Review Topical Sections

Emerging trends in advanced biomimetic composite materials inspired by biological structures and functions in nature

  • Received: 16 April 2025 Revised: 20 July 2025 Accepted: 13 August 2025 Published: 25 August 2025
  • The integration of artificial intelligence (AI) into the design of bioinspired materials offer optimization and generation of new structures and properties of composite materials. The fascinating ability of animals and plants to create complex structures, optimized naturally over millions of years, makes them a subject of interest for scientists, especially in the field of biomimetics. Biomimetics is an interdisciplinary science that draws inspiration from nature to produce new materials and structures, including biocomposites. Bioinspired composites are considered next-generation materials because they can be manufactured using natural ingredients, ensuring sustainable development. The potential of bioinspired materials is used in many sectors, such as biomedical, energy, clothing, aerospace, automotive, and sports. Here, we aim to review the recent progress of works related to biomimetic nature-inspired functional materials. This review is divided into several sections covering achievements in the following fields: Honeycomb-inspired sandwich composite structures, composite materials mimicking the behavior of insect cuticles, self-healing structures, impact-resistant materials, and bioinspired materials with special properties. Emerging trends and current achievements have been broadly reviewed. Our aim of this review is to discuss the latest achievements in the field of biomimetic nature-inspired biomaterials in terms of design and inspirational sources that highlight the current trends. In the discussion, we evaluate future implications of nature-inspired materials and the potential benefits that may arise in their development using generative AI.

    Citation: Tomasz Trzepieciński, Marek Kowalik, Sherwan Mohammed Najm, Salah Eddine Laouini, Marwan T. Mezher. Emerging trends in advanced biomimetic composite materials inspired by biological structures and functions in nature[J]. AIMS Materials Science, 2025, 12(4): 775-812. doi: 10.3934/matersci.2025034

    Related Papers:

  • The integration of artificial intelligence (AI) into the design of bioinspired materials offer optimization and generation of new structures and properties of composite materials. The fascinating ability of animals and plants to create complex structures, optimized naturally over millions of years, makes them a subject of interest for scientists, especially in the field of biomimetics. Biomimetics is an interdisciplinary science that draws inspiration from nature to produce new materials and structures, including biocomposites. Bioinspired composites are considered next-generation materials because they can be manufactured using natural ingredients, ensuring sustainable development. The potential of bioinspired materials is used in many sectors, such as biomedical, energy, clothing, aerospace, automotive, and sports. Here, we aim to review the recent progress of works related to biomimetic nature-inspired functional materials. This review is divided into several sections covering achievements in the following fields: Honeycomb-inspired sandwich composite structures, composite materials mimicking the behavior of insect cuticles, self-healing structures, impact-resistant materials, and bioinspired materials with special properties. Emerging trends and current achievements have been broadly reviewed. Our aim of this review is to discuss the latest achievements in the field of biomimetic nature-inspired biomaterials in terms of design and inspirational sources that highlight the current trends. In the discussion, we evaluate future implications of nature-inspired materials and the potential benefits that may arise in their development using generative AI.



    加载中


    [1] Abas MFB, Singh B, Ahmad KA, et al. (2022) Dwarf kingfisher-inspired bionic flapping wing and its aerodynamic performance at lowest flight speed. Biomimetics 7: 123. https://doi.org/10.3390/biomimetics7030123 doi: 10.3390/biomimetics7030123
    [2] Omidvarnia F, Sarhadi A (2024) Nature-inspired designs in wind energy: A review. Biomimetics 9: 90. https://doi.org/10.3390/biomimetics9020090 doi: 10.3390/biomimetics9020090
    [3] Bernhard K, Leitner P, Peyrl R (2019) Smarte Oberflächen Auf das Äußere kommt es an. Available from: https://www.ooe-zukunftsakademie.at/smarte-oberflachen-auf-das-aeussere-kommt-es-an-222.htm.
    [4] Arge ITA-AIT Parlament (2022) Bioinspirierte Zukunftsmaterialien: vom Laborleder bis zum Superholz. Available from: https://www.parlament.gv.at/dokument/fachinfos/zukunftsthemen/076_biobasierte_materialien.pdf.
    [5] Kibrete F, Trzepieciński T, Gebremedhen HS, et al. (2023) Artificial intelligence in predicting mechanical properties of composite materials. J Compos Sci 7: 364. https://doi.org/10.3390/jcs7090364 doi: 10.3390/jcs7090364
    [6] Trzepieciński T, Najm SM (2024) Current trends in metallic materials for body panels and structural members used in the automotive industry. Materials 17: 590. https://doi.org/10.3390/ma17030590 doi: 10.3390/ma17030590
    [7] Kogut K, Kasprzyk K, Kłoś R (2022) Biomimetic methods for obtaining materials using organic precursors. Szkło Ceram 4: 42–46.
    [8] Lodz University of Technology (2024) International Center for Innovative Biomaterials Research (ICRI-BioM). Available from: https://www.fnp.org.pl/miedzynarodowe-centrum-badan-innowacyjnych-biomaterialow-icri-biom/.
    [9] Cao Y, Feng Y, Ryser MD, et al. (2017) Programmable assembly of pressure sensors using pattern-forming bacteria. Nature Biotech 35: 1087–1093. https://doi.org/10.1038/nbt.3978 doi: 10.1038/nbt.3978
    [10] Lu H, Diaz DJ, Czarnecki NJ, et al. (2022) Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604: 662–667. https://doi.org/10.1038/s41586-022-04599-z doi: 10.1038/s41586-022-04599-z
    [11] Song J, Chen C, Zhu S, et al. (2018) Processing bulk natural wood into a high-performance structural material. Nature 554: 224–228. https://doi.org/10.1038/nature25476 doi: 10.1038/nature25476
    [12] Haneef M, Ceseracciu L, Canale C, et al. (2017) Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci Rep 7: 41292. https://doi.org/10.1038/srep41292 doi: 10.1038/srep41292
    [13] Austin HP, Allen MD, Donohoe BS, et al. (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc National Acad Sci 115: E4350–E4357. https://doi.org/10.1073/pnas.1718804115 doi: 10.1073/pnas.1718804115
    [14] Mahan HM, Konovalov SV, Najm SMN, et al. (2023) Experimental and numerical investigations of the fatigue life of AA2024 aluminium alloy-based nanocomposite reinforced by TiO2 nanoparticles under the effect of heat treatment. Int J Prec Eng Manuf 25: 141–153. https://doi.org/10.1007/s12541-023-00906-4 doi: 10.1007/s12541-023-00906-4
    [15] Blanco D, Rubio EM, Lorente-Pedreille RM, et al. (2021) Lightweight structural materials in open access: Latest trends. Materials 14: 6577. https://doi.org/10.3390/ma14216577 doi: 10.3390/ma14216577
    [16] Elfaleh I, Abbasi F, Habibi M, et al. (2023) A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Res Eng 19: 101271. https://doi.org/10.1016/j.rineng.2023.101271 doi: 10.1016/j.rineng.2023.101271
    [17] Khalid MY, Rashid AA, Arif ZU, et al. (2021) Natural fiber reinforced composites: sustainable materials for emerging applications. Res Eng 11: 100263. https://doi.org/10.1016/j.rineng.2021.100263 doi: 10.1016/j.rineng.2021.100263
    [18] Pan Z, Cheng F, Zhao B (2017) Bio-inspired polymeric structures with special wettability and their applications: An overview. Polymers 9: 725. https://doi.org/10.3390/polym9120725 doi: 10.3390/polym9120725
    [19] Mohammadi H, Ahmad Z, Mazlan SA, et al. (2023) Lightweight glass fiber-reinforced polymer composite for automotive bumper applications: A review. Polymers 15: 193. https://doi.org/10.3390/polym15010193 doi: 10.3390/polym15010193
    [20] Boaretto J, Fotouhi M, Tende E, et al. (2021) Biomimetics and composite materials toward efficient mobility: A review. J Compos Sci 5: 22. https://doi.org/10.3390/jcs5010022 doi: 10.3390/jcs5010022
    [21] Biglar M, Gromada M, Stachowicz F, et al. (2015) Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm. Acta Mech 226: 3451–3462. https://doi.org/10.1007/s00707-015-1388-1 doi: 10.1007/s00707-015-1388-1
    [22] Kompozyty.net (2021) Biocomposites–Overview. Available from: https://kompozyty.net/biokompozyty-przeglad/.
    [23] Shimels HG, Ketema S, Trzepieciński T, et al. (2023) Experimental investigation of aloe vera-treated false banana (Ensete Ventricosum) fibre-reinforced polypropylene composite. J Compos Sci 7: 288. https://doi.org/10.3390/jcs7070288 doi: 10.3390/jcs7070288
    [24] Laycock B, Pratt S, Halley P (2023) A perspective on biodegradable polymer biocomposites—From processing to degradation. J Mater Sci Compos 4: 10. https://doi.org/10.1186/s42252-023-00048-w doi: 10.1186/s42252-023-00048-w
    [25] Roghatate A, Vega FDC, Neraz OV, et al. (2022) Sustainable biocomposites for structural applications with environmental affinity. ACS Appl Mater Interfaces 14: 17837–17848. https://doi.org/10.1021/acsami.2c02073 doi: 10.1021/acsami.2c02073
    [26] Zhao X, Wang Y, Chen X, et al. (2023) Sustainable bioplastics derived from renewable natural resources for food packaging. Matter 6: 97–127. https://doi.org/10.1016/j.matt.2022.11.006 doi: 10.1016/j.matt.2022.11.006
    [27] Soydan Z, Şahin Fİ, Acaralı N (2024) Advancements in polymeric matrix composite production: A review on methods and approaches. Turkish J Eng 8: 677–686. https://doi.org/10.31127/tuje.1468998 doi: 10.31127/tuje.1468998
    [28] Kalidindi SR (2020) Feature engineering of material structure for AI-based materials knowledge systems. J Appl Phys 128: 041103. https://doi.org/10.1063/5.0011258 doi: 10.1063/5.0011258
    [29] Hu Y, Buehler MJ (2023) Deep language models for interpretative and predictive materials science. APL Mach Learn 1: 010901. https://doi.org/10.1063/5.0134317 doi: 10.1063/5.0134317
    [30] Ball P (2019) Using artificial intelligence to accelerate materials development. MRS Bull 44: 335–344. https://doi.org/10.1557/mrs.2019.113 doi: 10.1557/mrs.2019.113
    [31] Pyzer-Knapp EO, Pitera JW, Staar PWJ, et al. (2022) Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Comput Mater 8: 84. https://doi.org/10.1038/s41524-022-00765-z doi: 10.1038/s41524-022-00765-z
    [32] Guo K, Yang Z, Yu CH, et al. (2021) Artificial intelligence and machine learning in design of mechanical materials. Mater Horiz 8: 1153–1172. https://doi.org/10.1039/D0MH01451F doi: 10.1039/D0MH01451F
    [33] Wang W, Moreau NG, Yuan Y, et al. (2019) Towards machine learning approaches for predicting the self-healing efficiency of materials. Comput Mater Sci 168: 180–187. https://doi.org/10.1016/j.commatsci.2019.05.050 doi: 10.1016/j.commatsci.2019.05.050
    [34] Liu Y, Zhao T, Ju W, et al. (2017) Materials discovery and design using machine learning. J Mater 3: 159–177. https://doi.org/10.1016/j.jmat.2017.08.002 doi: 10.1016/j.jmat.2017.08.002
    [35] Qian C, Tan RK, Ye W (2022) Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method. Acta Mater 225: 117548. https://doi.org/10.1016/j.actamat.2021.117548 doi: 10.1016/j.actamat.2021.117548
    [36] Elhoone H, Zhang T, Anwar M, et al. (2020) Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. Int J Prod Res 58: 2841–2861. https://doi.org/10.1080/00207543.2019.1671627
    [37] Peretz-Andersson E, Tabares S, Mikalef P, et al. (2024) Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach. Int J Inform Manag 77: 102781. https://doi.org/10.1016/j.ijinfomgt.2024.102781 doi: 10.1016/j.ijinfomgt.2024.102781
    [38] Badini S, Regondi S, Pugliese R (2025) Enhancing mechanical and bioinspired materials through generative AI approaches. Next Mater 6: 100275. https://doi.org/10.1016/j.nxmate.2024.100275 doi: 10.1016/j.nxmate.2024.100275
    [39] Badini S, Regondi S, Pugliese R (2023) Unleashing the power of Artificial Intelligence in materials design. Materials 16: 5927. https://doi.org/10.3390/ma16175927 doi: 10.3390/ma16175927
    [40] Regona M, Yigitcanlar T, Hon C, et al. (2024) Artificial Intelligence and sustainable development goals: Systematic literature review of the construction industry. Sustain Cities Soc 108: 105499. https://doi.org/10.1016/j.scs.2024.105499 doi: 10.1016/j.scs.2024.105499
    [41] Wang Y, Tao F, Zuo Y, et al. (2023) Digital-twin-enhanced quality prediction for the composite materials. Engineering 22: 23–33. https://doi.org/10.1016/j.eng.2022.08.019 doi: 10.1016/j.eng.2022.08.019
    [42] Xu X, Wang G, Yan H, et al. (2023) Deep-learning-enhanced digital twinning of complex composite structures and real-time mechanical interaction. Compos Sci Tech 241: 110139. https://doi.org/10.1016/j.compscitech.2023.110139 doi: 10.1016/j.compscitech.2023.110139
    [43] Dai H, Dai W, Hu Z, et al. (2023) Advanced composites inspired by biological structures and functions in nature: Architecture design, strengthening mechanisms, and mechanical-functional responses. Adv Sci 10: 2207192. https://doi.org/10.1002/advs.202207192 doi: 10.1002/advs.202207192
    [44] Wang X, Ji H, Li Z, et al. (2024) Recent advances in mechanical properties of fibre-reinforced composites with bio-inspired helicoidal lay-ups. Acta Aeronaut Astronaut Sin 45: 029987. https://doi.org/10.7527/S1000-6893.2024.29987 doi: 10.7527/S1000-6893.2024.29987
    [45] Speck T, Poppinga S, Speck O, et al. (2022) Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene. Anthropocene Rev 9: 237–256. https://doi.org/10.1177/20530196211039275 doi: 10.1177/20530196211039275
    [46] Lazarus BS, Velasco-Hogan A, del Río TG, et al. (2020) A review of impact resistant biological and bioinspired materials and structures. J Mater Res Tech 9: 15705–15738. https://doi.org/10.1016/j.jmrt.2020.10.062 doi: 10.1016/j.jmrt.2020.10.062
    [47] Ning H, Monroe C, Gibbons S, et al. (2024) A review of helicoidal composites: from natural to bio-inspired damage tolerant materials. Int Mater Rev 69: 181–228. https://doi.org/10.1177/09506608241252498 doi: 10.1177/09506608241252498
    [48] Santulli C (2015) Bio-inspired fiber composites, In: Ngo TD, Biomimetic Technologies Principles and Applications, 1 Ed., Sawston: Woodhead Publishing Series in Electronic and Optical Materials, 33–51. https://doi.org/10.1016/B978-0-08-100249-0.00002-1
    [49] Seepersad CC, Kumar RS, Allen JK, et al. (2004) Multifunctional design of prismatic cellular materials. J Comp-Aided Mater Des 11: 163–181. https://doi.org/10.1007/s10820-005-3167-0 doi: 10.1007/s10820-005-3167-0
    [50] Santulli C (2008) A biomimetic approach to the production of sustainable structural composites using plant fibres, In: Abbott A, Ellison M, Biologically Inspired Textiles, 1 Ed., Sawston: Woodhead Publishing, 95–114. https://doi.org/10.1533/9781845695088.1.95
    [51] Evans K, Alderson A (2000) Auxetic materials: Functional materials and structures from lateral thinking! Adv Mater 12: 617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12: 9%3C617: : AID-ADMA617%3E3.0.CO; 2-3
    [52] Bouakba M, Bezazi A, Boba K, et al. (2013) Cactus fibre/polyester biocomposites: Manufacturing, quasi-static mechanical and fatigue characterisation. Compos Sci Tech 74: 150–159. https://doi.org/10.1016/j.compscitech.2012.10.009 doi: 10.1016/j.compscitech.2012.10.009
    [53] Onck PR, van Merkerk R, Raaijmakers A, et al. (2005) Fracture of open- and closed-cell metal foams. J Mater Sci 40: 5821–5828. https://doi.org/10.1007/s10853-005-4996-7 doi: 10.1007/s10853-005-4996-7
    [54] Sun G, Huo X, Wang H, et al. (2021) On the structural parameters of honeycomb-core sandwich panels against low-velocity impact. Compos Part B Eng 216: 108881. https://doi.org/10.1016/j.compositesb.2021.108881 doi: 10.1016/j.compositesb.2021.108881
    [55] Kolopp A, Rivallant S, Bouvet C (2013) Experimental study of sandwich structures as armour against medium-velocity impacts. Int J Impact Eng 61: 24–35. https://doi.org/10.1016/j.ijimpeng.2013.05.007 doi: 10.1016/j.ijimpeng.2013.05.007
    [56] Park JH, Ha SK, Kang KW, et al. (2008) Impact damage resistance of sandwich structure subjected to low velocity impact. J Mater Proc Techn 201: 425–430. https://doi.org/10.1016/j.jmatprotec.2007.11.196 doi: 10.1016/j.jmatprotec.2007.11.196
    [57] Raju KS, Smith BL, Tomblin JS, et al. (2008) Impact damage resistance and tolerance of honeycomb core sandwich panels. J Compos Mater 42: 385–412. https://doi.org/10.1177/0021998307088596 doi: 10.1177/0021998307088596
    [58] Shitta-Bey OT, Carruthers JJ, Soutis C, et al. (2007) The localized low-velocity impact response of aluminium honeycombs and sandwich panels for occupant head protection: Experimental characterization and analytical modelling. Int J Crashworthines 13: 549–558. https://doi.org/10.1080/13588260701485339 doi: 10.1080/13588260701485339
    [59] Zhang D, Fei Q, Zhang P (2017) Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor. Compos Struct 168: 633–645. https://doi.org/10.1016/j.compstruct.2017.02.053 doi: 10.1016/j.compstruct.2017.02.053
    [60] De Rosa IM, Kenny JM, Puglia D, et al. (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Tech 70: 116–122. https://doi.org/10.1016/j.compscitech.2009.09.013 doi: 10.1016/j.compscitech.2009.09.013
    [61] De Rosa IM, Santulli C, Sarasini F (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 31: 2397–2405. https://doi.org/10.1016/j.matdes.2009.11.059 doi: 10.1016/j.matdes.2009.11.059
    [62] Macior L (1960) The tetrakaidecahedron and related cell forms in undifferentiated plant tissues. Bull Torrey Bot Club 87: 99–138. https://doi.org/10.2307/2483147 doi: 10.2307/2483147
    [63] Peng X, Zhang B, Wang Z, et al. (2022) Bioinspired strategies for excellent mechanical properties of composites. J Bionic Eng 19: 1203–1228. https://doi.org/10.1007/s42235-022-00199-9 doi: 10.1007/s42235-022-00199-9
    [64] Seki Y, Bodde SG, Meyers MA (2010) Toucan and hornbill beaks: A comparative study. Acta Biomater 6: 331–343. https://doi.org/10.1016/j.actbio.2009.08.026 doi: 10.1016/j.actbio.2009.08.026
    [65] Yang W, Chao C, McKittrick J (2013) Axial compression of a hollow cylinder filled with foam: A study of porcupine quills. Acta Biomater 9: 5297–5304. https://doi.org/10.1016/j.actbio.2012.09.004 doi: 10.1016/j.actbio.2012.09.004
    [66] Kennedy EB, Hsiung BK, Swift NB, et al. (2017) Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments. J Mech Behav Biomedical Mater 75: 413–422. https://doi.org/10.1016/j.jmbbm.2017.08.009 doi: 10.1016/j.jmbbm.2017.08.009
    [67] Schelestow K, Troncoso OP, Torres FG (2017) Failure of flight feathers under uniaxial compression. Mater Sci Eng C–Mater Biological Appl 78: 923–931. https://doi.org/10.1016/j.msec.2017.04.146 doi: 10.1016/j.msec.2017.04.146
    [68] Hufenbach WA, Gude M, Cichy F, et al. (2011) Simulation of branched biological structures for bionic inspired fibre-reinforced components. Kompozyty 11: 304–309.
    [69] Niklas KJ, Molina-Freaner F, Tinoco-Ojanguren C (1999) Biomechanics of the columnar cactus Pachycereus pringlei. Amer J Botany 86: 767–775. https://doi.org/10.2307/2656697 doi: 10.2307/2656697
    [70] Schwager H, Haushahn T, Neinhuis C, et al. (2010) Principles of branching morphology and anatomy in arborescent monocotyledons and columnar cacti as concept generators for branched fibre-reinforced composites. Adv Eng Mater 12: B695–B698. https://doi.org/10.1002/adem.201080057 doi: 10.1002/adem.201080057
    [71] Han Q, Qin H, Han Z, et al. (2020) Study on mechanical properties of multi-structure dactyl-inspired sandwich honeycomb with basalt fiber. Compos Struct 247: 112467. https://doi.org/10.1016/j.compstruct.2020.112467 doi: 10.1016/j.compstruct.2020.112467
    [72] Sun Z, Li D, Zhang W, et al. (2017) Topological optimization of biomimetic sandwich structures with hybrid core and CFRP face sheets. Compos Sci Tech 142: 79–90. https://doi.org/10.1016/j.compscitech.2017.01.029 doi: 10.1016/j.compscitech.2017.01.029
    [73] Ha NS, Lu G, Xiang X (2019) Energy absorption of a bio-inspired honeycomb sandwich panel. J Mater Sci 54: 6286–6300. https://doi.org/10.1007/s10853-018-3163-x doi: 10.1007/s10853-018-3163-x
    [74] Zhang W, Yin S, Yu TX, et al. (2019) Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int J Impact Eng 125: 163–172. https://doi.org/10.1016/j.ijimpeng.2018.11.014 doi: 10.1016/j.ijimpeng.2018.11.014
    [75] Mousanezhad D, Ebrahimi H, Haghpanah B, et al. (2015) Spiderweb honeycombs. Int J Solids Struct 66: 218–227. https://doi.org/10.1016/j.ijsolstr.2015.03.036 doi: 10.1016/j.ijsolstr.2015.03.036
    [76] Li R, Zhao Z, Bao H, et al. (2024) Bio-inspired honeycomb structures to improve the crashworthiness of a battery-pack system. Eng Failure Anal 158: 108041. https://doi.org/10.1016/j.engfailanal.2024.108041 doi: 10.1016/j.engfailanal.2024.108041
    [77] Solak A (2024) Structural performance enhancement: bio-inspired honeycomb solutions for high-velocity hail impact challenges. J Brazilian Soc Mech Sci Eng 46: 676. https://doi.org/10.1007/s40430-024-05258-2 doi: 10.1007/s40430-024-05258-2
    [78] Goss D, Mistry Y, Niverty S, et al. (2020) Bioinspired honeycomb core design: an experimental study of the role of corner radius, coping and interface. Biomimetics 5: 59. https://doi.org/10.3390/biomimetics5040059 doi: 10.3390/biomimetics5040059
    [79] Sherman J, Zhang W, Xu J (2021) Energy absorption performance of bio-inspired honeycombs: Numerical and theoretical analysis. Acta Mech Solida Sinica 34: 884–894. https://doi.org/10.1007/s10338-021-00262-8 doi: 10.1007/s10338-021-00262-8
    [80] Xu G, Wang Z, Li Z, et al. (2020) Theoretical and numerical analyses on mechanical performance of octagonal honeycomb structures subjected to out-of-plane compression. Mech Adv Mater Struct 27: 1461–1472. https://doi.org/10.1080/15376494.2020.1722871 doi: 10.1080/15376494.2020.1722871
    [81] Song K, Li D, Zhang C, et al. (2023) Bio-inspired hierarchical honeycomb metastructures with superior mechanical properties. Compos Struct 304: 116452. https://doi.org/10.1016/j.compstruct.2022.116452 doi: 10.1016/j.compstruct.2022.116452
    [82] Saufi SASA, Zuhri MYM, Dezaki ML, et al. (2021) Compression behaviour of bio-inspired honeycomb reinforced starfish shape structures using 3D printing technology. Polymers 13: 4388. https://doi.org/10.3390/polym13244388 doi: 10.3390/polym13244388
    [83] Ghanbari J, Panirani PN (2024) A hybrid bio-inspired sandwich structures for high strain rate energy absorption applications. Sci Rep 14: 2865. https://doi.org/10.1038/s41598-024-53521-2 doi: 10.1038/s41598-024-53521-2
    [84] Lian J, Xu L, Wu S, et al. (2023) Study on re-entrant hierarchical honeycombs in-plane impact. Sci Rep 13: 21423. https://doi.org/10.1038/s41598-023-48356-2 doi: 10.1038/s41598-023-48356-2
    [85] Palombini FL, Mariath JEA, de Oliveira BF (2020) Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo. Thin-Walled Struct 155: 106936. https://doi.org/10.1016/j.tws.2020.106936 doi: 10.1016/j.tws.2020.106936
    [86] Ufodike CO, Wang H, Ahmed MF, et al. (2021) Design and modeling of bamboo biomorphic structure for in-plane energy absorption improvement. Mater Des 205: 109736. https://doi.org/10.1016/j.matdes.2021.109736 doi: 10.1016/j.matdes.2021.109736
    [87] Tao T, Li L, He Q, et al. (2024) Mechanical behavior of bio-inspired honeycomb–core composite sandwich structures to low-velocity dynamic loading. Materials 17: 1191. https://doi.org/10.3390/ma17051191 doi: 10.3390/ma17051191
    [88] Scarangella A, Soldan V, Mitov M (2020) Biomimetic design of iridescent insect cuticles with tailored, self-organized cholesteric patterns. Nature Commun 11: 4108. https://doi.org/10.1038/s41467-020-17884-0 doi: 10.1038/s41467-020-17884-0
    [89] Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Antropod Struct Develop 33: 187–199. https://doi.org/10.1016/j.asd.2004.05.006 doi: 10.1016/j.asd.2004.05.006
    [90] Vincent JFV (2002) Arthropod cuticle: A natural composite shell system. Compos Part A: Appl Sci Manuf 33: 1311–1315. https://doi.org/10.1016/S1359-835X(02)00167-7 doi: 10.1016/S1359-835X(02)00167-7
    [91] Hillerton JE, Robertson B, Vincent JFV (1984) The presence of zinc or manganese as the predominant metal in the mandibles of adult stored product beetles. J Stored Prod Res 20: 133–137. https://doi.org/10.1016/0022-474X(84)90020-1 doi: 10.1016/0022-474X(84)90020-1
    [92] Miessner M, Peter MG, Vincent JFV (2001) Preparation of insect-cuticle-like biomimetic materials. Biomacromolecules 2: 369–372. https://doi.org/10.1021/bm005652u doi: 10.1021/bm005652u
    [93] Wu N, Lin Q, Shao F, et al. (2024) Insect cuticle-inspired design of sustainably sourced composite bioplastics with enhanced strength, toughness and stretch-strengthening behavior. Carbohydrate Polym 333: 121970. https://doi.org/10.1016/j.carbpol.2024.121970 doi: 10.1016/j.carbpol.2024.121970
    [94] Fernandez JG, Ingber DE (2012) Unexpected strength and toughness in chitosan-fibroin laminates inspired by insect cuticle. Adv Mater 24: 480–484. https://doi.org/10.1002/adma.201104051 doi: 10.1002/adma.201104051
    [95] Stamm K, Saltin BD, Dirks JH (2021) Biomechanics of insect cuticle: An interdisciplinary experimental challenge. Appl Phys A 127: 329. https://doi.org/10.1007/s00339-021-04439-3 doi: 10.1007/s00339-021-04439-3
    [96] Zeng G, Aladejana JT, Li K, et al. (2023) A tough bio-adhesive inspired by pearl layer and arthropod cuticle structure with desirable water resistance, flame-retardancy, and antibacterial property. Int J Biol Macromolecules 253: 127669. https://doi.org/10.1016/j.ijbiomac.2023.127669 doi: 10.1016/j.ijbiomac.2023.127669
    [97] Chen C, Li D, Yano H, et al. (2019) Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin. J Agricult Food Chem 67: 5571–5578. https://doi.org/10.1021/acs.jafc.9b00984 doi: 10.1021/acs.jafc.9b00984
    [98] Yuan F, Zhang XX, Wu K, et al. (2023) Damping chitin hydrogels by harnessing insect-cuticle-inspired hierarchical structures. Cell Rep Phys Sci 4: 101644. https://doi.org/10.1016/j.xcrp.2023.101644 doi: 10.1016/j.xcrp.2023.101644
    [99] Katiyar NK, Goel G, Hawi S, et al. (2021) Nature-inspired materials: emerging trends and prospects. NPG Asia Mater 13: 56. https://doi.org/10.1038/s41427-021-00322-y doi: 10.1038/s41427-021-00322-y
    [100] Zheng Y, Wang J, Wang J, et al. (2025) Insect cuticle: A source of inspiration for biomimetic Interface material design. Colloid Interface Sci Commun 64: 100818. https://doi.org/10.1016/j.colcom.2025.100818 doi: 10.1016/j.colcom.2025.100818
    [101] Li C, Gorb SN, Rajadi H (2020) Cuticle sclerotization determines the difference between the elastic moduli of locust tibiae. Acta Biomater 103: 189–195. https://doi.org/10.1016/j.actbio.2019.12.013 doi: 10.1016/j.actbio.2019.12.013
    [102] O'Neill M, Taylor D (2020) Repair of microdamage caused by cyclic loading in insect cuticle. JEZ-A Ecol Integr Physiology 133: 20–28. https://doi.org/10.1002/jez.2329 doi: 10.1002/jez.2329
    [103] Kamtsikakis A, Baales J, Zeisler V, et al. (2021) Asymmetric water transport in dense leaf cuticles and cuticle-inspired compositionally graded membranes. Nature Commun 12: 1267. https://doi.org/10.1038/s41467-021-21500-0 doi: 10.1038/s41467-021-21500-0
    [104] Jafarpour M, Eshghi S, Darvizeh A, et al. (2020) Functional significance of graded properties of insect cuticle supported by an evolutionary analysis. J Royal Soc Interface 17: 20200378. https://doi.org/10.1098/rsif.2020.0378 doi: 10.1098/rsif.2020.0378
    [105] Singha S, Gowda V, Hedenqvist MS (2021) Plant cuticle-inspired polyesters as promising green and sustainable polymer materials. ACS Appl Polym Mater 3: 4088–4100. https://doi.org/10.1021/acsapm.1c00585 doi: 10.1021/acsapm.1c00585
    [106] Gong Q, Chen L, Wang J, et al. (2022) Coassembly of a new insect cuticular protein and chitosan via liquid–liquid phase separation. Biomacromolecules 23: 2562–2571. https://doi.org/10.1021/acs.biomac.2c00261 doi: 10.1021/acs.biomac.2c00261
    [107] Masselter T, Speck T (2011) Biomimetic fiber-reinforced compound materials, In: Cavrak M, Advances in Biomimetics, 1 Ed., London: InTech, 185–210. https://doi.org/10.5772/14899
    [108] Lim TT, Huang X (2007) Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 66: 955–963. https://doi.org/10.1016/j.chemosphere.2006.05.062
    [109] Venkata Reddy G, Venkata Naidu S, Shobha Rani T (2008) Impact properties of kapok based unsaturated polyester hybrid composites. J Reinf Plast Compos 27: 1789–1804. https://doi.org/10.1177/0731684407087380 doi: 10.1177/0731684407087380
    [110] Norris CJ, Meadway GJ, O'Sullivan MJ, et al. (2011) Self-healing fibre reinforced composites via a bioinspired vasculature. Adv Funct Mater 21: 3624–3633. https://doi.org/10.1002/adfm.201101100 doi: 10.1002/adfm.201101100
    [111] Norris CJ, Bond IP, Trask RS (2011) The role of embedded bioinspired vasculature on damage formation in self-healing carbon fibre reinforced composites. Compos Part A Appl Sci Manuf 42: 639–648. https://doi.org/10.1016/j.compositesa.2011.02.003 doi: 10.1016/j.compositesa.2011.02.003
    [112] Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim 2: 1–9. https://doi.org/10.1088/1748-3182/2/1/p01 doi: 10.1088/1748-3182/2/1/p01
    [113] Pang JWC, Bond IP (2005) A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Tech 65: 1791–1799. https://doi.org/10.1016/j.compscitech.2005.03.008 doi: 10.1016/j.compscitech.2005.03.008
    [114] Pang JWC, Bond IP (2005) 'Bleeding composites'—damage detection and self-repair using a biomimetic approach. Compos Part A 36: 183–188. https://doi.org/10.1016/j.compositesa.2004.06.016 doi: 10.1016/j.compositesa.2004.06.016
    [115] Kolmakov G, Revanur R, Tangirala R, et al. (2010) Using nanoparticle-filled microcapsules for site-specific healing of damaged substrates: Creating a "repair-and-go" system. ACS Nano 4: 1115–1123. https://doi.org/10.1021/nn901296y doi: 10.1021/nn901296y
    [116] Hart KR, Lankford SM, Freund IA, et al. (2017) Repeated healing of delamination damage in vascular composites by pressurized delivery of reactive agents. Compos Sci Tech 151: 1–9. https://doi.org/10.1016/j.compscitech.2017.07.027 doi: 10.1016/j.compscitech.2017.07.027
    [117] Trask RS, Williams GJ, Bond IP (2007) Bioinspired self-healing of advanced composite structures using hollow glass fibres. J Royal Soc Interface 4: 363–371. https://doi.org/10.1098/rsif.2006.0194 doi: 10.1098/rsif.2006.0194
    [118] Gupta S, Zhang Q, Emrick T, et al. (2006) Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Mater 5: 229–233. https://doi.org/10.1038/nmat1582 doi: 10.1038/nmat1582
    [119] Harrington M, Gupta H, Fratzl P, et al. (2009) Collagen insulated from tensile damage by domains that unfold reversibly: In situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J Struct Biol 167: 1115–1123. https://doi.org/10.1016/j.jsb.2009.03.001 doi: 10.1016/j.jsb.2009.03.001
    [120] European Commission (2015) Improving the aircraft safety by self healing structure and protecting nanofillers. Brussels, European Commission. Available from: https://cordis.europa.eu/project/id/313978.
    [121] European Commission (2016) Self-healing polymers for concepts on self-repaired aeronautical composites. Brussels, European Commission. Available from: https://cordis.europa.eu/article/id/191215-selfhealing-polymers-for-aircraft-composites.
    [122] Liu JI, Leem HP, Tay TE, et al. (2020) Healable bio-inspired helicoidal laminates. Compos Part A 137: 106024. https://doi.org/10.1016/j.compositesa.2020.106024 doi: 10.1016/j.compositesa.2020.106024
    [123] Malekinejad H, Carbas RJC, Akhavan-Safar A, et al. (2024) Bio-inspired helicoidal composite structure featuring graded variable ply pitch under transverse tensile loading. J Compos Sci 8: 228. https://doi.org/10.3390/jcs8060228 doi: 10.3390/jcs8060228
    [124] Wang L, Wang X, Liu T, et al. (2023) Bio-inspired self-healing and anti-corrosion waterborne polyurethane coatings based on highly oriented graphene oxide. npj Mater Degr 7: 96. https://doi.org/10.1038/s41529-023-00415-9 doi: 10.1038/s41529-023-00415-9
    [125] Shin HH, Ryu JH (2023) Bio-inspired self-healing, shear-thinning, and adhesive gallic acid-conjugated chitosan/carbon black composite hydrogels as suture support materials. Biomimetics 8: 542. https://doi.org/10.3390/biomimetics8070542 doi: 10.3390/biomimetics8070542
    [126] Liu Y, Zheng J, Zhang X, et al. (2021) Bioinspired modified graphene oxide/polyurethane composites with rapid self-healing performance and excellent mechanical properties. RSC Adv 11: 14665–14677. https://doi.org/10.1039/D1RA00944C doi: 10.1039/D1RA00944C
    [127] Perin D (2024) Development of multifunctional polymer composites with self-healing capability (dissertation). University of Trento, 183p.
    [128] Khaneghahi MH, Kamireddi D, Rahmaninezhad SA, et al. (2023) Development of bio-inspired multi-functional polymeric-based fibers (BioFiber) for advanced delivery of bacterial-based self-healing agent in concrete. Matec Web Conf 378: 02001. https://doi.org/10.1051/matecconf/202337802001 doi: 10.1051/matecconf/202337802001
    [129] Deng T, Zhu J, Zhao H, et al. (2024) High-strength, stretchable, and NIR-induced rapid self-healing polyurethane nanocomposites with bio-inspired hybrid crosslinked network. Nano Res 17: 6353–6361. https://doi.org/10.1007/s12274-024-6559-8 doi: 10.1007/s12274-024-6559-8
    [130] Yang X, Tian L, Wang W, et al. (2020) Bio-inspired superhydrophobic self-healing surfaces with synergistic anticorrosion performance. J Bionic Eng 17: 1196–1208. https://doi.org/10.1007/s42235-020-0094-4 doi: 10.1007/s42235-020-0094-4
    [131] Jiang H, Mo Z, Xie X, et al. (2024) Bio-inspired self-healing silicon anodes: Harnessing tea polyphenols to enhance lithium-ion battery performance. ACS Appl Mater Interfaces 16: 59291–59301. https://doi.org/10.1021/acsami.4c12880 doi: 10.1021/acsami.4c12880
    [132] Masłowska-Lipowicz I, Wyrębska Ł, Szałek B, et al. (2020) Auxetic materials—Structures, potential application. Tech Jak Wyr 65: 116–128.
    [133] Li D, Dong L, Lakes RS (2016) A unit cell structure with tunable Poisson's ratio from positive to negative. Mater Lett 164: 456–459. https://doi.org/10.1016/j.matlet.2015.11.037 doi: 10.1016/j.matlet.2015.11.037
    [134] Lakes RS (2017) Negative Poisson's ratio materials: Auxetic solids. Ann Rev Mater Res 47: 63–81. https://doi.org/10.1146/annurev-matsci-070616-124118 doi: 10.1146/annurev-matsci-070616-124118
    [135] Nečemer B, Glodež S, Novak N, et al. (2020) Numerical modelling of a chiral auxetic cellular structure under multiaxial loading conditions. Theor Appl Fract Mech 107: 102514. https://doi.org/10.1016/j.tafmec.2020.102514 doi: 10.1016/j.tafmec.2020.102514
    [136] Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5: 1052–1063. https://doi.org/10.5897/SRE.9000104 doi: 10.5897/SRE.9000104
    [137] Miller W, Hook PB, Smith CW, et al. (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson's ratio composite. Compos Sci Tech 69: 651–655. https://doi.org/10.1016/j.compscitech.2008.12.016 doi: 10.1016/j.compscitech.2008.12.016
    [138] Yang, L, Harrysson O, West H, et al. (2015) Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int J Solids Struct 69–70: 475–490. https://doi.org/10.1016/j.ijsolstr.2015.05.005 doi: 10.1016/j.ijsolstr.2015.05.005
    [139] Hu Q, Zhang X, Zhang J, et al. (2024) A review on energy absorption performance of auxetic composites with fillings. Thin-Walled Struct 205: 112348. https://doi.org/10.1016/j.tws.2024.112348 doi: 10.1016/j.tws.2024.112348
    [140] Novak N, Vesenjak M, Ren Z (2016) Auxetic cellular materials—A review. StrojVest–J Mech Eng 62: 485–493. https://doi.org/10.5545/sv-jme.2016.3656 doi: 10.5545/sv-jme.2016.3656
    [141] Bhullar SK, Lala NL, Ramkrishna S (2015) Smart biomaterials—A review. Rev Adv Mater Sci 40: 303–314.
    [142] Attard D, Casha AR, Grima JN (2018) Filtration properties of auxetics with rotating rigid units. Materials 11: 725. https://doi.org/10.3390/ma11050725
    [143] Shukla S, Behera BK (2022). Auxetic fibrous structures and their composites: A review. Compos Struct 290: 115530. https://doi.org/10.1016/j.compstruct.2022.115530 doi: 10.1016/j.compstruct.2022.115530
    [144] Ramesh GV, Kushal B, Charan KN, et al. (2023) Deformation behaviour analysis of structures for impact loading. J Mines Met Fuel 71: 167–171. https://doi.org/10.18311/jmmf/2023/45545 doi: 10.18311/jmmf/2023/45545
    [145] Li X, Peng W, Wu W, et al. (2023) Auxetic mechanical metamaterials: From soft to stiff. Int J Extreme Manuf 5: 042003. https://doi.org/10.1088/2631-7990/ace668 doi: 10.1088/2631-7990/ace668
    [146] Zhang ZC, An CC, Shen ZF, et al. (2020) Dynamic crushing responses of bio-inspired re-entrant auxetic honeycombs under in-plane impact loading. Mater Today Commun 23: 100918. https://doi.org/10.1016/j.mtcomm.2020.100918 doi: 10.1016/j.mtcomm.2020.100918
    [147] Shah IA, Khan R, Koloor SSR, et al. (2022) Finite element analysis of the ballistic impact on auxetic sandwich composite human body armor. Materials 15: 2064. https://doi.org/10.3390/ma15062064 doi: 10.3390/ma15062064
    [148] Al-Rifaie H, Novak N, Vesenjak M, et al. (2022) Fabrication and mechanical testing of the uniaxial graded auxetic damper. Materials 15: 387. https://doi.org/10.3390/ma15010387
    [149] Acuna D, Gutiérrez F, Silva R, et al. (2022) A three step recipe for designing auxetic materials on demand. Commun Phys 5: 113. https://doi.org/10.1038/s42005-022-00876-5 doi: 10.1038/s42005-022-00876-5
    [150] Zhang XY, Ren Y, Wang XY, et al. (2021) A novel combined auxetic tubular structure with enhanced tunable stiffness. Compos Part B Eng 226: 109303. https://doi.org/10.1016/j.compositesb.2021.109303 doi: 10.1016/j.compositesb.2021.109303
    [151] Caporale AM, Airoldi A, Novak N (2025) A novel body centered cubic 3D auxetic chiral geometry. Smart Mater Struct 34: 015050. https://doi.org/10.1088/1361-665X/ad9dc9 doi: 10.1088/1361-665X/ad9dc9
    [152] Shirzad M, Bodaghi M, Oh D, et al. (2024) Design and optimization of bioinspired auxetic structure for biomedical applications. European Eur J Mech A-Solid 103: 105139. https://doi.org/10.1016/j.euromechsol.2023.105139 doi: 10.1016/j.euromechsol.2023.105139
    [153] Shirzad M, Kang J, Kim G, et al. (2024) Bioinspired 3D-printed auxetic structures with enhanced fatigue behavior. Adv Eng Mater 26: 2302036. https://doi.org/10.1002/adem.202302036 doi: 10.1002/adem.202302036
    [154] Sorrentino A, Castagnetti D, Mizzi L, et al. (2022) Bio-inspired auxetic mechanical metamaterials evolved from rotating squares unit. Mech Mater 173: 104421. https://doi.org/10.1016/j.mechmat.2022.104421 doi: 10.1016/j.mechmat.2022.104421
    [155] Sapasakulvanit S, Teoh JH, Ferrand HL (2024) Bioinspired processing for the sustainable fabrication of high-performance bioinspired ceramic-reinforced polymer composites. Matter 7: 3786–3810. https://doi.org/10.1016/j.matt.2024.09.011 doi: 10.1016/j.matt.2024.09.011
    [156] Zhu Z, Liu Y, Qin Y, et al. (2025) Tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure. Nature Commun 16: 4587. https://doi.org/10.1038/s41467-025-59914-9 doi: 10.1038/s41467-025-59914-9
    [157] European Commission (2014) Bio-inspired structural materials. Brussels European Commission. Available from: https://cordis.europa.eu/article/id/169895-new-ceramic-materials/pl.
    [158] European Commission (2014) Advanced Composites inspired by nature. Brussels European Commission. Available from: https://cordis.europa.eu/article/id/164474-bioinspired-nanocomposites.
    [159] Tian H, Wang L, Zhang B, et al. (2024) Fabrication of advanced bioinspired anisotropic carbide ceramic composites: Past, recent progress, and future perspectives. J Adv Ceram 13: 1713–1736. https://doi.org/10.26599/JAC.2024.9220974 doi: 10.26599/JAC.2024.9220974
    [160] Rafiq M, Ali A, Tang W (2022) Transforming wood as next-generation structural and functional materials for a sustainable future. EcoMat 4: e12154. https://doi.org/10.1002/eom2.12154 doi: 10.1002/eom2.12154
    [161] Jokić B, Mitrić M, Radmilović V, et al. (2011) Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by hydrothermal method. Ceram Int 37: 167–173. https://doi.org/10.1016/j.ceramint.2010.08.032 doi: 10.1016/j.ceramint.2010.08.032
    [162] Pajor K, Pajchel Ł, Kolmas J (2019) Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology: A review. Materials 12: 2683. https://doi.org/10.3390/ma12172683 doi: 10.3390/ma12172683
    [163] Szczepkowska M, Łuczuk M (2014) Porous materials for the medical applications, In: Szczepkowska M, Systems Supporting Production Engineering, 1 Ed., Gliwice: Silesian University of Technology, 231–239.
    [164] Klosterman L (2017) Synthesis and measurement of cohesive mechanics in polydopamine nanomembranes. Adv Mater Interfaces 4: 1700041. https://doi.org/10.1002/admi.201700041 doi: 10.1002/admi.201700041
    [165] Ball V (2018) Polydopamine nanomaterials: Recent advances in synthesis methods and applications. Front Bioeng Biotech 6: 109. https://doi.org/10.3389/fbioe.2018.00109 doi: 10.3389/fbioe.2018.00109
    [166] Carl Hanser Verlag (2021) Bioinspirierte Metallisierung von Polyolefinen, München: Carl Hanser Verlag. Available from: https://www.kunststoffe.de/a/fachartikel/bioinspirierte-metallisierung-von-polyol-324299.
    [167] Khan SM, Deng Z, Yang T, et al. (2022) Bio-inspired ceramic–metal composites using ceramic 3D printing and centrifugal infiltration. Adv Eng Mater 24: 2101009. https://doi.org/10.1002/adem.202101009 doi: 10.1002/adem.202101009
    [168] Saad H, Radi K, Doullard T, et al. (2020) A simple approach to bulk bioinspired tough ceramics. Materialia 12: 100807. https://doi.org/10.1016/j.mtla.2020.100807 doi: 10.1016/j.mtla.2020.100807
    [169] Van Der Sluis WJ (2024) 3D printing bioinspired, bacteria-embedded ceramic composites (dissertation). Delft University of Technology, 214p.
    [170] Zhang ZB, Gao HL, Wen SM, et al. (2023) Scalable manufacturing of mechanical robust bioinspired ceramic–resin composites with locally tunable heterogeneous structures. Adv Eng Mater 35: 2209510. https://doi.org/10.1002/adma.202209510 doi: 10.1002/adma.202209510
    [171] Sun H, Gao K, Yi Z, et al. (2022) Cytotoxicity and bonding property of bioinspired nacre-like ceramic-polymer composites. Front Bioeng Biotech 10: 913899. https://doi.org/10.3389/fbioe.2022.913899 doi: 10.3389/fbioe.2022.913899
    [172] Abando N, Saad H, Moncilus MA, et al. (2021) Anisotropy effect of bioinspired ceramic/ceramic composites: Can the platelet orientation enhance the mechanical properties at micro- and submicrometric length scale? J Eur Ceram Soc 41: 2753–2762. https://doi.org/10.1016/j.jeurceramsoc.2020.12.039 doi: 10.1016/j.jeurceramsoc.2020.12.039
    [173] Jargalsaikhan U (2023) Microstructure and micromechanics of bioinspired composites for next generation dental crowns (dissertation). University of Surrey, 179p.
    [174] Sun J, Yu S, Wade-Zhu J, et al. (2022) 3D printing of ceramic composite with biomimetic toughening design. Additive Manuf 58: 103027. https://doi.org/10.1016/j.addma.2022.103027 doi: 10.1016/j.addma.2022.103027
    [175] Jargalsaikhan U, Leung N, Wan H, et al. (2023) In situ investigation of the fracture toughening mechanisms of bioinspired ceramic composites with different compliant polymer phases. SSRN 1–35. https://dx.doi.org/10.2139/ssrn.4611116
    [176] U.S. National Science Foundation (2013) Inspired by Nature: Textured Materials to Aid Industry and Military, Alexandria. Available from: https://new.nsf.gov/news/inspired-nature-textured-materials-aid-industry.
    [177] Lienhard J, Schleicher S, Poppinga S, et al. (2011) Flectofin: A hingeless flapping mechanism inspired by nature. Bioinspir Biomim 6: 045001. https://doi.org/10.1088/1748-3182/6/4/045001 doi: 10.1088/1748-3182/6/4/045001
    [178] Speck T, Speck O (2008) Process sequences in biomimetic research, In: Brebbia CA, Design and Nature IV, 1 Ed., Southampton: WIT Press, 3–11. https://doi.org/10.2495/DN080011
    [179] Knippers J, Schmid U, Speck T (2019) Biomimetics for Architecture. Learning From Nature, Basel: Birkhäuser Verlag. https://doi.org/10.1515/9783035617917
    [180] Körner A, Born L, Mader A, et al. (2018) Flectofold—A biomimetic compliant shading device for complex free form facades. Smart Mater Struct 27: 017001. https://doi.org/10.1088/1361-665X/aa9c2f doi: 10.1088/1361-665X/aa9c2f
    [181] Correa D, Poppinga S, Mylo MD, et al. (2020) 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos Trans Royal Soc A 378: 20190445. https://doi.org/10.1098/rsta.2019.0445 doi: 10.1098/rsta.2019.0445
    [182] Bargardi FL, Le Ferrand H, Libanori R, et al. (2016) Bio-inspired self-shaping ceramics. Nature Commun 7: 13912. https://doi.org/10.1038/ncomms13912 doi: 10.1038/ncomms13912
    [183] Gladman AS, Matsumoto E, Nuzzo R, et al. (2016) Biomimetic 4D printing. Nature Mater 15: 413–418. https://doi.org/10.1038/nmat4544 doi: 10.1038/nmat4544
    [184] Poppinga S, Correa D, Bruchmann B, et al. (2020) Plant movements as concept generators for the development of biomimetic compliant mechanisms. Integr Comparat Biol 60: 886–895. https://doi.org/10.1093/icb/icaa028 doi: 10.1093/icb/icaa028
    [185] Yang Y, Song X, Li XJ, et al. (2018) Recent progress in biomimetic additive manufacturing technology: From materials to functional structures. Adv Mater 30: 1706539. https://doi.org/10.1002/adma.201706539 doi: 10.1002/adma.201706539
    [186] Yang Y, Chen ZY, Song X, et al. (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater 29: 1605750. https://doi.org/10.1002/adma.201605750 doi: 10.1002/adma.201605750
    [187] Nikolov S, Petrov M, Lymperakis L, et al. (2010) Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv Mater 22: 519–526. https://doi.org/10.1002/adma.200902019 doi: 10.1002/adma.200902019
    [188] Shi S, Si Y, Han Y, et al. (2022) Recent progress in protective membranes fabricated via electrospinning: Advanced materials, biomimetic structures, and functional applications. Adv Mater 34: 2107938. https://doi.org/10.1002/adma.202107938 doi: 10.1002/adma.202107938
    [189] Wei H, Tao F, Huang Z, et al. (2024) Bioinspired Artificial Intelligence applications 2023. Biomimetics 9: 80. https://doi.org/10.3390/biomimetics9020080 doi: 10.3390/biomimetics9020080
    [190] Farzin MA, Naghib SM, Rabiee N (2024) Bio-inspired and biomimetic composites based on biodegradable polymers for sensing applications with emphasis on early diagnosis of cancer. Chem Eng J 493: 152445. https://doi.org/10.1016/j.cej.2024.152445 doi: 10.1016/j.cej.2024.152445
    [191] Chiu YH, Liao YH, Juang JY, et al. (2023) Designing bioinspired composite structures via genetic algorithm and conditional variational autoencoder. Polymers 15: 281. https://doi.org/10.3390/polym15020281 doi: 10.3390/polym15020281
    [192] Gu GX, Chen CT, Richmond DJ, et al. (2018) Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment. Mater Horiz 5: 939–945. https://doi.org/10.1039/C8MH00653A doi: 10.1039/C8MH00653A
    [193] Shen SC, Buehler MJ (2022) Nature-inspired architected materials using unsupervised deep learning. Commun Eng 1: 37. https://doi.org/10.1038/s44172-022-00037-0 doi: 10.1038/s44172-022-00037-0
    [194] Abueidda DW, Almasri M, Ammourah R, et al. (2019) Prediction and optimization of mechanical properties of composites using convolutional neural networks. Compos Struct 227: 111264. https://doi.org/10.1016/j.compstruct.2019.111264 doi: 10.1016/j.compstruct.2019.111264
    [195] Hashemi MS, Safdari M, Sheidaei A (2021) A supervised machine learning approach for accelerating the design of particulate composites: Application to thermal conductivity. Comput Mater Sci 197: 110664. https://doi.org/10.1016/j.commatsci.2021.110664 doi: 10.1016/j.commatsci.2021.110664
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2138) PDF downloads(118) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog