulations). J Mater Res Technol 9: 2691–2703. https://doi.org/10.1016/j.jmrt.2020.01.002 doi: 10.1016/j.jmrt.2020.01.002
    [5] Swargo S, Mia S (2025) Reinforcing carbon nanotubes (CNT) into aluminum powder matrix as a nanocomposite coating with enhanced properties. Next Mater 8: 100551. https://doi.org/10.1016/j.nxmate.2025.100551 doi: 10.1016/j.nxmate.2025.100551
    [6] Edah GO, Atiba JO, Fayomi OSI (2025) Advancements in fibre-reinforced polymers: Properties, applications (A mini review). Next Mater 8: 100743. https://doi.org/10.1016/j.nxmate.2025.100743 doi: 10.1016/j.nxmate.2025.100743
    [7] Abualbandora TA, Alshneeqat MG, Mourad AHI (2025) Impact of 3D printing parameters of short carbon fiber reinforced polymer CFRP on the mechanical and failure performance: Review and future perspective. Next Mater 8: 100645. https://doi.org/10.1016/j.nxmate.2025.100645 doi: 10.1016/j.nxmate.2025.100645
    [8] Mahmud SH, Akram MW, Ferdous SMR, et al. (2024) Fabrication and mechanical performance investigation of jute/glass fiber hybridized polymer composites: Effect of stacking sequences. Next Mater 5: 100236. https://doi.org/10.1016/j.nxmate.2024.100236 doi: 10.1016/j.nxmate.2024.100236
    [9] Xia H, Song M (2005) Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter 1: 386–394. https://doi.org/10.1039/b509038e doi: 10.1039/b509038e
    [10] Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58. https://doi.org/10.1038/354056a0 doi: 10.1038/354056a0
    [11] Yesudhas Jayakumari B, Nattanmai Swaminathan E, Partheeban P (2023) A review on characteristics studies on carbon nanotubes-based cement concrete. Constr Build Mater 367: 130344. https://doi.org/10.1016/j.conbuildmat.2023.130344 doi: 10.1016/j.conbuildmat.2023.130344
    [12] Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. Comptes Rendus Phys 4: 993–1008. https://doi.org/10.1016/j.crhy.2003.08.001 doi: 10.1016/j.crhy.2003.08.001
    [13] Sears A, Batra RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B-Condens Matter Mater Phys 69: 1–10. https://doi.org/10.1103/PhysRevB.69.235406 doi: 10.1103/PhysRevB.69.235406
    [14] Nitodas S, Shah R, Das M (2025) Research advancements in the mechanical performance and functional properties of nanocomposites reinforced with surface-modified carbon nanotubes: A review. Appl Sci 15: 374. https://doi.org/10.3390/app15010374 doi: 10.3390/app15010374
    [15] Nandihalli N, Liu CJ, Mori T (2020) Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy 78: 105186. https://doi.org/10.1016/j.nanoen.2020.105186 doi: 10.1016/j.nanoen.2020.105186
    [16] Tasis D, Tagmatarchis N, Bianco A, et al. (2006) Chemistry of carbon nanotubes. Chem Rev 106: 1105–1136. https://doi.org/10.1021/cr050569o doi: 10.1021/cr050569o
    [17] Kuan H, Ma CM, Chang W, et al. (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65: 1703–1710. https://doi.org/10.1016/j.compscitech.2005.02.017 doi: 10.1016/j.compscitech.2005.02.017
    [18] Nandihalli N, Gorsse S, Kleinke H (2015) Effects of additions of carbon nanotubes on the thermoelectric properties of Ni0.05Mo3Sb5.4Te1.6. J Solid State Chem 226: 164–169. https://doi.org/10.1016/j.jssc.2015.02.016 doi: 10.1016/j.jssc.2015.02.016
    [19] Nitodas S, Das M, Raj S (2022) Applications of polymeric membranes with carbon nanotubes: A review. Membranes 12: 454. https://doi.org/10.3390/membranes12050454 doi: 10.3390/membranes12050454
    [20] Anzar N, Hasan R, Tyagi M, et al. (2020) Carbon nanotube—A review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int 1: 100003. https://doi.org/10.1016/j.sintl.2020.100003 doi: 10.1016/j.sintl.2020.100003
    [21] Jomboh KJ (2025) Dynamic mechanical thermal analysis of polyester reinforced hybrid composites: A review. Therm Adv 3: 100041. https://doi.org/10.1016/j.thradv.2025.100041 doi: 10.1016/j.thradv.2025.100041
    [22] John LK, Ramu M, Singamneni S, et al. (2025) Strength evaluation of polymer ceramic composites: A comparative study between injection molding and fused filament fabrication techniques. Prog Addit Manuf 10: 339–347. https://doi.org/10.1007/s40964-024-00626-9 doi: 10.1007/s40964-024-00626-9
    [23] Farahmand B (2025) Polymer matrix composites (PMCs) and nanocomposites (methods of manufacturing PMC parts), In: Farahmand B, Fundamentals of Composites and Their Methods of Fabrications, Cham: Springer Nature Switzerland, 71–105. https://doi.org/10.1007/978-3-031-80201-0_4
    [24] Bansal SA, Singh AP, Singh S, et al. (2023) Bisphenol-A–carbon nanotube nanocomposite: Interfacial DFT prediction and experimental strength testing. Langmuir 39: 1051–1060. https://doi.org/10.1021/acs.langmuir.2c02723 doi: 10.1021/acs.langmuir.2c02723
    [25] Sabet M (2025) Advanced functionalization strategies for carbon nanotube polymer composites: Achieving superior dispersion and compatibility. Polym Technol Mater 64: 465–494. https://doi.org/10.1080/25740881.2024.2409312 doi: 10.1080/25740881.2024.2409312
    [26] Kumar D, Bansal SA, Kumar N, et al. (2021) Two-step synthesis of polyurethane/multi-walled carbon nanotubes polymer composite to achieve high percentage particle reinforcement for mechanical applications. J Compos Mater 55: 2877–2885. https://doi.org/10.1177/0021998321999451 doi: 10.1177/0021998321999451
    [27] Kumar D, Kumar N, Jindal P (2022) Reinforcing MWCNTs to enhance viscoelastic properties of polyurethane nanocomposites by using nano DMA techniques. J Thermoplast Compos Mater 35: 1094–1114. https://doi.org/10.1177/0892705720930748 doi: 10.1177/0892705720930748
    [28] Kapoor S, Goyal M, Jindal P (2017) Effect of multi-walled carbon nanotubes (MWCNT) on mechanical properties of acrylonitrile butadiene styrene (ABS) nano-composite. Indian J Sci Technol 10: 1–6. https://doi.org/10.17485/ijst/2017/v10i17/114413 doi: 10.17485/ijst/2017/v10i17/114413
    [29] Kumar D, Jindal P (2019) Effect of multi-walled carbon nanotubes on thermal stability of polyurethane nanocomposites. Mater Res Express 6: 105336. https://doi.org/10.1088/2053-1591/ab3ad7 doi: 10.1088/2053-1591/ab3ad7
    [30] Ziaei Moghadam H, Faghidian SA, Jamal-Omidi M (2018) Agglomeration effects of carbon nanotube on residual stresses in polymer nano composite using experimental and analytical method. Mater Res Express 6: 035009. https://doi.org/10.1088/2053-1591/aaf370 doi: 10.1088/2053-1591/aaf370
    [31] Zeinedini A, Shokrieh MM, Ebrahimi A (2018) The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites. Theor Appl Fract Mech 94: 84–94. https://doi.org/10.1016/j.tafmec.2018.01.009 doi: 10.1016/j.tafmec.2018.01.009
    [32] Islam Rubel R, Hasan Ali M, Abu Jafor M, et al. (2019) Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Mater Sci 6: 756–780. https://doi.org/10.3934/matersci.2019.5.756 doi: 10.3934/matersci.2019.5.756
    [33] Dani S, Hasamkal AA, Patil P, et al. (2025) Improved electromagnetic interference shielding in lightweight polyvinylidene fluoride–carbon nanotube composite films. J Appl Polym Sci 142: e56589. https://doi.org/10.1002/app.56589 doi: 10.1002/app.56589
    [34] Kathalingam A, Vikraman D, Marimuthu KP, et al. (2023) Characterization and application of flexible, highly conductive freestanding films of SWCNT and PMMA nanocomposite prepared by facile solution method. Surf Interfaces 40: 103161. https://doi.org/10.1016/j.surfin.2023.103161 doi: 10.1016/j.surfin.2023.103161
    [35] Li Y, Jiang N, Xu N, et al. (2023) A facile strategy to prepare boron nitride grafted carbon nanotubes coating for CF/PEEK composites interfacial enhancement. Compos Commun 44: 101770. https://doi.org/10.1016/j.coco.2023.101770 doi: 10.1016/j.coco.2023.101770
    [36] Eivazi Zadeh Z, Solouk A, Shafieian M, et al. (2021) Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications. Mater Sci Eng C 118: 111403. https://doi.org/10.1016/j.msec.2020.111403 doi: 10.1016/j.msec.2020.111403
    [37] Jindal P, Goyal M, Kumar N (2014) Mechanical characterization of multiwalled carbon nanotubes-polycarbonate composites. Mater Des 54: 1–6. https://doi.org/10.1016/j.matdes.2013.08.100 doi: 10.1016/j.matdes.2013.08.100
    [38] Vivekchand S, Ramamurty U, Rao CNR (2006) Mechanical properties of inorganic nanowire reinforced polymer–matrix. Nanotechnology 17: S344–S350. https://doi.org/10.1088/0957-4484/17/11/S19 doi: 10.1088/0957-4484/17/11/S19
    [39] Gupta TK, Singh BP, Tripathi RK, et al. (2015) Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites. RSC Adv 5: 16921–16930. https://doi.org/10.1039/c4ra14223c doi: 10.1039/c4ra14223c
    [40] He Z, Byun JH, Zhou G, et al. (2019) Effect of MWCNT content on the mechanical and strain-sensing performance of thermoplastic polyurethane composite fibers. Carbon 146: 701–708. https://doi.org/10.1016/j.carbon.2019.02.060 doi: 10.1016/j.carbon.2019.02.060
    [41] Gebrehiwet L, Abate E, Negussie Y, et al. (2023) Application of composite materials in aerospace & automotive industry: Review. Int J Adv Eng Manag 5: 697. https://doi.org/10.35629/5252-0503697723 doi: 10.35629/5252-0503697723
    [42] Park SH, Bae J (2017) Polymer composite containing carbon nanotubes and their applications. Recent Pat Nanotechnol 11: 109–115. https://doi.org/10.2174/1872210510666161027155916 doi: 10.2174/1872210510666161027155916
    [43] Bansal SA, Singh AP, Kumar S (2018) Synergistic effect of graphene and carbon nanotubes on mechanical and thermal performance of polystyrene. Mater Res Express 5: 075602. https://doi.org/10.1088/2053-1591/aacfc0 doi: 10.1088/2053-1591/aacfc0
    [44] Su J (2024) Optimizing mechanical properties of multi-walled carbon nanotube reinforced thermoplastic polyurethane composites for advanced athletic protective gear. Rev Mater 29. https://doi.org/10.1590/1517-7076-RMAT-2024-0059
    [45] Katheria A, Das P, Bhagat A, et al. (2024) Fe3O4@g-C3N4 and MWCNT embedded highly flexible polymeric hybrid composite for simultaneous thermal control and suppressing microwave radiation. J Alloys Compd 988: 174287. https://doi.org/10.1016/j.jallcom.2024.174287 doi: 10.1016/j.jallcom.2024.174287
    [46] Bansal SA, Singh AP, Kumar A, et al. (2018) Improved mechanical performance of bisphenol—A graphene-oxide nano-composites. J Compos Mater 52: 2179–2188. https://doi.org/10.1177/0021998317741952 doi: 10.1177/0021998317741952
    [47] Goken J, Fayed S, Schafer H, et al. (2018) A study on the correlation between wood moisture and the damping behaviour of the tonewood spruce. Acta Phys Pol A 133: 1241–1260. https://doi.org/10.12693/APhysPolA.133.1241 doi: 10.12693/APhysPolA.133.1241
    [48] Sudheer M (2016) Thermomechanical properties of epoxy/PTW composites. J Mech Eng Autom 6: 18–21. https://doi.org/10.5923/c.jmea.201601.04 doi: 10.5923/c.jmea.201601.04
    [49] Kapoor S, Goyal M, Jindal P (2019) Enhanced thermal, static, and dynamic mechanical properties of multi-walled carbon nanotubes-reinforced acrylonitrile butadiene styrene nanocomposite. J Thermoplast Compos Mater 35: 261–280. https://doi.org/10.1177/0892705719886012 doi: 10.1177/0892705719886012
    [50] Kapoor S, Sharma V, Goyal M, et al. (2020) Effect of carboxylic multi-walled carbon nanotubes on mechanical properties of acrylonitrile butadiene styrene nanocomposite. J Polym Res 28: 1739–1743. https://doi.org/10.1016/j.matpr.2020.05.154 doi: 10.1016/j.matpr.2020.05.154
    [51] Kim H, Park BH, Yoon J, et al. (2007) Nylon 610/functionalized multiwalled carbon nanotubes composites by in situ interfacial polymerization. 61: 2251–2254. https://doi.org/10.1016/j.matlet.2006.08.057
    [52] Anju R, Ramesan MT (2024) Enhanced mechanical, electrical, thermal, and optical properties of poly(methyl methacrylate)/copper oxide nanocomposites for flexible optoelectronic devices via in-situ polymerization technique. Polym Compos 45: 5360–5371. https://doi.org/10.1002/pc.28132 doi: 10.1002/pc.28132
    [53] Xia H, Song M (2005) Preparation and characterization of polyurethane-carbon nanotube composites. Soft Matter 1: 386–394. https://doi.org/10.1039/B509038E doi: 10.1039/B509038E
    [54] Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84: 4613–4616. https://doi.org/10.1103/PhysRevLett.84.4613 doi: 10.1103/PhysRevLett.84.4613
    [55] Small JP, Shi L, Kim P (2003) Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun 127: 181–186. https://doi.org/10.1016/S0038-1098(03)00341-7 doi: 10.1016/S0038-1098(03)00341-7
    [56] Wang Q, Yao Q, Chang J, et al. (2012) Enhanced thermoelectric properties of CNT/PANI composite nanofibers by. J Mater Chem 22: 17612–17618. https://doi.org/10.1039/c2jm32750c doi: 10.1039/c2jm32750c
    [57] Yao Q, Chen L, Zhang W, et al. (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4: 2445–2451. https://doi.org/10.1021/nn1002562 doi: 10.1021/nn1002562
    [58] Zhou L, Fang S, Tang J, et al. (2012) Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym Compos 33: 1866–1873. https://doi.org/10.1002/pc.22305 doi: 10.1002/pc.22305
    [59] Li Y, Pan D, Chen S, et al. (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47: 850–856. https://doi.org/10.1016/j.matdes.2012.12.077 doi: 10.1016/j.matdes.2012.12.077
    [60] Funck A, Kaminsky W (2007) Polypropylene carbon nanotube composites by in situ polymerization. Compos Sci Technol 67: 906–915. https://doi.org/10.1016/j.compscitech.2006.01.034 doi: 10.1016/j.compscitech.2006.01.034
    [61] Wang N, Wang Y, Yu Z, et al. (2015) In situ preparation of reinforced polyimide nanocomposites with the noncovalently dispersed and matrix compatible MWCNTs. Compos Part A Appl Sci Manuf 78: 341–349. https://doi.org/10.1016/j.compositesa.2015.08.032 doi: 10.1016/j.compositesa.2015.08.032
    [62] Banerjee J, Dutta K (2019) Melt-mixed carbon nanotubes/polymer nanocomposites. Polym Compos 40: 4473–4488. https://doi.org/10.1002/pc.25334 doi: 10.1002/pc.25334
    [63] Chen W, Tao X, Liu Y (2006) Carbon nanotube-reinforced polyurethane composite fibers. Compos Sci Technol 66: 3029–3034. https://doi.org/10.1016/j.compscitech.2006.01.024 doi: 10.1016/j.compscitech.2006.01.024
    [64] Jindal P, Jyoti J, Kumar N (2016) Mechanical characterisation of ABS/MWCNT composites under static and dynamic loading conditions. J Mech Eng Sci 10: 2288–2299
    [65] Liu T, Phang IY, Shen L, et al. (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced Nylon-6 composites. Macromolecules 37: 7214–7222
    [66] Pötschke P, Pegel S, Claes M, et al. (2008) A novel strategy to incorporate carbon nanotubes into thermoplastic matrices. Macromol Rapid Commun 29: 244–251. https://doi.org/10.1002/marc.200700637 doi: 10.1002/marc.200700637
    [67] Pötschke P (2004) Dispersion of carbon nanotubes into thermoplastic polymers using melt mixing. 478: 478–484. https://doi.org/10.1063/1.1812133
    [68] Pan Y, Li L, Chan SH, et al. (2010) Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Compos Part A Appl Sci Manuf 41: 419–426. https://doi.org/10.1016/j.compositesa.2009.11.009 doi: 10.1016/j.compositesa.2009.11.009
    [69] Bhagat NA, Shrivastava NK, Suin S, et al. (2013) Development of electrical conductivity in PP/HDPE/MWCNT nanocomposite by melt mixing at very low loading of MWCNT Polym Compos 16: 788–798. https://doi.org/10.1002/pc.22491
    [70] Parnian P, D'Amore A (2021) Fabrication of high-performance cnt reinforced polymer composite for additive manufacturing by phase inversion technique. Polymers 13: 4007. https://doi.org/10.3390/polym13224007 doi: 10.3390/polym13224007
    [71] Ghoshal S (2017) Polymer/carbon nanotubes (CNT) nanocomposites processing using additive manufacturing (three-dimensional printing) technique: An overview. Fibers 5: 40. https://doi.org/10.3390/fib5040040 doi: 10.3390/fib5040040
    [72] Fenta EW, Mebratie BA (2024) Advancements in carbon nanotube-polymer composites: Enhancing properties and applications through advanced manufacturing techniques. Heliyon 10: e36490. https://doi.org/10.1016/j.heliyon.2024.e36490 doi: 10.1016/j.heliyon.2024.e36490
    [73] Yuan S, Zheng Y, Chua CK, et al. (2018) Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Compos Part A Appl Sci Manuf 105: 203–213. https://doi.org/10.1016/j.compositesa.2017.11.007 doi: 10.1016/j.compositesa.2017.11.007
    [74] Cholleti ER, Gibson I (2018) ABS nano composite materials in additive manufacturing. IOP Conf Ser Mater Sci Eng 455: 012038. https://doi.org/10.1088/1757-899X/455/1/012038 doi: 10.1088/1757-899X/455/1/012038
    [75] Vidakis N, Petousis M, Kourinou M, et al. (2021) Additive manufacturing of multifunctional polylactic acid (PLA)—multiwalled carbon nanotubes (MWCNTs) nanocomposites. Nanocomposites 7: 184–199. https://doi.org/10.1080/20550324.2021.2000231 doi: 10.1080/20550324.2021.2000231
    [76] Arif MF, Alhashmi H, Varadarajan KM, et al. (2020) Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing. Compos Part B Eng 184: 107625. https://doi.org/10.1016/j.compositesb.2019.107625 doi: 10.1016/j.compositesb.2019.107625
    [77] Singh P, Singari RM, Mishra RS (2024) Enhanced mechanical properties of MWCNT reinforced ABS nanocomposites fabricated through additive manufacturing process. Polym Adv Technol 35: e6308. https://doi.org/10.1002/pat.6308 doi: 10.1002/pat.6308
    [78] Sezer HK, Eren O (2019) FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties. J Manuf Process 37: 339–347. https://doi.org/10.1016/j.jmapro.2018.12.004 doi: 10.1016/j.jmapro.2018.12.004
    [79] Kumar N, Jain PK, Tandon P, et al. (2018) Additive manufacturing of flexible electrically conductive polymer composites via CNC-assisted fused layer modeling process. J Braz Soc Mech Sci Eng 40: 175. https://doi.org/10.1007/s40430-018-1116-6 doi: 10.1007/s40430-018-1116-6
    [80] Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers 4: 275–295. https://doi.org/10.3390/polym4010275 doi: 10.3390/polym4010275
    [81] Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer 49: 3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017 doi: 10.1016/j.polymer.2008.04.017
    [82] Rajak DK, Pagar DD, Menezes PL, et al. (2019) Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 11: 1667. https://doi.org/10.3390/polym11101667 doi: 10.3390/polym11101667
    [83] Zhang J, Koubaa A, Xing D, et al. (2020) High-performance lignocellulose/polycarbonate biocomposites fabricated by in situ reaction: Structure and properties. Compos Part A Appl Sci Manuf 138: 106068. https://doi.org/10.1016/j.compositesa.2020.106068 doi: 10.1016/j.compositesa.2020.106068
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1706) PDF downloads(70) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog