Citation: Dominik Flore, Konrad Wegener. Influence of fibre volume fraction and temperature on fatigue life of glass fibre reinforced plastics[J]. AIMS Materials Science, 2016, 3(3): 770-795. doi: 10.3934/matersci.2016.3.770
[1] | Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615 |
[2] | Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337 |
[3] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
[4] | Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439 |
[5] | Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925 |
[6] | Antonios Armaou, Bryce Katch, Lucia Russo, Constantinos Siettos . Designing social distancing policies for the COVID-19 pandemic: A probabilistic model predictive control approach. Mathematical Biosciences and Engineering, 2022, 19(9): 8804-8832. doi: 10.3934/mbe.2022409 |
[7] | Seyedeh Nazanin Khatami, Chaitra Gopalappa . Deep reinforcement learning framework for controlling infectious disease outbreaks in the context of multi-jurisdictions. Mathematical Biosciences and Engineering, 2023, 20(8): 14306-14326. doi: 10.3934/mbe.2023640 |
[8] | Avinash Shankaranarayanan, Hsiu-Chuan Wei . Mathematical modeling of SARS-nCoV-2 virus in Tamil Nadu, South India. Mathematical Biosciences and Engineering, 2022, 19(11): 11324-11344. doi: 10.3934/mbe.2022527 |
[9] | Chloe Bracis, Mia Moore, David A. Swan, Laura Matrajt, Larissa Anderson, Daniel B. Reeves, Eileen Burns, Joshua T. Schiffer, Dobromir Dimitrov . Improving vaccination coverage and offering vaccine to all school-age children allowed uninterrupted in-person schooling in King County, WA: Modeling analysis. Mathematical Biosciences and Engineering, 2022, 19(6): 5699-5716. doi: 10.3934/mbe.2022266 |
[10] | Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278 |
Let
● (Divisorial)
● (Flipping)
● (Mixed)
Note that the mixed case can occur only if either
We can almost always choose the initial
Our aim is to discuss a significant special case where the
Definition 1 (MMP with scaling). Let
By the
(Xj,Θj)ϕj→Zjψj←(Xj+1,Θj+1)gj↘↓↙gj+1S | (1.1) |
where
(2)
(3)
(4)
Note that (4) implies that
In general such a diagram need not exist, but if it does, it is unique and then
(X,Θ)ϕ→Zϕ+←(X+,Θ+)g↘↓↙g+S | (1.5) |
We say that the MMP terminates with
(6) either
(7) or
Warning 1.8. Our terminology is slightly different from [7], where it is assumed that
One advantage is that our MMP steps are uniquely determined by the starting data. This makes it possible to extend the theory to algebraic spaces [33].
Theorem 2 is formulated for Noetherian base schemes. We do not prove any new results about the existence of flips, but Theorem 2 says that if the MMP with scaling exists and terminates, then its steps are simpler than expected, and the end result is more controlled than expected.
On the other hand, for 3-dimensional schemes, Theorem 2 can be used to conclude that, in some important cases, the MMP runs and terminates, see Theorem 9.
Theorem 2. Let
(i)
(ii)
(iii)
(iv)
(v) The
We run the
(1)
(a) either
(b) or
(2) The
(3)
Furthermore, if the MMP terminates with
(4)
(5) if
Remark 2.6. In applications the following are the key points:
(a) We avoided the mixed case.
(b) In the fipping case we have both
(c) In (3) we have an explicit, relatively ample, exceptional
(d) In case (5) we end with
(e) In case (5) the last MMP step is a divisorial contraction, giving what [35] calls a Kollár component; no further flips needed.
Proof. Assertions (1-3) concern only one MMP-step, so we may as well drop the index
Let
∑hi(Ei⋅C)=−r−1(EΘ⋅C). | (2.7) |
By Lemma 3 this shows that the
∑hi(e′(Ei⋅C)−e(Ei⋅C′))=0. | (2.8) |
By the linear independence of the
Assume first that
ϕ∗(EΘ+rH)=∑i>1(ei+rhi)ϕ∗(Ei) |
is
Otherwise
g−1(g(supp(EΘ+rH)))=supp(EΘ+rH). | (2.9) |
If
Thus
Assume next that the flip
Finally, if the MMP terminates with
Lemma 3. Let
∑ni=1hivi=γv0 for some γ∈L. |
Then
Proof. We may assume that
∑ni=1hiai=γa0 and n∑i=1hibi=γb0. |
This gives that
∑ni=1hi(b0ai−a0bi)=0. |
Since the
Lemma 4. Let
Proof. Assume that
∑ni=1sihi=−(∑ni=1siei)⋅∑ni=0rihi. |
If
The following is a slight modifications of [3,Lem.1.5.1]; see also [17,5.3].
Lemma 5. Let
Comments on
Conjecture 6. Let
(1)
(2) The completion of
Using [30,Tag 0CAV] one can reformulate (6.2) as a finite type statement:
(3) There are elementary étale morphisms
(x,X,∑DXi)←(u,U,∑DUi)→(y,Y,∑DYi). |
Almost all resolution methods commute with étale morphisms, thus if we want to prove something about a resolution of
A positive answer to Conjecture 6 (for
(Note that [27] uses an even stronger formulation: Every normal, analytic singularity has an algebraization whose class group is generated by the canonical class. This is, however, not true, since not every normal, analytic singularity has an algebraization.)
Existence of certain resolutions.
7 (The assumptions 2.i-v). In most applications of Theorem 2 we start with a normal pair
Typically we choose a log resolution
We want
The existence of a
8 (Ample, exceptional divisors). Assume that we blow up an ideal sheaf
Claim 8.1. Let
Resolution of singularities is also known for 3-dimensional excellent schemes [10], but in its original form it does not guarantee projectivity in general. Nonetheless, combining [6,2.7] and [23,Cor.3] we get the following.
Claim 8.2. Let
Next we mention some applications. In each case we use Theorem 2 to modify the previous proofs to get more general results. We give only some hints as to how this is done, we refer to the original papers for definitions and details of proofs.
The first two applications are to dlt 3-folds. In both cases Theorem 2 allows us to run MMP in a way that works in every characteristic and also for bases that are not
Relative MMP for dlt 3-folds.
Theorem 9. Let
Then the MMP over
(1) each step
(a) either a contraction
(b) or a flip
(2)
(3) if either
Proof. Assume first that the MMP steps exist and the MMP terminates. Note that
KX+E+g−1∗Δ∼Rg∗(KY+Δ)+∑j(1+a(Ej,Y,Δ))Ej∼g,R∑j(1+a(Ej,Y,Δ))Ej=:EΘ. |
We get from Theorem 2 that (1.a-b) are the possible MMP-steps, and (2-3) from Theorem 15-5.
For existence and termination, all details are given in [6,9.12].
However, I would like to note that we are in a special situation, which can be treated with the methods that are in [1,29], at least when the closed points of
The key point is that everything happens inside
Contractions for reducible surfaces have been treated in [1,Secs.11-12], see also [12,Chap.6] and [31].
The presence of
The short note [34] explains how [15,3.4] gives 1-complemented 3-fold flips; see [16,3.1 and 4.3] for stronger results.
Inversion of adjunction for 3-folds. Using Theorem 9 we can remove the
Corollary 10. Let
This implies that one direction of Reid's classification of terminal singularities using 'general elephants' [28,p.393] works in every characteristic. This could be useful in extending [2] to characteristics
Corollary 11. Let
Divisor class group of dlt singularities. The divisor class group of a rational surface singularity is finite by [24], and [8] plus an easy argument shows that the divisor class group of a rational 3-dimensional singularity is finitely generated. Thus the divisor class group of a 3-dimensional dlt singularity is finitely generated in characteristic
Proposition 12. [21,B.1] Let
It seems reasonable to conjecture that the same holds in all dimensions, see [21,B.6].
Grauert-Riemenschneider vanishing. One can prove a variant of the Grauert-Riemenschneider (abbreviated as G-R) vanishing theorem [13] by following the steps of the MMP.
Definition 13 (G-R vanishing). Let
Let
(1)
(2)
Then
We say that G-R vanishing holds over
By an elementary computation, if
If
G-R vanishing also holds over 2-dimensional, excellent schemes by [24]; see [20,10.4]. In particular, if
However, G-R vanishing fails for 3-folds in every positive characteristic, as shown by cones over surfaces for which Kodaira's vanishing fails. Thus the following may be the type of G-R vanishing result that one can hope for.
Theorem 14. [5] Let
Proof. Let
A technical problem is that we seem to need various rationality properties of the singularities of the
For divisorial contractions
For flips
From G-R vanishing one can derive various rationality properties for all excellent dlt pairs. This can be done by following the method of 2 spectral sequences as in [19] or [20,7.27]; see [5] for an improved version.
Theorem 15. [5] Let
(1)
(2) Every irreducible component of
(3) Let
See [5,12] for the precise resolution assumptions needed. The conclusions are well known in characteristic 0, see [22,5.25], [12,Sec.3.13] and [20,7.27]. For 3-dimensional dlt varieties in
The next two applications are in characteristic 0.
Dual complex of a resolution. Our results can be used to remove the
Corollary 16. Let
Theorem 17. Let
(1)
(2)
(3)
Then
Proof. Fix
Let us now run the
Note that
We claim that each MMP-step as in Theorem 2 induces either a collapse or an isomorphism of
By [11,Thm.19] we get an elementary collapse (or an isomorphism) if there is a divisor
It remains to deal with the case when we contract
Dlt modifications of algebraic spaces. By [25], a normal, quasi-projective pair
However, dlt modifications are rarely unique, thus it was not obvious that they exist when the base is not quasi-projective. [33] observed that Theorem 2 gives enough uniqueness to allow for gluing. This is not hard when
Theorem 18 (Villalobos-Paz). Let
(1)
(2)
(3)
(4)
(5) either
I thank E. Arvidsson, F. Bernasconi, J. Carvajal-Rojas, J. Lacini, A. Stäbler, D. Villalobos-Paz, C. Xu for helpful comments and J. Witaszek for numerous e-mails about flips.
[1] | Lässig R, Eisenhut M, Mathias A, et al. (2012) Serienproduktion von hochfesten Faserverbundbauteilen: VDMA Verlag. |
[2] | Schürmann H (2007) Konstruieren mit Faser-Kunststoff-Verbunden. Berlin: Springer. 672 S. p. |
[3] | Vassilopoulos AP, Keller T (2011) Fatigue of fiber-reinforced composites. London: Springer. 238 S. p. |
[4] | Fertig III RS, Kenik DJ (2011) Predicting Composite Fatigue Life Using Constituent-Level Physics. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado. |
[5] | Krüger H (2012) Ein physikalisch basiertes Ermüdungsschädigungsmodell zur Degradationsberechnung von Faser-Kunststoff-Verbunden [Ph.D Thesis]: Leibniz-Universität Hannover. |
[6] | Talreja R, Singh CV (2012) Damage and Failure of Composite Materials. Cambridge: Cambridge University Press, 1-304 p. |
[7] | Salkind MJ (2011) Fatigue of Composites. Composite Materials: Testing and Design (Second Conference). Philadelphia. |
[8] | Kensche CW (1996) Fatigue of materials and components for wind turbine rotor blades. Brussels: German Aerospace Research Establishment. |
[9] | Harris B (2003) Fatigue in composites science and technology of the fatigue response of fibre-reinforced plastics. Boca Raton: Elsevier Science Ltd 742 S. p. |
[10] |
Pandita SD, Huysmans G, Wevers M, et al. (2001) Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions. Compos Part A-Appl S 32: 1533-1539. doi: 10.1016/S1359-835X(01)00053-7
![]() |
[11] |
Kawai M, Yajima S, Hachinohe A, et al. (2001) High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices. Compos Sci Technol 61: 1285-1302. doi: 10.1016/S0266-3538(01)00027-6
![]() |
[12] |
Quaresimin M, Susmel L, Talreja R (2010) Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int J Fatigue 32: 2-16. doi: 10.1016/j.ijfatigue.2009.02.012
![]() |
[13] |
Kawai M (2004) A phenomenological model for off-axis fatigue behavior of unidirectional polymer matrix composites under different stress ratios. Compos Part A-Appl S 35: 955-963. doi: 10.1016/j.compositesa.2004.01.004
![]() |
[14] |
Kawai M, Kato K (2006) Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature. Int J Fatigue 28: 1226-1238. doi: 10.1016/j.ijfatigue.2006.02.020
![]() |
[15] |
Vassilopoulos AP, Manshadi BD, Keller T (2010) Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int J Fatigue 32: 659-669. doi: 10.1016/j.ijfatigue.2009.09.008
![]() |
[16] |
Flore D, Wegener K (2016) Modelling the mean stress effect on fatigue life of fibre reinforced plastics. Int J Fatigue 82: 689-699. doi: 10.1016/j.ijfatigue.2015.09.027
![]() |
[17] |
Van Paepegem W, Degrieck J (2001) Fatigue damage modeling of fibre-reinforced composite materials: review. Appl Mech Rev 54: 279-300. doi: 10.1115/1.1381395
![]() |
[18] | Kawai M, Teranuma T (2012) A multiaxial fatigue failure criterion based on the principal constant life diagrams for unidirectional carbon/epoxy laminates. Compos Part A 43: 1252-1266. |
[19] | Papanicolaou GC, Zaoutsos SP (2011) Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites. In: Guedes RM, editor. Creep and fatigue in polymer matrix composites. Cambridge: Woodhead Publishing Limited. pp. 572. |
[20] | Dillard DA (1990) Viscoelastic Behavior of Laminated Composite Materials. In: Reifsnider KL, editor. Fatigue of Composite Materials: Elsevier Science Publishers B.V.,. |
[21] |
Song J, Wen WD, Cui HT, et al. (2015) Effects of temperature and fiber volume fraction on mechanical properties of T300/QY8911-IV composites. J Reinf Plast Comp 34: 157-172. doi: 10.1177/0731684414565939
![]() |
[22] | Vasiliev VV, Morozov EV (2013) Advanced mechanics of composite materials and structural elements. Amsterdam: Elsevier. 818 S. p. |
[23] | Rejab MRM, Theng CW, Rahman MM, et al. An Investigation into the Effects of Fibre Volume Fraction on GFRP Plate; 2008. |
[24] |
Karahan M (2012) The effect of fibre volume fraction on damage initiation and propagation of woven carbon-epoxy multi-layer composites. Text Res J 82: 45-61. doi: 10.1177/0040517511416282
![]() |
[25] |
He HW, Gao F (2015) Effect of Fiber Volume Fraction on the Flexural Properties of Unidirectional Carbon Fiber/Epoxy Composites. Int J Polym Anal Ch 20: 180-189. doi: 10.1080/1023666X.2015.989076
![]() |
[26] |
Allah MHA, Abdin EM, Selmy AI, et al. (1996) Effect of fibre volume fraction on the fatigue behaviour of grp pultruded rod composites. Compos Sci Technol 56: 23-29. doi: 10.1016/0266-3538(95)00125-5
![]() |
[27] |
Mini KM, Lakshmanan M, Mathew L, et al. (2012) Effect of fibre volume fraction on fatigue behaviour of glass fibre reinforced composite. Fatigue Fract Eng M 35: 1160-1166. doi: 10.1111/j.1460-2695.2012.01709.x
![]() |
[28] | Samborsky DD, Mandell JF, Cairns DS (2002) Sandia Contractors report-Fatigue of composite materials and substructures for wind turbine blades. Montana State University. |
[29] |
Barbero EJ, Trovillion J, Mayugo JA, et al. (2006) Finite element modeling of plain weave fabrics from photomicrograph measurements. Compos Struct 73: 41-52. doi: 10.1016/j.compstruct.2005.01.030
![]() |
[30] |
Kuhn JL, Charalambides PG (1999) Modeling of plain weave fabric composite geometry. J Compos Mater 33: 188-220. doi: 10.1177/002199839903300301
![]() |
[31] |
Sun CT, Vaidya RS (1996) Prediction of composite properties, from a representative volume element. Compos Sci Technol 56: 171-179. doi: 10.1016/0266-3538(95)00141-7
![]() |
[32] | Talreja R, Singh CV (2012) Damage and Failure of Composite Materials. Cambridge Cambridge University Press 1-304 p. |
[33] |
Kennedy CR, Bradaigh CMO, Leen SB (2013) A multiaxial fatigue damage model for fibre reinforced polymer composites. Compos Struct 106: 201-210. doi: 10.1016/j.compstruct.2013.05.024
![]() |
[34] | Stellbrink K (1996) Micromechanics of Composites: Composite Properties of Fibre and Matrix Constituents. Cincinnati: Hanser. |
[35] | Pristavok J (2006) Mikromechanische Untersuchung an Epoxidharz Glasfaser Verbunden unter zyklischer Beanspruchung [Ph.D. Thesis]: Technische Universität Dresden. |
[36] |
Soden PD, Hinton MJ, Kaddour AS (1998) Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos Sci Technol 58: 1011-1022. doi: 10.1016/S0266-3538(98)00078-5
![]() |
[37] |
Hashin Z (1980) Failure Criteria for Unidirectional Fiber Composites. J Appl Mech-T Asme 47: 329-334. doi: 10.1115/1.3153664
![]() |
[38] | Miner MA (1945) Cumulative Damage in Fatigue. J Appl Mech-T Asme 12: A159-A164. |
[39] |
Van Paepegem W, Degrieck J (2002) Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites. Mech Adv Mater Struc 9: 19-35. doi: 10.1080/153764902317224851
![]() |
1. | Balázs Csutak, Gábor Szederkényi, Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation, 2025, 22, 1551-0018, 109, 10.3934/mbe.2025006 |