Industrial applications of fibre-reinforced concrete (FRC) in structures require extensive experimental and analytical investigations of the FRC material properties. For design purposes and applications involving the flexural loading of the member, it is essential to have a predictive model for the flexural strength of the FRC material. In the present paper, a fracture mechanics approach based on Bridged Crack Model (BCM) is used to predict the flexural strength of steel fibre-reinforced concrete (SFRC) beams. The model assumes a quadratic tension-softening relationship (σ-δ) governing the bridging action of the steel fibres and a linear profile of the propagating crack. The proposed tension-softening relationship is considered valid for a wide range of fibre-reinforced concrete materials based on the knowledge of either the material micromechanical parameters (such as fibre volume fraction, fibre/matrix bond strength, fibre length, and fibre tensile strength) or an actual experimentally-measured σ-δ relationship. The flexural strength model thus obtained allows the prediction of the flexural strength of SFRC and study the variation of the latter as a function of the micromechanical parameters. An experimental program involving the flexural testing of 13 SFRC prism series was carried out to verify the prediction of the proposed model. The SFRC mixes incorporated two types of steel fibres (straight-end and hooked-end), four different concrete compressive strengths (40, 50, 60, and 70 MPa), three different fibre volume fractions (1, 1.5, and 2%), and three specimen depths (100, 150, and 200 mm). The experimental results were compared to the predictions of the proposed flexural strength model, and a reasonable agreement between the two has been observed. The model provided a useful physical explanation for the observed variation of flexural strength as a function of the test variables investigated in this study.
Citation: Abdul Saboor Karzad, Moussa Leblouba, Zaid A. Al-Sadoon, Mohamed Maalej, Salah Altoubat. Modeling the flexural strength of steel fibre reinforced concrete[J]. AIMS Materials Science, 2023, 10(1): 86-111. doi: 10.3934/matersci.2023006
[1] | Qian Lin, Yan Zhu . Unicyclic graphs with extremal exponential Randić index. Mathematical Modelling and Control, 2021, 1(3): 164-171. doi: 10.3934/mmc.2021015 |
[2] | Zhen Lin . On the sum of powers of the Aα-eigenvalues of graphs. Mathematical Modelling and Control, 2022, 2(2): 55-64. doi: 10.3934/mmc.2022007 |
[3] | Iman Malmir . Novel closed-loop controllers for fractional nonlinear quadratic systems. Mathematical Modelling and Control, 2023, 3(4): 345-354. doi: 10.3934/mmc.2023028 |
[4] | Zhibo Cheng, Pedro J. Torres . Periodic solutions of the Lp-Minkowski problem with indefinite weight. Mathematical Modelling and Control, 2022, 2(1): 7-12. doi: 10.3934/mmc.2022002 |
[5] | Mrutyunjaya Sahoo, Dhabaleswar Mohapatra, S. Chakraverty . Wave solution for time fractional geophysical KdV equation in uncertain environment. Mathematical Modelling and Control, 2025, 5(1): 61-72. doi: 10.3934/mmc.2025005 |
[6] | Vladimir Stojanovic . Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming. Mathematical Modelling and Control, 2023, 3(3): 181-191. doi: 10.3934/mmc.2023016 |
[7] | Jiaquan Huang, Zhen Jia, Peng Zuo . Improved collaborative filtering personalized recommendation algorithm based on k-means clustering and weighted similarity on the reduced item space. Mathematical Modelling and Control, 2023, 3(1): 39-49. doi: 10.3934/mmc.2023004 |
[8] | Qian Wang, Xue Han . Comparing the number of ideals in quadratic number fields. Mathematical Modelling and Control, 2022, 2(4): 268-271. doi: 10.3934/mmc.2022025 |
[9] | Yongming Li, Shou Ma, Kunting Yu, Xingli Guo . Vehicle kinematic and dynamic modeling for three-axles heavy duty vehicle. Mathematical Modelling and Control, 2022, 2(4): 176-184. doi: 10.3934/mmc.2022018 |
[10] | Yanchao He, Yuzhen Bai . Finite-time stability and applications of positive switched linear delayed impulsive systems. Mathematical Modelling and Control, 2024, 4(2): 178-194. doi: 10.3934/mmc.2024016 |
Industrial applications of fibre-reinforced concrete (FRC) in structures require extensive experimental and analytical investigations of the FRC material properties. For design purposes and applications involving the flexural loading of the member, it is essential to have a predictive model for the flexural strength of the FRC material. In the present paper, a fracture mechanics approach based on Bridged Crack Model (BCM) is used to predict the flexural strength of steel fibre-reinforced concrete (SFRC) beams. The model assumes a quadratic tension-softening relationship (σ-δ) governing the bridging action of the steel fibres and a linear profile of the propagating crack. The proposed tension-softening relationship is considered valid for a wide range of fibre-reinforced concrete materials based on the knowledge of either the material micromechanical parameters (such as fibre volume fraction, fibre/matrix bond strength, fibre length, and fibre tensile strength) or an actual experimentally-measured σ-δ relationship. The flexural strength model thus obtained allows the prediction of the flexural strength of SFRC and study the variation of the latter as a function of the micromechanical parameters. An experimental program involving the flexural testing of 13 SFRC prism series was carried out to verify the prediction of the proposed model. The SFRC mixes incorporated two types of steel fibres (straight-end and hooked-end), four different concrete compressive strengths (40, 50, 60, and 70 MPa), three different fibre volume fractions (1, 1.5, and 2%), and three specimen depths (100, 150, and 200 mm). The experimental results were compared to the predictions of the proposed flexural strength model, and a reasonable agreement between the two has been observed. The model provided a useful physical explanation for the observed variation of flexural strength as a function of the test variables investigated in this study.
Let C denote the complex plane and Cn the n-dimensional complex Euclidean space with an inner product defined as ⟨z,w⟩=∑nj=1zj¯wj. Let B(a,r)={z∈Cn:|z−a|<r} be the open ball of Cn. In particular, the open unit ball is defined as B=B(0,1).
Let H(B) denote the set of all holomorphic functions on B and S(B) the set of all holomorphic self-mappings of B. For given φ∈S(B) and u∈H(B), the weighted composition operator on or between some subspaces of H(B) is defined by
Wu,φf(z)=u(z)f(φ(z)). |
If u≡1, then Wu,φ is reduced to the composition operator usually denoted by Cφ. If φ(z)=z, then Wu,φ is reduced to the multiplication operator usually denoted by Mu. Since Wu,φ=Mu⋅Cφ, Wu,φ can be regarded as the product of Mu and Cφ.
If n=1, B becomes the open unit disk in C usually denoted by D. Let Dm be the mth differentiation operator on H(D), that is,
Dmf(z)=f(m)(z), |
where f(0)=f. D1 denotes the classical differentiation operator denoted by D. As expected, there has been some considerable interest in investigating products of differentiation and other related operators. For example, the most common products DCφ and CφD were extensively studied in [1,10,11,12,13,23,25,26], and the products
MuCφD,CφMuD,MuDCφ,CφDMu,DMuCφ,DCφMu | (1.1) |
were also extensively studied in [14,18,22,27]. Following the study of the operators in (1.1), people naturally extend to study the operators (see [5,6,30])
MuCφDm,CφMuDm,MuDmCφ,CφDmMu,DmMuCφ,DmCφMu. |
Other examples of products involving differentiation operators can be found in [7,8,19,32] and the related references.
As studying on the unit disk becomes more mature, people begin to become interested in exploring related properties on the unit ball. One method for extending the differentiation operator to Cn is the radial derivative operator
ℜf(z)=n∑j=1zj∂f∂zj(z). |
Naturally, replacing D by ℜ in (1.1), we obtain the following operators
MuCφℜ,CφMuℜ,MuℜCφ,CφℜMu,ℜMuCφ,ℜCφMu. | (1.2) |
Recently, these operators have been studied in [31]. Other operators involving radial derivative operators have been studied in [21,33,34].
Interestingly, the radial derivative operator can be defined iteratively, namely, ℜmf can be defined as ℜmf=ℜ(ℜm−1f). Similarly, using the radial derivative operator can yield the related operators
MuCφℜm,CφMuℜm,MuℜmCφ,CφℜmMu,ℜmMuCφ,ℜmCφMu. | (1.3) |
Clearly, the operators in (1.3) are more complex than those in (1.2). Since CφMuℜm=Mu∘φCφℜm, the operator MuCφℜm can be regarded as the simplest one in (1.3) which was first studied and denoted as ℜmu,φ in [24]. Recently, it has been studied again because people need to obtain more properties about spaces to characterize its properties (see [29]).
To reconsider the operator CφℜmMu, people find the fact
CφℜmMu=m∑i=0Cimℜi(ℜm−iu)∘φ,φ. | (1.4) |
Motivated by (1.4), people directly studied the sum operator (see [2,28])
Sm→u,φ=m∑i=0MuiCφℜi, |
where ui∈H(B), i=¯0,m, and φ∈S(B). Particularly, if we set u0≡⋯≡um−1≡0 and um=u, then Sm→u,φ=MuCφℜm; if we set u0≡⋯≡um−1≡0 and um=u∘φ, then Sm→u,φ=CφMuℜm. In [28], Stević et al. studied the operators Sm→u,φ from Hardy spaces to weighted-type spaces on the unit ball and obtained the following results.
Theorem A. Let m∈N, uj∈H(B), j=¯0,m, φ∈S(B), and μ a weight function on B. Then, the operator Sm→u,φ:Hp→H∞μ is bounded and
supz∈Bμ(z)|uj(φ(z))||φ(z)|<+∞,j=¯1,m, | (1.5) |
if and only if
I0=supz∈Bμ(z)|u0(z)|(1−|φ(z)|2)np<+∞ |
and
Ij=supz∈Bμ(z)|uj(z)||φ(z)|(1−|φ(z)|2)np+j<+∞,j=¯1,m. |
Theorem B. Let m∈N, uj∈H(B), j=¯0,m, φ∈S(B), and μ a weight function on B. Then, the operator Sm→u,φ:Hp→H∞μ is compact if and only if it is bounded,
lim|φ(z)|→1μ(z)|u0(z)|(1−|φ(z)|2)np=0 |
and
lim|φ(z)|→1μ(z)|uj(z)||φ(z)|(1−|φ(z)|2)np+j=0,j=¯1,m. |
It must be mentioned that we find that the necessity of Theorem A requires (1.5) to hold. Inspired by [2,28], here we use a new method and technique without (1.5) to study the sum operator Sm→u,φ from logarithmic Bergman-type space to weighted-type space on the unit ball. To this end, we need to introduce the well-known Bell polynomial (see [3])
Bm,k(x1,x2,…,xm−k+1)=∑m!∏m−k−1i=1ji!m−k−1∏i=1(xii!)ji, |
where all non-negative integer sequences j1, j2,…,jm−k+1 satisfy
m−k+1∑i=1ji=kandm−k+1∑i=1iji=m. |
In particular, when k=0, one can get B0,0=1 and Bm,0=0 for any m∈N. When k=1, one can get Bi,1=xi. When m=k=i, Bi,i=xi1 holds.
In this section, we need to introduce logarithmic Bergman-type space and weighted-type space. Here, a bounded positive continuous function on B is called a weight. For a weight μ, the weighted-type space H∞μ consists of all f∈H(B) such that
‖f‖H∞μ=supz∈Bμ(z)|f(z)|<+∞. |
With the norm ‖⋅‖H∞μ, H∞μ becomes a Banach space. In particular, if μ(z)=(1−|z|2)σ(σ>0), the space H∞μ is called classical weighted-type space usually denoted by H∞σ. If μ≡1, then space H∞μ becomes the bounded holomorphic function space usually denoted by H∞.
Next, we need to present the logarithmic Bergman-type space on B (see [4] for the unit disk case). Let dv be the standardized Lebesgue measure on B. The logarithmic Bergman-type space Apwγ,δ consists of all f∈H(B) such that
‖f‖pApwγ,δ=∫B|f(z)|pwγ,δ(z)dv(z)<+∞, |
where −1<γ<+∞, δ≤0, 0<p<+∞ and wγ,δ(z) is defined by
wγ,δ(z)=(log1|z|)γ[log(1−1log|z|)]δ. |
When p≥1, Apwγ,δ is a Banach space. While 0<p<1, it is a Fréchet space with the translation invariant metric ρ(f,g)=‖f−g‖pApωγ,δ.
Let φ∈S(B), 0≤r<1, 0≤γ<∞, δ≤0, and a∈B∖{φ(0)}. The generalized counting functions are defined as
Nφ,γ,δ(r,a)=∑zj(a)∈φ−1(a)wγ,δ(zj(a)r) |
where |zj(a)|<r, counting multiplicities, and
Nφ,γ,δ(a)=Nφ,γ,δ(1,a)=∑zj(a)∈φ−1(a)wγ,δ(zj(a)). |
If φ∈S(D), then the function Nφ,γ,δ has the integral expression: For 1≤γ<+∞ and δ≤0, there is a positive function F(t) satisfying
Nφ,γ,δ(r,u)=∫r0F(t)Nφ,1(t,u)dt,r∈(0,1),u≠φ(0). |
When φ∈S(D) and δ=0, the generalized counting functions become the common counting functions. Namely,
Nφ,γ(r,a)=∑z∈φ−1(a),|z|<r(logr|z|)γ, |
and
Nφ,γ(a)=Nφ,γ(1,a)=∑z∈φ−1(a)(log1|z|)γ. |
In [17], Shapiro used the function Nφ,γ(1,a) to characterize the compact composition operators on the weighted Bergman space.
Let X and Y be two topological spaces induced by the translation invariant metrics dX and dY, respectively. A linear operator T:X→Y is called bounded if there is a positive number K such that
dY(Tf,0)≤KdX(f,0) |
for all f∈X. The operator T:X→Y is called compact if it maps bounded sets into relatively compact sets.
In this paper, j=¯k,l is used to represent j=k,...,l, where k,l∈N0 and k≤l. Positive numbers are denoted by C, and they may vary in different situations. The notation a≲b (resp. a≳b) means that there is a positive number C such that a≤Cb (resp. a≥Cb). When a≲b and b≳a, we write a≍b.
In this section, we obtain some properties on the logarithmic Bergman-type space. First, we have the following point-evaluation estimate for the functions in the space.
Theorem 3.1. Let −1<γ<+∞, δ≤0, 0<p<+∞ and 0<r<1. Then, there exists a positive number C=C(γ,δ,p,r) independent of z∈K={z∈B:|z|>r} and f∈Apwγ,δ such that
|f(z)|≤C(1−|z|2)γ+n+1p[log(1−1log|z|)]−δp‖f‖Apwγ,δ. | (3.1) |
Proof. Let z∈B. By applying the subharmonicity of the function |f|p to Euclidean ball B(z,r) and using Lemma 1.23 in [35], we have
|f(z)|p≤1v(B(z,r))∫B(z,r)|f(w)|pdv(w)≤C1,r(1−|z|2)n+1∫B(z,r)|f(w)|pdv(w). | (3.2) |
Since r<|z|<1 and 1−|w|2≍1−|z|2, we have
log1|w|≍1−|w|≍1−|z|≍log1|z| | (3.3) |
and
log(1−log1|w|)≍log(1−log1|z|). | (3.4) |
From (3.3) and (3.4), it follows that there is a positive constant C2,r such that wγ,δ(z)≤C2,rwγ,δ(w) for all w∈B(z,r). From this and (3.2), we have
|f(z)|p≤C1,rC2,r(1−|z|2)n+1wγ,δ(z)∫B(z,r)|f(w)|pwγ,δ(w)dv(w)≤C1,rC2,r(1−|z|2)n+1wγ,δ(z)‖f‖pApwγ,δ. | (3.5) |
From (3.5) and the fact log1|z|≍1−|z|≍1−|z|2, the following inequality is right with a fixed constant C3,r
|f(z)|p≤C1,rC2,rC3,r(1−|z|2)n+1+γ[log(1−1log|z|)]−δ‖f‖pApwγ,δ. |
Let C=C1,rC2,rC3,rp. Then the proof is end.
Theorem 3.2. Let m∈N, −1<γ<+∞, δ≤0, 0<p<+∞ and 0<r<1. Then, there exists a positive constant Cm=C(γ,δ,p,r,m) independent of z∈K and f∈Apwγ,δ such that
|∂mf(z)∂zi1∂zi2…∂zim|≤Cm(1−|z|2)γ+n+1p+m[log(1−1log|z|)]−δp‖f‖Apwγ,δ. | (3.6) |
Proof. First, we prove the case of m=1. By the definition of the gradient and the Cauchy's inequality, we get
|∂f(z)∂zi|≤|∇f(z)|≤˜C1supw∈B(z,q(1−|z|))|f(w)|1−|z|, | (3.7) |
where i=¯1,n. By using the relations
1−|z|≤1−|z|2≤2(1−|z|), |
(1−q)(1−|z|)≤1−|w|≤(q+1)(1−|z|), |
and
log(1−1log|z|)≍log(1−1log|w|), |
we obtain the following formula
|f(w)|≤˘C1(1−|z|2)γ+n+1p[log(1−1log|z|)]−δp‖f‖Apwγ,δ |
for any w∈B(z,q(1−|z|)). Then,
supw∈B(z,q(1−|z|))|f(w)|≤˘C1(1−|z|2)γ+n+1p[log(1−1log|z|)]−δp‖f‖Apwγ,δ. |
From (3.1) and (3.2), it follows that
|∂f(z)∂zi|≤ˆC1(1−|z|2)γ+n+1p+1[log(1−1log|z|)]−δp‖f‖Apwγ,δ. | (3.8) |
Hence, the proof is completed for the case of m=1.
We will use the mathematical induction to complete the proof. Assume that (3.6) holds for m<a. For convenience, let g(z)=∂a−1f(z)∂zi1∂zi2…∂zia−1. By applying (3.7) to the function g, we obtain
|∂g(z)∂zi|≤˜C1supw∈B(z,q(1−|z|))|g(w)|1−|z|. | (3.9) |
According to the assumption, the function g satisfies
|g(z)|≤ˆCa−1(1−|z|2)γ+n+1p+a−1[log(1−1log|z|)]−δp‖f‖Apwγ,δ. |
By using (3.8), the following formula is also obtained
|∂g(z)∂zi|≤ˆCa(1−|z|2)γ+n+1p+a[log(1−1log|z|)]−δp‖f‖Apwγ,δ. |
This shows that (3.6) holds for m=a. The proof is end.
As an application of Theorems 3.1 and 3.2, we give the estimate in z=0 for the functions in Apωγ,δ.
Corollary 3.1. Let −1<γ<+∞, δ≤0, 0<p<+∞, and 0<r<2/3. Then, for all f∈Apwγ,δ, it follows that
|f(0)|≤C(1−r2)γ+n+1p[log(1−1logr)]−δp‖f‖Apwγ,δ, | (3.10) |
and
|∂mf(0)∂zl1…∂zlm|≤Cm(1−r2)γ+n+1p+m[log(1−1logr)]−δp‖f‖Apwγ,δ, | (3.11) |
where constants C and Cm are defined in Theorems 3.1 and 3.2, respectively.
Proof. For f∈Apwγ,δ, from Theorem 3.1 and the maximum module theorem, we have
|f(0)|≤max|z|=r|f(z)|≤C(1−r2)γ+n+1p[log(1−1logr)]−δp‖f‖Apwγ,δ, |
which implies that (3.10) holds. By using the similar method, we also have that (3.11) holds.
Next, we give an equivalent norm in Apwγ,δ, which extends Lemma 3.2 in [4] to B.
Theorem 3.3. Let r0∈[0,1). Then, for every f∈Apwγ,δ, it follows that
‖f‖pApwγ,δ≍∫B∖r0B|f(z)|pwγ,δ(z)dv(z). | (3.12) |
Proof. If r0=0, then it is obvious. So, we assume that r0∈(0,1). Integration in polar coordinates, we have
‖f‖pApwγ,δ=2n∫10wγ,δ(r)r2n−1dr∫S|f(rζ)|pdσ(ζ). |
Put
A(r)=wγ,δ(r)r2n−1andM(r,f)=∫S|f(rζ)|pdσ(ζ). |
Then it is represented that
‖f‖pApwγ,δ≍∫r00+∫1r0M(r,f)A(r)dr. | (3.13) |
Since M(r,f) is increasing, A(r) is positive and continuous in r on (0,1) and
limr→0A(r)=limx→+∞xγ[log(1+1x)]δe−(2n−1)x=limx→+∞xγ−δe(2n−1)x=0, |
that is, there is a constant ε>0(ε<r0) such that A(r)<A(ε) for r∈(0,ε). Then we have
∫r00M(r,f)A(r)dr≤2r01−r0maxε≤r≤r0A(r)∫1+r02r0M(r,f)dr≤2r01−r0maxε≤r≤r0A(r)minr0≤r≤1+r02A(r)∫1+r02r0M(r,f)A(r)dr≲∫1r0M(r,f)A(r)dr. | (3.14) |
From (3.13) and (3.14), we obtain the inequality
‖f‖pApwγ,δ≲∫1r0M(r,f)A(r)dr. |
The inequality reverse to this is obvious. The asymptotic relationship (3.12) follows, as desired.
The following integral estimate is an extension of Lemma 3.4 in [4]. The proof is similar, but we still present it for completeness.
Lemma 3.1. Let −1<γ<+∞, δ≤0, β>γ−δ and 0<r<1. Then, for each fixed w∈B with |w|>r,
∫Bωγ,δ(z)|1−⟨z,w⟩|n+β+1dv(z)≲1(1−|w|)β−γ[log(1−1log|w|)]δ. |
Proof. Fix |w| with |w|>r0 (0<r0<1). It is easy to see that
log1r≍1−rforr0≤r<1. | (3.15) |
By applying Theorem 3.3 with
fw(z)=1(1−⟨z,w⟩)n+β+1 |
and using (3.15), the formula of integration in polar coordinates gives
∫B1|1−⟨z,w⟩|n+β+1ωγ,δ(z)dv(z)≲∫1r0M(r,fw)(1−r)γ[log(1−1logr)]δr2n−1dr. | (3.16) |
By Proposition 1.4.10 in [15], we have
M(r,fw)≍1(1−r2|w|2)β+1. | (3.17) |
From (3.16) and (3.17), we have
∫B1|1−⟨z,w⟩|β+2nωγ,δ(z)dv(z)≲∫1r01(1−r2|w|2)β+1(1−r)γ[log(1−1logr)]δr2n−1dr≲∫1r01(1−r|w|)β+1(1−r)γ[log(1−1logr)]δr2n−1dr≲∫|w|r01(1−r|w|)β+1(1−r)γ[log(1−1logr)]δr2n−1dr+∫1|w|1(1−r|w|)β+1(1−r)γ[log(1−1logr)]δr2n−1dr=I1+I2. |
Since [log(1−1logr)]δ is decreasing in r on [|w|,1], we have
I2=∫1|w|1(1−r|w|)β+1(1−r)γ[log(1−1logr)]δr2n−1dr≲1(1−|w|)β+1[log(1−1log|w|)]δ∫1|w|(1−r)γdr≍1(1−|w|)β−γ[log(1−1log|w|)]δ. | (3.18) |
On the other hand, we obtain
I1=∫|w|r01(1−r|w|)β+1(1−r)γ[log(1−1logr)]δr2n−1dr≲∫|w|r0(1−r)γ−β−1(log21−r)δdr. |
If δ=0 and β>γ, then we have
I1(0)≲(1−|w|)γ−β. |
If δ≠0, then integration by parts gives
I1(δ)=−1γ−β(1−|w|)γ−β(log21−|w|)δ+1γ−β(1−r0)γ−β(log21−r0)δ+δγ−βI1(δ−1). |
Since δ<0, γ−β<0 and
(log21−r)δ−1≤(log21−r)δforr0<r<|w|<1, |
we have
I1(δ)≤−1γ−β(1−|w|)γ−β(log21−|w|)δ+δγ−βI1(δ) |
and from this follows
I1(δ)≲(1−|w|)γ−β(log21−|w|)δ≍(1−|w|)γ−β[log(1−1log|w|)]δ |
provided γ−β−δ<0. The proof is finished.
The following gives an important test function in Apwγ,δ.
Theorem 3.4. Let −1<γ<+∞, δ≤0, 0<p<+∞ and 0<r<1. Then, for each t≥0 and w∈B with |w|>r, the following function is in Apwγ,δ
fw,t(z)=[log(1−1log|w|)]−δp(1−|w|2)−δp+t+1(1−⟨z,w⟩)γ−δ+n+1p+t+1. |
Moreover,
sup{w∈B:|w|>r}‖fw,t‖Apwγ,δ≲1. |
Proof. By Lemma 3.1 and a direct calculation, we have
‖fw,t‖pApwγ,δ=∫B|[log(1−1log|w|)]−δp(1−|w|2)−δp+t+1(1−⟨z,w⟩)γ−δ+n+1p+t+1|pwγ,δ(z)dA(z)=(1−|w|2)p(t+1)−δ[log(1−1log|w|)]−δ×∫B1|1−⟨z,w⟩|γ−δ+p(t+1)+n+1wγ,δ(z)dA(z)≲1. |
The proof is finished.
In this section, for simplicity, we define
Bi,j(φ(z))=Bi,j(φ(z),φ(z),…,φ(z)). |
In order to characterize the compactness of the operator Sm→u,φ:Apwγ,δ→H∞μ, we need the following lemma. It can be proved similar to that in [16], so we omit here.
Lemma 4.1. Let −1<γ<+∞, δ≤0, 0<p<+∞, m∈N, uj∈H(B), j=¯0,m, and φ∈S(B). Then, the bounded operator Sm→u,φ:Apwγ,δ→H∞μ is compact if and only if for every bounded sequence {fk}k∈N in Apwγ,δ such that fk→0 uniformly on any compact subset of B as k→∞, it follows that
limk→∞‖Sm→u,φfk‖H∞μ=0. |
The following result was obtained in [24].
Lemma 4.2. Let s≥0, w∈B and
gw,s(z)=1(1−⟨z,w⟩)s,z∈B. |
Then,
ℜkgw,s(z)=sPk(⟨z,w⟩)(1−⟨z,w⟩)s+k, |
where Pk(w)=sk−1wk+p(k)k−1(s)wk−1+...+p(k)2(s)w2+w, and p(k)j(s), j=¯2,k−1, are nonnegative polynomials for s.
We also need the following result obtained in [20].
Lemma 4.3. Let s>0, w∈B and
gw,s(z)=1(1−⟨z,w⟩)s,z∈B. |
Then,
ℜkgw,s(z)=k∑t=1a(k)t(t−1∏j=0(s+j))⟨z,w⟩t(1−⟨z,w⟩)s+t, |
where the sequences (a(k)t)t∈¯1,k, k∈N, are defined by the relations
a(k)k=a(k)1=1 |
for k∈N and
a(k)t=ta(k−1)t+a(k−1)t−1 |
for 2≤t≤k−1,k≥3.
The final lemma of this section was obtained in [24].
Lemma 4.4. If a>0, then
Dn(a)=|11⋯1aa+1⋯a+n−1a(a+1)(a+1)(a+2)⋯(a+n−1)(a+n)⋮⋮⋯⋮n−2∏k=0(a+k)n−2∏k=0(a+k+1)⋯n−2∏k=0(a+k+n−1)|=n−1∏k=1k!. |
Theorem 4.1. Let −1<γ<+∞, δ≤0, 0<p<+∞, m∈N, uj∈H(B), j=¯0,m, and φ∈S(B). Then, the operator Sm→u,φ:Apwγ,δ→H∞μ is bounded if and only if
M0:=supz∈Bμ(z)|u0(z)|(1−|φ(z)|2)γ+n+1p[log(1−1log|φ(z)|)]−δp<+∞ | (4.1) |
and
Mj:=supz∈Bμ(z)|∑mi=jui(z)Bi,j(φ(z))|(1−|φ(z)|2)γ+n+1p+j[log(1−1log|φ(z)|)]−δp<+∞ | (4.2) |
for j=¯1,m.
Moreover, if the operator Sm→u,φ:Apwγ,δ→H∞μ is bounded, then
‖Sm→u,φ‖Apwγ,δ→H∞μ≍m∑j=0Mj. | (4.3) |
Proof. Suppose that (4.1) and (4.2) hold. From Theorem 3.1, Theorem 3.2, and some easy calculations, it follows that
μ(z)|m∑i=0ui(z)ℜif(φ(z))|≤μ(z)m∑i=0|ui(z)||ℜif(φ(z))|=μ(z)|u0(z)||f(φ(z))|+μ(z)|m∑i=1i∑j=1(ui(z)n∑l1=1⋯n∑lj=1(∂jf∂zl1∂zl2⋯∂zlj(φ(z))∑k1,…,kjC(i)k1,…,kjj∏t=1φlt(z)))|=μ(z)|u0(z)f(φ(z))|+μ(z)|m∑j=1m∑i=j(ui(z)n∑l1=1⋯n∑lj=1(∂jf∂zl1∂zl2⋯∂zlj(φ(z))∑k1,…,kjC(i)k1,…,kjj∏t=1φlt(z)))|≲μ(z)|u0(z)|(1−|φ(z)|2)γ+n+1p[log(1−1log|φ(z)|)]−δp‖f‖Apwγ,δ+m∑j=1μ(z)|∑mi=jui(z)Bi,j(φ(z))|(1−|φ(z)|2)γ+n+1p+j[log(1−1log|φ(z)|)]−δp‖f‖Apwγ,δ=M0‖f‖Apwγ,δ+m∑j=1Mj‖f‖Apwγ,δ. | (4.4) |
By taking the supremum in inequality (4.4) over the unit ball in the space Apwγ,δ, and using (4.1) and (4.2), we obtain that the operator Sm→u,φ:Apwγ,δ→H∞μ is bounded. Moreover, we have
‖Sm→u,φ‖Apwγ,δ→H∞μ≤Cm∑j=0Mj, | (4.5) |
where C is a positive constant.
Assume that the operator Sm→u,φ:Apwγ,δ→H∞μ is bounded. Then there exists a positive constant C such that
‖Sm→u,φf‖H∞μ≤C‖f‖Apwγ,δ | (4.6) |
for any f∈Apwγ,δ. First, we can take f(z)=1∈Apwγ,δ, then one has that
supz∈Bμ(z)|u0(z)|<+∞. | (4.7) |
Similarly, take fk(z)=zjk∈Apwγ,δ, k=¯1,n and j=¯1,m, by (4.7), then
μ(z)|u0(z)φk(z)j+m∑i=j(ui(z)Bi,j(φk(z))))|<+∞ | (4.8) |
for any j∈{1,2,…,m}. Since φ(z)∈B, we have |φ(z)|≤1. So, one can use the triangle inequality (4.7) and (4.8), the following inequality is true
supz∈Bμ(z)|m∑i=jui(z)Bi,j(φ(z))|<+∞. | (4.9) |
Let w∈B and dk=γ+n+1p+k. For any j∈{1,2,…,m} and constants ck=c(j)k, k=¯0,m, let
h(j)w(z)=m∑k=0c(j)kfw,k(z), | (4.10) |
where fw,k is defined in Theorem 3.4. Then, by Theorem 3.4, we have
Lj=supw∈B‖h(j)w‖Apwγ,δ<+∞. | (4.11) |
From (4.6), (4.11), and some easy calculations, it follows that
Lj‖Sm→u,φ‖Apwγ,δ→H∞μ≥‖Sm→u,φh(j)φ(w)‖H∞μ=supz∈Bμ(z)|m∑i=0u0(z)h(j)φ(w)(φ(z))|≥μ(w)|u0(w)h(j)φ(w)(φ(w))+m∑i=1(ui(w)ℜih(j)φ(w)(φ(w)))|=μ(w)|u0(w)h(j)φ(w)(φ(w))+m∑i=1ui(w)m∑k=0c(j)kfφ(w),k(φ(w))|=μ(w)|u0(w)c0+c1+⋯+cm(1−|φ(z)|2)γ+n+1p+⟨m∑i=1ui(w)Bi,1(φ(w)),φ(w)⟩(d0c0+⋯+dmcm)(1−|φ(w)|2)γ+n+1p+1+⋯+⟨m∑i=jui(w)Bi,j(φ(w)),φ(w)j⟩(d0⋯dj−1c0+⋯+dm⋯dm+j−1cm)(1−|φ(w)|2)γ+n+1p+j+⋯+⟨um(w)Bm,m(φ(w)),φ(w)m⟩(d0⋯dm−1c0+⋯+dm⋯d2m−1cm)(1−|φ(w)|2)γ+n+1p+m|[log(1−1log|φ(w)|)]−δp. | (4.12) |
Since dk>0, k=¯0,m, by Lemma 4.4, we have the following linear equations
(11⋯1d0d1⋯dm⋮⋮⋱⋮j−1∏k=0dkj−1∏k=0dk+m⋯j−1∏k=0dk+m⋮⋮⋱⋮m−1∏k=0dkm−1∏k=0dk+m⋯m−1∏k=0dk+m)(c0c1⋮cj⋮cm)=(00⋮1⋮0). | (4.13) |
From (4.12) and (4.13), we have
Lj‖Sl→u,φ‖Apwγ,δ→H∞μ≥sup|φ(z)|>1/2μ(z)|∑mi=jui(z)Bi,j(φ(z))||φ(z)|j(1−|φ(z)|2)γ+n+1p+j[log(1−1log|φ(z)|)]−δp≳sup|φ(z)|>1/2μ(z)|∑mi=jui(z)Bi,j(φ(z))|(1−|φ(z)|2)γ+n+1p+j[log(1−1log|φ(z)|)]−δp. | (4.14) |
On the other hand, from (4.9), we have
sup|φ(z)|≤1/2μ(z)|∑mi=jui(z)Bi,j(φ(z))|(1−|φ(z)|2)γ+n+1p+j[log(1−1log|φ(z)|)]−δp≤supz∈B(43)γ+n+1p+j[log(1−1log12)]−δpμ(z)|m∑i=jui(z)Bi,j(φ(z))|<+∞. | (4.15) |
From (4.14) and (4.15), we get that (4.2) holds for j=¯1,m.
For constants ck=c(0)k, k=¯0,m, let
h(0)w(z)=m∑k=0c(0)kfw,k(z). | (4.16) |
By Theorem 3.4, we know that L0=supw∈B‖h(0)w‖Apwγ,δ<+∞. From this, (4.12), (4.13) and Lemma 4.4, we get
L0‖Sm→u,φ‖Apwγ,δ→H∞μ≥μ(z)|u0(z)|(1−|φ(z)|2)γ+n+1p[log(1−1log|φ(z)|)]−δp. |
So, we have M0<+∞. Moreover, we have
‖Sm→u,φ‖Apwγ,δ→H∞μ≥m∑j=0Mj. | (4.17) |
From (4.5) and (4.17), we obtain (4.3). The proof is completed.
From Theorem 4.1 and (1.4), we obtain the following result.
Corollary 4.1. Let m∈N, u∈H(B), φ∈S(B) and μ is a weight function on B. Then, the operator CφℜmMu:Apwγ,δ→H∞μ is bounded if and only if
I0:=supz∈Bμ(z)|ℜmu∘φ(z)|(1−|φ(z)|2)γ+n+1p[log(1−1log|φ(z)|)]−δp<+∞ |
and
Ij:=supz∈Bμ(z)|∑mi=jℜm−iu∘φ(z)Bi,j(φ(z))|(1−|φ(z)|2)γ+n+1p+j[log(1−1log|φ(z)|)]−δp<+∞ |
for j=¯1,m.
Moreover, if the operator CφℜmMu:Apwγ,δ→H∞μ is bounded, then
‖CφℜmMu‖Apwγ,δ→H∞μ≍m∑j=0Ij. |
Theorem 4.2. Let −1<γ<+∞, δ≤0, 0<p<+∞, m∈N, uj∈H(B), j=¯0,m, and φ∈S(B). Then, the operator Sm→u,φ:Apwγ,δ→H∞μ is compact if and only if the operator Sm→u,φ:Apwγ,δ→H∞μ is bounded,
lim|φ(z)|→1μ(z)|∑mi=j(ui(z)Bi,j(φ(z))|(1−|φ(z)|2)γ+n+1p+j[log(1−1log|φ(z)|)]−δp=0 | (4.18) |
for j=¯1,m, and
lim|φ(z)|→1μ(z)|u0(z)|(1−|φ(z)|2)γ+n+1p[log(1−1log|φ(z)|)]−δp=0. | (4.19) |
Proof. Assume that the operator Sm→u,φ:Apwγ,δ→H∞μ is compact. It is obvious that the operator Sm→u,φ:Apwγ,δ→H∞μ is bounded.
If ‖φ‖∞<1, then it is clear that (4.18) and (4.19) are true. So, we suppose that ‖φ‖∞=1. Let {zk} be a sequence in B such that
limk→1|μ(zk)|→1andh(j)k=h(j)φ(zk), |
where h(j)w are defined in (4.10) for a fixed j∈{1,2,…,l}. Then, it follows that h(j)k→0 uniformly on any compact subset of B as k→∞. Hence, by Lemma 4.1, we have
limk→∞‖Sm→u,φhk‖H∞μ=0. |
Then, we can find sufficiently large k such that
μ(zk)|∑mi=j(ui(zk)Bi,j(φ(zk))|(1−|φ(zk)|2)γ+n+1p+j[log(1−1log|φ(zk)|)]−δp≤Lk‖Sm→u,φh(j)k‖H∞μ. | (4.20) |
If k→∞, then (4.20) is true.
Now, we discuss the case of j=0. Let h(0)k=h(0)φ(zk), where h(0)w is defined in (4.16). Then, we also have that ‖h(0)k‖Apwγ,δ<+∞ and h(0)k→0 uniformly on any compact subset of B as k→∞. Hence, by Lemma 4.1, one has that
limk→∞‖Sm→u,φh(0)k‖H∞μ(B)=0. | (4.21) |
Then, by (4.21), we know that (4.18) is true.
Now, assume that Sm→u,φ:Apwγ,δ→H∞μ is bounded, (4.18) and (4.19) are true. One has that
μ(z)|u0(z)|≤C<+∞ | (4.22) |
and
μ(z)|m∑i=j(ui(z)Bi,j(φ(z)))|≤C<+∞ | (4.23) |
for any z\in\mathbb{B} . By (4.18) and (4.19), for arbitrary \varepsilon > 0 , there is a r\in(0, 1) , for any z\in K such that
\begin{align} \frac{\mu(z)|u_{0}(z)| }{(1-|\varphi(z)|^2)^{\frac{\gamma+n+1}{p}}}\Big[\log\Big(1-\frac{1} {\log|\varphi(z)|}\Big)\Big]^{-\frac{\delta}{p}} < \varepsilon. \end{align} | (4.24) |
and
\begin{align} \frac{\mu(z)\Big|\sum_{i = j}^{m}(u_{i}(z)B_{i,j}(\varphi(z)))\Big| }{(1-|\varphi(z)|^2)^{\frac{\gamma+n+1}{p}+j}} \Big[\log\Big(1-\frac{1}{\log|\varphi(z)|}\Big)\Big]^{-\frac{\delta}{p}} < \varepsilon. \end{align} | (4.25) |
Assume that \{f_{s}\} is a sequence such that \sup_{s\in\mathbb{N}}\|f_{s}\|_{A^p_{w_{\gamma, \delta}}}\leq M < +\infty and f_{s}\rightarrow 0 uniformly on any compact subset of \mathbb{B} as s\rightarrow \infty . Then by Theorem 3.1, Theorem 3.2 and (4.22)–(4.25), one has that
\begin{align} \|\mathfrak{S}^m_{\vec{u},{\varphi}} f_{s}\|_{H_{\mu}^{\infty}(\mathbb{B})} & = \sup_{z\in\mathbb{B}}\mu(z)\Big|u_{0}(z)f(\varphi(z))+ \sum_{i = 1}^{m}u_{i}(z)\Re^{i} f(\varphi(z))\Big|\\ & = \sup_{z\in K}\mu(z)\Big|u_{0}(z)f(\varphi(z))+ \sum_{i = 1}^{m}u_{i}(z)\Re^{i} f(\varphi(z))\Big|\\ &\quad+\sup_{z\in\mathbb{B}\setminus K}\mu(z)\Big|u_{0}(z)f(\varphi(z))+ \sum_{i = 1}^{m}u_{i}(z)\Re^{i} f(\varphi(z))\Big|\\ &\lesssim \sup_{z\in K}\frac{\mu(z)|u_{0}(z)| }{(1-|\varphi(z)|^2)^{\frac{\gamma+n+1}{p}}}\Big[\log\Big(1-\frac{1} {\log|\varphi (z)|}\Big)\Big]^{-\frac{\delta}{p}}\|f_{s}\|_{A^p_{w_\gamma,\delta}} \\ &\quad+\sup_{z\in K}\frac{\mu(z)\Big|\sum_{i = j}^{m}(u_{i}(z) B_{i,j}(\varphi(z)))\Big| }{(1-|\varphi(z)|^2)^{\frac{\gamma+n+1}{p}+j}}\Big[\log\Big(1-\frac{1} {\log|\varphi (z)|}\Big)\Big]^{-\frac{\delta}{p}} \|f_{s}\|_{A^p_{w_\gamma,\delta}} \\ &\quad+\sup_{z\in\mathbb{B}\setminus K}\mu(z)|u_{0}(z)||f_{s}(\varphi(z))|\\ &\quad+\sup_{z\in\mathbb{B}\setminus K}\sum_{j = 1}^{m} \mu(z)\Big|\sum_{i = j}^{m}(u_{i}(z)B_{i,j}(\varphi(z)))\Big| \max_{\{l_{1},l_{2},\ldots,l_{j}\}}\Big|\frac{\partial^{j} f_{s}}{\partial z_{l_{1}} \partial z_{l_{2}}\cdots\partial z_{l_{j}}}(\varphi(z))\Big|\\ &\leq M\varepsilon+C\sup_{|w|\leq \delta}\sum_{j = 0}^{m} \max_{\{l_{1},l_{2},\ldots,l_{j}\}}\Big|\frac{\partial^{j} f_{s}}{\partial z_{l_{1}} \partial z_{l_{2}}\cdots\partial z_{l_{j}}}(w)\Big|. \end{align} | (4.26) |
Since f_{s}\rightarrow0 uniformly on any compact subset of \mathbb{B} as s\rightarrow \infty . By Cauchy's estimates, we also have that \frac{\partial^{j} f_{s}}{\partial z_{l_{1}}\partial z_{l_{2}}\cdots\partial z_{l_{j}}}\rightarrow 0 uniformly on any compact subset of \mathbb{B} as s\rightarrow \infty . From this and using the fact that \{w\in{\mathbb{B}}:|w|\leq\delta\} is a compact subset of \mathbb{B} , by letting s\rightarrow \infty in inequality (4.26), one get that
\begin{align*} \limsup_{s\rightarrow \infty}\|\mathfrak{S}^m_{\vec{u},{\varphi}} f_{s}\|_{H_{\mu}^{\infty}}\lesssim \varepsilon. \end{align*} |
Since \varepsilon is an arbitrary positive number, it follows that
\begin{align*} \lim_{s\rightarrow \infty}\|\mathfrak{S}^m_{\vec{u},{\varphi}} f_{s}\|_{H_{\mu}^{\infty}} = 0. \end{align*} |
By Lemma 4.1, the operator \mathfrak{S}^m_{\vec{u}, {\varphi}}:A^p_{w_{\gamma, \delta}}\rightarrow H_\mu^\infty is compact.
As before, we also have the following result.
Corollary 4.2. Let m\in\mathbb{N} , u\in H(\mathbb{B}) , \varphi\in S(\mathbb{B}) and \mu is a weight function on \mathbb{B} . Then, the operators C_{{\varphi}}\Re^{m}M_{u}:A^p_{w_{\gamma, \delta}}\rightarrow H_\mu^\infty is compact if and only if the operator C_{{\varphi}}\Re^{m}M_{u}:A^p_{w_{\gamma, \delta}}\rightarrow H_\mu^\infty is bounded,
\begin{align*} \lim_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\Re^mu \circ {\varphi}(z)| }{(1-|\varphi(z)|^2)^{\frac{\gamma+n+1}{p}}}\Big[\log\Big(1-\frac{1}{\log|\varphi (z)|}\Big)\Big]^{-\frac{\delta}{p}} = 0 \end{align*} |
and
\begin{align*} \lim_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\sum_{i = j}^{m}(\Re^{m-i}u \circ {\varphi}(z)B_{i,j}(\varphi(z))| }{\Big(1-|\varphi(z)|^2)^{\frac{\gamma +n+1}{p}+j}}\Big[\log(1-\frac{1}{\log|\varphi (z)|}\Big)\Big]^{-\frac{\delta}{p}} = 0 \end{align*} |
for j = \overline{1, m} .
In this paper, we study and obtain some properties about the logarithmic Bergman-type space on the unit ball. As some applications, we completely characterized the boundedness and compactness of the operator
\begin{align*} \mathfrak{S}^m_{\vec{u},{\varphi}} = \sum_{i = 0}^{m}M_{u_i}C_{\varphi}\Re^{i} \end{align*} |
from the logarithmic Bergman-type space to the weighted-type space on the unit ball. Here, one thing should be pointed out is that we use a new method and technique to characterize the boundedness of such operators without the condition (1.5), which perhaps is the special flavour in this paper.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Sichuan Science and Technology Program (2022ZYD0010) and the Graduate Student Innovation Foundation (Y2022193).
The authors declare that they have no competing interests.
[1] |
Li VC, Maalej M (1996) Toughening in cement based composites. Part I: concrete, mortar, and concrete. Cement Concrete Comp 18: 223–237. https://doi.org/10.1016/0958-9465(95)00028-3 doi: 10.1016/0958-9465(95)00028-3
![]() |
[2] |
Li VC, Maalej M (1996) Toughening in cement based composites. Part Ⅱ: Fiber reinforced cementitious composites. Cement Concrete Comp 18: 239–249. https://doi.org/10.1016/0958-9465(95)00029-1 doi: 10.1016/0958-9465(95)00029-1
![]() |
[3] |
Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth In concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6: 773–781. https://doi.org/10.1016/0008-8846(76)90007-7 doi: 10.1016/0008-8846(76)90007-7
![]() |
[4] | Hillerborg A (1978) A model for fracture analysis. TVBM-3005. Available from: https://portal.research.lu.se/en/publications/a-model-for-fracture-analysis. |
[5] | Bažant ZP (1992) Should design codes consider fracture mechanics size effect?, In: Gerstle W, Bazant ZP, Concrete Design Based on Fracture Mechanics, American Concrete Institute, 134: 1–24. |
[6] | Carpinteri A (1981) A fracture mechanics model for reinforced concrete collapse. Available from: https://www.e-periodica.ch/cntmng?pid=bse-re-001:1981:34::9. |
[7] |
Carpinteri A (1984) Stability of fracturing process in RC beams. J Struct Eng 110: 544–558. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(544) doi: 10.1061/(ASCE)0733-9445(1984)110:3(544)
![]() |
[8] |
Bazant ZP, Pfeiffer A (1987) Determination of fracture energy from size effect and brittleness number. ACI Mater J 84: 463–480. https://doi.org/10.14359/2526 doi: 10.14359/2526
![]() |
[9] |
Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mat Constr 16: 155–177. https://doi.org/10.1007/BF02486267 doi: 10.1007/BF02486267
![]() |
[10] |
Jenq Y, Shah SP (1985) Two parameter fracture model for concrete. J Eng Mech 111: 1227–1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227) doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227)
![]() |
[11] |
Xu S, Reinhardt HW (2000) A simplified method for determining double-K fracture parameters for three-point bending tests. Int J Fract 104: 181–209. https://doi.org/10.1023/A:1007676716549 doi: 10.1023/A:1007676716549
![]() |
[12] |
Xu S, Reinhardt HW (1999) Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part I : Experimental investigation of crack propagation. Int J Frac 98: 111–149. https://doi.org/10.1023/A:1018668929989 doi: 10.1023/A:1018668929989
![]() |
[13] |
Xu S, Reinhardt HW (1999) Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part Ⅱ : Analytical evaluating and practical measuring methods for three-point bending notched beams. Int J Fract 98: 151–177. https://doi.org/10.1023/A:1018740728458 doi: 10.1023/A:1018740728458
![]() |
[14] |
Maalej M, Li VC (1995) Flexural strength of fiber cementitious composites. J Materi Civil Eng 6: 390–406. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(390) doi: 10.1061/(ASCE)0899-1561(1994)6:3(390)
![]() |
[15] |
Maalej M, Li VC, Hashida T (1995) Effect of fiber rupture on tensile properties of short fiber composites. J Eng Mech (ASCE) 121: 903. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:8(903) doi: 10.1061/(ASCE)0733-9399(1995)121:8(903)
![]() |
[16] |
Zhang J, Li VC (2004) Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics. Cem Concr Res 34: 333–339. https://doi.org/10.1016/j.cemconres.2003.08.015 doi: 10.1016/j.cemconres.2003.08.015
![]() |
[17] |
Accornero F, Rubino A, Carpinteri A (2020) Ductile-to-brittle transition in fiber-reinforced concrete beams: Scale and fiber volume fraction effects. MDPC 2020: 1–11. https://doi.org/10.1002/mdp2.127 doi: 10.1002/mdp2.127
![]() |
[18] |
Accornero F, Rubino A, Carpinteri A (2022) A fracture mechanics approach to the design of hybrid-reinforced concrete beams. Eng Fract Mech 275: 108821. https://doi.org/10.1016/j.engfracmech.2022.108821 doi: 10.1016/j.engfracmech.2022.108821
![]() |
[19] | Carpinteri A, Accornero F, Rubino A (2022) Scale effects in the post-cracking behaviour of fibre-reinforced concrete beams. Int J Fract. https://doi.org/10.1007/s10704-022-00671-x |
[20] |
Accornero F, Rubino A, Carpinteri A (2022) Post-cracking regimes in the flexural behaviour of fibre-reinforced concrete beams. Int J Solids Struct 248: 111637. https://doi.org/10.1016/j.ijsolstr.2022.111637 doi: 10.1016/j.ijsolstr.2022.111637
![]() |
[21] |
Accornero F, Rubino A, Carpinteri A (2022) Ultra-low cycle fatigue (ULCF) in fibre-reinforced concrete beams. Theor Appl Fract Mec 120: 103392. https://doi.org/10.1016/j.tafmec.2022.103392 doi: 10.1016/j.tafmec.2022.103392
![]() |
[22] |
Lok TS, Xiao JR (1999) Flexrual strength assessment of fiber reinforced concrete. J Mater Civil Eng 11: 118–196. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(188) doi: 10.1061/(ASCE)0899-1561(1999)11:3(188)
![]() |
[23] |
Meng G, Wu B, Xu S, et al. (2021) Modelling and experimental validation of flexural tensile properties of steel fiber reinforced concrete. Constr Build Mater 273: 121974. https://doi.org/10.1016/j.conbuildmat.2020.121974 doi: 10.1016/j.conbuildmat.2020.121974
![]() |
[24] |
Zeng JJ, Zeng WB, Ye YY, et al. (2022) Flexural behavior of FRP grid reinforced ultra-high-performance concrete composite plates with different types of fibers. Eng Struct 272: 115020. https://doi.org/10.1016/j.engstruct.2022.115020 doi: 10.1016/j.engstruct.2022.115020
![]() |
[25] |
Soetens T, Matthys S (2014) Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete. Constr Build Mater 73: 458–471. https://doi.org/10.1016/j.conbuildmat.2014.09.093 doi: 10.1016/j.conbuildmat.2014.09.093
![]() |
[26] |
Zhang J, Leung CK, Xu S (2010) Evaluation of fracture parameters of concrete from bending test using inverse analysis approach. Mater Struct 43: 857–874. https://doi.org/10.1617/s11527-009-9552-5 doi: 10.1617/s11527-009-9552-5
![]() |
[27] |
Da Silva CN, Ciambella J, Barros JAO, et al. (2020) A multiscale model for optimising the flexural capacity of FRC structural elements. Compos Part B-Eng 200: 108325. https://doi.org/10.1016/j.compositesb.2020.108325 doi: 10.1016/j.compositesb.2020.108325
![]() |
[28] |
Bhosale AB, Prakash SS (2020) Crack propagation analysis of synthetic vs. steel vs. hybrid fibre-reinforced concrete beams using digital image correlation technique. Int J Concr Struct M 14: 1–19. https://doi.org/10.1186/s40069-020-00427-8 doi: 10.1186/s40069-020-00427-8
![]() |
[29] |
Kravchuk R, Landis EN (2018) Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete. Constr Build Mater 176: 531–538. https://doi.org/10.1016/j.conbuildmat.2018.05.039 doi: 10.1016/j.conbuildmat.2018.05.039
![]() |
[30] |
Chen C, Chen X, Ning Y (2022) Identification of fracture damage characteristics in ultra-high performance cement-based composite using digital image correlation and acoustic emission techniques. Compos Struct 291: 115612. https://doi.org/10.1016/j.compstruct.2022.115612 doi: 10.1016/j.compstruct.2022.115612
![]() |
[31] |
He F, Biolzi L, Carvelli V, et al. (2022) Digital imaging monitoring of fracture processes in hybrid steel fiber reinforced concrete. Compos Struct 298: 116005. https://doi.org/10.1016/j.compstruct.2022.116005 doi: 10.1016/j.compstruct.2022.116005
![]() |
[32] | Tada H, Paris PC, Irwin GR (2000) The Stress Analysis of Crack Handbook, 3 Eds., ASME Press. https://doi.org/10.1115/1.801535 |
[33] |
Ward RJ, Li VC (1991) Dependence of flexural behaviour of fibre reinforced mortar on material fracture resistance and beam size. Constr Build Mater 5: 151–161. https://doi.org/10.1016/0950-0618(91)90066-T doi: 10.1016/0950-0618(91)90066-T
![]() |
[34] |
Johnston CD (1982) Steel fiber reinforced and plain concrete: factors influencing flexural strength measurement. ACI J Proc 79: 131–138. https://doi.org/10.14359/10888 doi: 10.14359/10888
![]() |
[35] |
Yoo DY, Banthia N, Yang JM, et al. (2016) Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams. Constr Build Mater 121: 676–685. https://doi.org/10.1016/j.conbuildmat.2016.06.040 doi: 10.1016/j.conbuildmat.2016.06.040
![]() |
[36] |
Li VC, Wang Y, Backer S (1900) Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites 21: 132–140. https://doi.org/10.1016/0010-4361(90)90005-H doi: 10.1016/0010-4361(90)90005-H
![]() |
[37] |
Ince R (2012) Determination of concrete fracture parameters based on peak-load method with diagonal split-tension cubes. Eng Fract Mech 82: 100–114. https://doi.org/10.1016/j.engfracmech.2011.11.026 doi: 10.1016/j.engfracmech.2011.11.026
![]() |
[38] |
Chbani H, Saadouki B, Boudlal M, et al. (2019) Determination of fracture toughness in plain concrete specimens by R curve. Frat Integrita Strut 13: 763–774. https://doi.org/10.3221/IGF-ESIS.49.68 doi: 10.3221/IGF-ESIS.49.68
![]() |
[39] |
Xu S, Zhang X (2008) Determination of fracture parameters for crack propagation in concrete using an energy approach. Eng Fract Mech 75: 4292–4308. https://doi.org/10.1016/j.engfracmech.2008.04.022 doi: 10.1016/j.engfracmech.2008.04.022
![]() |
[40] | British Standards Institution (2007) Structural use of concrete-part 1 : code of practice for design and construction. Available from: https://crcrecruits.files.wordpress.com/2014/04/bs8110-1-1997-structural-use-of-concrete-design-construction.pdf |
[41] |
Lee J, Cho B, Choi E (2017) Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content. Constr Build Mater 138: 222–231. https://doi.org/10.1016/j.conbuildmat.2017.01.096 doi: 10.1016/j.conbuildmat.2017.01.096
![]() |
[42] |
Yoo DY, Yoon YS, Banthia N (2015) Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement Concrete Compos 64: 84–92. https://doi.org/10.1016/j.cemconcomp.2015.10.001 doi: 10.1016/j.cemconcomp.2015.10.001
![]() |
[43] |
Jang SJ, Jeong GY, Lee MH, et al. (2016) Compressive strength effects on flexural behavior of steel fiber reinforced concrete. Key Eng Mater 709: 101–104. https://doi.org/10.4028/www.scientific.net/KEM.709.101 doi: 10.4028/www.scientific.net/KEM.709.101
![]() |
[44] | Soutsos M, Domone P (2017) Construction Materials: Their Nature and Behaviour, CRC Press. https://doi.org/10.1201/9781315164595 |
1. | Hafiz Muhammad Fraz, Kashif Ali, Muhammad Faisal Nadeem, Entropy measures of silicon nanotubes using degree based topological indices, 2025, 100, 0031-8949, 015202, 10.1088/1402-4896/ad94b4 | |
2. | Pranavi Jaina, K. Anil Kumar, J. Vijayasekhar, Application of Zagreb Index Models in Predicting the Physicochemical Properties of Unsaturated Fatty Acids, 2025, 41, 22315039, 201, 10.13005/ojc/410124 |