Research article

Modeling and optimization of data trading supply chain regulatory strategies based on system dynamics

  • Published: 23 January 2026
  • Primary: 91A80

  • With the rapid development of the data market and the emergence of new business models, data trading has become a paradigm for allocating production elements. However, most existing studies focused on traditional production elements or single-sided regulation, which did not consider the unique risks of data trading, such as usage tracking difficulties and potential data leakage, and rarely applied dynamic system theory to the analysis of multi-party quality regulation in the data market. In this paper, we first proposed a four-party evolutionary game model of data providers, data trading platforms, data demanders, and regulatory departments. Second, we focused on the evolutionary stability strategies and evolutionary trends of different participants, as well as the influential factors, such as regulatory strategies, regulatory costs, punishment intensity, and the prudent analysis strategy of the data demand side, to analyze the influence of different behavioral strategies on the regulation of data product quality. Third, we verified the stability of the equilibrium point of the four-party game system through system dynamics simulation experiments. Finally, we summarized our work and provided related recommendations for governing agencies and market stakeholders to facilitate the healthy development of the data market and maximize social welfare.

    Citation: Jian Yang, Wenyu Jia, Qianfei Guo, Pengfei Pu, Jie Zhang. Modeling and optimization of data trading supply chain regulatory strategies based on system dynamics[J]. Journal of Industrial and Management Optimization, 2026, 22(2): 1034-1062. doi: 10.3934/jimo.2026038

    Related Papers:

  • With the rapid development of the data market and the emergence of new business models, data trading has become a paradigm for allocating production elements. However, most existing studies focused on traditional production elements or single-sided regulation, which did not consider the unique risks of data trading, such as usage tracking difficulties and potential data leakage, and rarely applied dynamic system theory to the analysis of multi-party quality regulation in the data market. In this paper, we first proposed a four-party evolutionary game model of data providers, data trading platforms, data demanders, and regulatory departments. Second, we focused on the evolutionary stability strategies and evolutionary trends of different participants, as well as the influential factors, such as regulatory strategies, regulatory costs, punishment intensity, and the prudent analysis strategy of the data demand side, to analyze the influence of different behavioral strategies on the regulation of data product quality. Third, we verified the stability of the equilibrium point of the four-party game system through system dynamics simulation experiments. Finally, we summarized our work and provided related recommendations for governing agencies and market stakeholders to facilitate the healthy development of the data market and maximize social welfare.



    加载中


    [1] L. Theodorakopoulos, A. Karras, A. Theodoropoulou, G. Kampiotis, Benchmarking big data systems: Performance and decision-making implications in emerging technologies, Technologies, 12 (2024), 217. https://doi.org/10.3390/technologies12110217 doi: 10.3390/technologies12110217
    [2] H. Taherdoost, A systematic review of big data innovations in smart grids, RINENG, 22 (2024), 102132. https://doi.org/10.1016/j.rineng.2024.102132 doi: 10.1016/j.rineng.2024.102132
    [3] S. Latif, N. Javaid, F. Aslam, A. Aldegheishem, N. Alrajeh, S. H. Bouk, Enhanced prediction of stock markets using a novel deep learning model PLSTM-TAL in urbanized smart cities, Heliyon, 10 (2024), 6. https://doi.org/10.1016/j.heliyon.2024.e27747 doi: 10.1016/j.heliyon.2024.e27747
    [4] J. Kennedy, P. Subramaniam, S. Galhotra, R. Castro Fernandez, Revisiting online data markets in 2022: A seller and buyer perspective, SIGMOD Rec., 51 (2022), 30–37. https://doi.org/10.1145/3579371 doi: 10.1145/3579371
    [5] J. Yang, C. C. Zhao, C. X. Xing, Big data market optimization pricing model based on data quality, Complexity, 2019 (2019), 5964068. https://doi.org/10.1155/2019/5964068 doi: 10.1155/2019/5964068
    [6] H. Sun, M. J. Xiao, Y. Xu, G. J. Gao, S. Zhang, Crowdsensing data trading for unknown market: Privacy, stability, and conflicts, IEEE Trans. Mob. Comput., 23 (2024), 11719–11734. https://doi.org/10.1109/TMC.2024.3399816 doi: 10.1109/TMC.2024.3399816
    [7] S. M. Xiong, P. C. Chen, S. S. Ge, Q. Ni, SFOM-DT: a secure and fair one-to-many data trading scheme based on blockchain, IEEE Trans. Inf. Forensics Secur., 19 (2024), 10029–10042. https://doi.org/10.1109/TIFS.2024.3475816 doi: 10.1109/TIFS.2024.3475816
    [8] Y. Lv, J. Yang, X. N. Sun, H. F. Wu, Evolutionary game analysis of stakeholder privacy management in the AIGC model, Oper. Res. Perspect., 14 (2025), 100327. https://doi.org/10.1016/j.orp.2025.100327 doi: 10.1016/j.orp.2025.100327
    [9] B. Mi, Z. W. Han, K. Y. Chen, Multi-party data pricing for complex data trading markets: a rubinstein bargaining approach, arXiv preprint arXiv: 2502.16363, 2025. https://doi.org/10.48550/arXiv.2502.16363
    [10] M. Rasouli, M. I. Jordan, Data sharing markets, arXiv preprint arXiv: 2107.08630, 2021. https://doi.org/10.48550/arXiv.2107.08630
    [11] F. Liang, W. Yu, D. An, Q. Y. Yang, X. W. Fu, W. Zhao, A survey on big data market: Pricing, trading and protection, IEEE Access, 6 (2018), 15132–15154. https://doi.org/10.1109/ACCESS.2018.2806881 doi: 10.1109/ACCESS.2018.2806881
    [12] S. Karkošková, Data governance model to enhance data quality in financial institutions, Inf. Syst. Manage., 40 (2023), 90–110. https://doi.org/10.1080/10580530.2022.2042628 doi: 10.1080/10580530.2022.2042628
    [13] M. C. Cohen, R. Lobel, G. Perakis, Dynamic pricing through data sampling, Prod. Oper. Manag., 27 (2018), 1074–1088. https://doi.org/10.1111/poms.12854 doi: 10.1111/poms.12854
    [14] J. R. Wang, Y. Liu, P. G. Li, Z. X. Lin, S. Sindakis, S. Aggarwal, Overview of data quality: Examining the dimensions, antecedents, and impacts of data quality, J. Knowl. Econ., 15 (2024), 1159–1178. https://doi.org/10.1007/s13132-022-01096-6 doi: 10.1007/s13132-022-01096-6
    [15] T. S. Sun, Z. Yuan, C. X. Li, K. F. Zhang, J. Xu, The value of personal data in internet commerce: A high-stakes field experiment on data regulation policy, Manage. Sci., 70 (2024), 2645–2660. https://doi.org/10.1287/mnsc.2023.4828 doi: 10.1287/mnsc.2023.4828
    [16] R. Zhao, L. Peng, Y. L. Zhao, Y. B. Feng, Coevolution mechanisms of stakeholder strategies in the green building technologies innovation ecosystem: An evolutionary game theory perspective, Environ. Impact Assess. Rev., 105 (2024), 107418. https://doi.org/10.1016/j.eiar.2024.107418 doi: 10.1016/j.eiar.2024.107418
    [17] T. Hendershott, M. Rysman, R. Schwabe, Stock exchanges as platforms for data and trading, J. Financ. Mark., 6 (2025), 100986. https://doi.org/10.1016/j.finmar.2025.100986 doi: 10.1016/j.finmar.2025.100986
    [18] Y. L. Chen, H. Y. Yin, Y. C. Zhang, W. Ren, Y. Ren, A privacy-aware and fair self-exchanging self-trading scheme for IoT data based on smart contract, Int. J. Grid. Util. Comput., 16 (2025), 191–201. https://doi.org/10.1504/IJGUC.2025.146277 doi: 10.1504/IJGUC.2025.146277
    [19] J. Wang, S. H. Ma, Q. Lv, Q. Li, Demographic forecast modelling using SSA-XGBoost for smart population management based on multi-sources data, PLoS One, 20 (2025), e0320298. https://doi.org/10.1371/journal.pone.0320298 doi: 10.1371/journal.pone.0320298
    [20] L. H. Huang, M. K. Guo, Z. Q. Shao, X. Qin, Q. F. Tang, Thoughts on national unified data asset registration system, Bull. Chin. Acad. Sci., 37 (2022), 1426–1434. https://doi.org/10.16418/j.issn.1000-3045.20220623001 doi: 10.16418/j.issn.1000-3045.20220623001
    [21] T. Peixoto, B. Oliveira, Ó. Oliveira, F. Ribeiro, Data quality assessment in smart manufacturing: a review, Systems, 13 (2025), 243. https://doi.org/10.3390/systems13040243 doi: 10.3390/systems13040243
    [22] F. Ridzuan, W. M. N. W. Zainon, A review on data quality dimensions for big data, Pro. Compu. Sci., 234 (2024), 341–348. https://doi.org/10.1016/j.procs.2024.03.008 doi: 10.1016/j.procs.2024.03.008
    [23] Z. Sun, W. Ying, K. N. Shen, X. Liu, Assetization-oriented data governance: an exploratory case study, ICEB 2025 Proc., 6 (2025). https://aisel.aisnet.org/iceb2025/24
    [24] Y. R. Qiu, Z. M. Hu, Data governance and open sharing in the fields of life sciences and medicine: A bibliometric analysis, Digital Health, 11 (2025), 20552076251320302. https://doi.org/10.1177/20552076251320302 doi: 10.1177/20552076251320302
    [25] Y. Gao, M. Janssen, C. Zhang Understanding the evolution of open government data research: towards open data sustainability and smartness, Int. Rev. Adm. Sci., 89 (2023), 59–75. https://doi.org/10.1177/00208523211009955 doi: 10.1177/00208523211009955
    [26] L. Huang, Y. Dou, Y. Liu, J. Wang, G. Chen, X. Zhang, R. Wang, Toward a research framework to conceptualize data as a factor of production: the data marketplace perspective, Fundam. Res., 5 (2021), 586–594. https://doi.org/10.1016/j.fmre.2021.08.006 doi: 10.1016/j.fmre.2021.08.006
    [27] S. Gathu, High-performance computing and big data: Emerging trends in advanced computing systems for data-intensive applications, J. Adv. Comput. Syst., 4 (2024), 22–35.
    [28] A. Liu, M. Osewe, Y. Shi, X. Zhen, Y. Wu, Cross-border e-commerce development and challenges in China: A systematic literature review, J. Theor. Appl. Electron Commer. Res., 17 (2021), 69–88. https://doi.org/10.3390/jtaer17010004 doi: 10.3390/jtaer17010004
    [29] L. B. Bai, Q. Xie, J. C. Lin, S. Y. Liu, C. S. Wang, L. Wang, Dynamic selection of risk response strategies with resource allocation for construction project portfolios, Comput. Ind. Eng., 191 (2024), 110116. https://doi.org/10.1016/j.cie.2024.110116 doi: 10.1016/j.cie.2024.110116
    [30] X. T. Qi, F. L. Bu, A system dynamics-based model for the evolution of environmental group events, Sci. Rep., 14 (2024), 9711. https://doi.org/10.1038/s41598-024-59283-1 doi: 10.1038/s41598-024-59283-1
    [31] X. G. Zhao, Y. Z. Zhang, The system dynamics (SD) analysis of the government and power producers' evolutionary game strategies based on carbon trading (CT) mechanism: A case of China, Sustainability, 10 (2018), 1150. https://doi.org/10.3390/su10041150 doi: 10.3390/su10041150
    [32] L. F. Cheng, R. B. Sun, K. Wang, F. Yu, P. G. Huang, M. Y. Zhang, Advancing sustainable electricity markets: evolutionary game theory as a framework for complex systems optimization and adaptive policy design, Complex Intell. Systems, 11 (2025), 320. https://doi.org/10.1007/s40747-025-01916-7 doi: 10.1007/s40747-025-01916-7
    [33] C. Hu, J. Yang, P. Gao, Y. Zhang, Evolutionary game analysis of three stakeholders in big data trading market, J. Ind. Manage. Optim., 20 (2024), 2135–2152. https://doi.org/10.3934/jimo.2023159 doi: 10.3934/jimo.2023159
    [34] T. Stefes, Data quality of different modes of supervision in classroom surveys, Educ. Sci., 14 (2024), 299. https://doi.org/10.3390/educsci14030299 doi: 10.3390/educsci14030299
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(225) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog