Research article

Mechanism design and equilibrium analysis of smart contract–mediated resource allocation

  • Published: 22 January 2026
  • 91B32, 91B50, 91B26, 91B40

  • Decentralized coordination and digital contracting are becoming essential in complex industrial systems, yet existing approaches often rely on ad-hoc heuristics or purely technical blockchain implementations without a rigorous economic foundation. This study developed a mechanism-design framework for smart contract–mediated resource allocation that jointly embeds efficiency, fairness, and resilience in decentralized coordination. We modeled agent interactions as a contract-clearing game under shared capacity constraints, established the existence and uniqueness of equilibrium, and proposed a decentralized price-adjustment algorithm with provable convergence suitable for real-time operation. Performance was evaluated through extensive synthetic simulations and validated using a representative real-world dataset. In addition to controlled experiments, a long-horizon empirical analysis using financial and macroeconomic data from 2006 to 2025 examined the mechanism under major economic regimes and shock conditions. Results showed that the proposed mechanism consistently reduces inequality and cost while maintaining near-optimal efficiency and rapid recovery following shocks, demonstrating dynamic stability beyond steady state.

    Citation: Jinho Cha, Justin Yu, Eunchan Daniel Cha, Emily Haneul Yoo, Caedon Geoffrey, Hyoshin Song. Mechanism design and equilibrium analysis of smart contract–mediated resource allocation[J]. Journal of Industrial and Management Optimization, 2026, 22(2): 997-1033. doi: 10.3934/jimo.2026037

    Related Papers:

  • Decentralized coordination and digital contracting are becoming essential in complex industrial systems, yet existing approaches often rely on ad-hoc heuristics or purely technical blockchain implementations without a rigorous economic foundation. This study developed a mechanism-design framework for smart contract–mediated resource allocation that jointly embeds efficiency, fairness, and resilience in decentralized coordination. We modeled agent interactions as a contract-clearing game under shared capacity constraints, established the existence and uniqueness of equilibrium, and proposed a decentralized price-adjustment algorithm with provable convergence suitable for real-time operation. Performance was evaluated through extensive synthetic simulations and validated using a representative real-world dataset. In addition to controlled experiments, a long-horizon empirical analysis using financial and macroeconomic data from 2006 to 2025 examined the mechanism under major economic regimes and shock conditions. Results showed that the proposed mechanism consistently reduces inequality and cost while maintaining near-optimal efficiency and rapid recovery following shocks, demonstrating dynamic stability beyond steady state.



    加载中


    [1] H. Kagermann, W. Wahlster, J. Helbig, Recommendations for implementing the strategic initiative industrie 4.0, Technical report, acatech – National Academy of Science and Engineering, Munich, Germany, 2013.
    [2] Y. Lu, Industry 4.0: A survey on technologies, applications and open research issues, J. Ind. Inf. Integr., 6 (2017), 1–10. https://doi.org/10.1016/j.jii.2017.04.005 doi: 10.1016/j.jii.2017.04.005
    [3] D. Ivanov, Exiting the covid-19 pandemic: after-shock risks and avoidance of disruption tails in supply chains, Ann. Oper. Res., 335 (2024), 1627–1644. https://doi.org/10.1007/s10479-021-04047-7 doi: 10.1007/s10479-021-04047-7
    [4] H. Wu, J. Geng, X. Bai, S. Jin, Deep reinforcement learning-based online task offloading in mobile edge computing networks, Inf. Sci., 654 (2024), 119849. https://doi.org/10.1016/j.ins.2023.119849 doi: 10.1016/j.ins.2023.119849
    [5] Z. Luo, X. Dai, Reinforcement learning-based computation offloading in edge computing: Principles, methods, challenges, Alexandria Eng. J., 108 (2024), 89–107. https://doi.org/10.1016/j.aej.2024.07.049 doi: 10.1016/j.aej.2024.07.049
    [6] E. Blasioli, B. Mansouri, S. S. Tamvada, E. Hassini, Vaccine allocation and distribution: A review with a focus on quantitative methodologies and application to equity, hesitancy, and covid-19 pandemic, Oper. Res. Forum, 4 (2023), 27. https://doi.org/10.1007/s43069-023-00194-8 doi: 10.1007/s43069-023-00194-8
    [7] G. P. Cachon, S. Netessine, Game theory in supply chain analysis, In D. Simchi-Levi, S. David Wu, Z. J. Shen, editors, Handbook of Quantitative Supply Chain Analysis, volume 74 of International Series in Operations Research & Management Science. Springer, Boston, MA, 2004.
    [8] J. Greenberg, A taxonomy of organizational justice theories, Acad. Manage. Rev., 12 (1987), 9–22. https://doi.org/10.5465/amr.1987.4306437 doi: 10.5465/amr.1987.4306437
    [9] R. Beck, M. Avital, M. Rossi, J. Bennett Thatcher, Blockchain technology in business and information systems research, Bus. Inf. Syst. Eng., 59 (2017), 381–384. https://doi.org/10.1007/s12599-017-0505-1 doi: 10.1007/s12599-017-0505-1
    [10] N. Szabo, Formalizing and securing relationships on public networks, First Monday, 2 (1997). https://doi.org/10.5210/fm.v2i9.548 doi: 10.5210/fm.v2i9.548
    [11] V. Buterin, A next-generation smart contract and decentralized application platform, 2014.
    [12] K. Christidis, M. Devetsikiotis, Blockchains and smart contracts for the internet of things, IEEE Access, 4 (2016), 2292–2303. https://doi.org/10.1109/ACCESS.2016.2566339 doi: 10.1109/ACCESS.2016.2566339
    [13] H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, W. Susilo, Blockchain-based fair payment smart contract for public cloud storage auditing, Inf. Sci., 519 (2020), 348–362. https://doi.org/10.1016/j.ins.2020.01.051 doi: 10.1016/j.ins.2020.01.051
    [14] X. Xu, I. Weber, M. Staples, Architecture for Blockchain Applications. Springer, Cham, 2019.
    [15] D. Ivanov, Supply chain viability and the covid-19 pandemic: A conceptual and formal generalisation of four major adaptation strategies, Int. J. Prod. Res., 59 (2021), 3535–3552. https://doi.org/10.1080/00207543.2021.1890852 doi: 10.1080/00207543.2021.1890852
    [16] R. Lotfi, B. Kargar, S. Hosein Hoseini, S. Nazari, S. Safavi, G. W. Weber, Resilience and sustainable supply chain network design by considering renewable energy, Int. J. Energy Res., 45 (2021), 17749–17766. https://doi.org/10.1002/er.6943 doi: 10.1002/er.6943
    [17] R. Amin, A. A. Kazmi, Smart grids: A comprehensive review of technologies, challenges, and future directions, J. Eng. Comput. Intell. Rev., 2 (2024), 45–70.
    [18] World Health Organization, Fair allocation mechanism for covid-19 vaccines through the covax facility, Technical report, World Health Organization, 2020. Final working version.
    [19] R. B. Myerson, Optimal auction design, Math. Oper. Res., 6 (1981), 58–73. https://doi.org/10.1287/moor.6.1.58 doi: 10.1287/moor.6.1.58
    [20] D. Gabay, On the uniqueness and stability of nash-equilibria in noncooperative games, Appl. Stochastic Control Econ. Manage. Sci., 1980.
    [21] H. Moulin, Fair Division and Collective Welfare, MIT Press, Cambridge, MA, 2003. https://doi.org/10.7551/mitpress/2954.001.0001
    [22] D. Bertsimas, V. F. Farias, N. Trichakis, The price of fairness, Oper. Res., 59 (2011), 17–31. https://doi.org/10.1287/opre.1100.0865 doi: 10.1287/opre.1100.0865
    [23] M. Kearns, S. Neel, A. Roth, Z. S. Wu, An empirical study of rich subgroup fairness for machine learning, In Proceedings of the Conference on Fairness, Accountability, and Transparency, 100–109, ACM, 2019.
    [24] E. Hazan, Introduction to online convex optimization, Found. Trends Optim., 2 (2016), 157–325. https://doi.org/10.1561/2400000013 doi: 10.1561/2400000013
    [25] S. Shalev-Shwartz, S. Ben-David, Understanding machine learning: From theory to algorithms, Cambridge university press, 2014.
    [26] J. N. Tsitsiklis, D. P. Bertsekas, M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Trans. Autom. Control, 31 (1986), 803–812. https://doi.org/10.1109/TAC.1986.1104412 doi: 10.1109/TAC.1986.1104412
    [27] D. Bertsekas, J. Tsitsiklis, Parallel and distributed computation: numerical methods, Athena Scientific, 2015.
    [28] S. R. Addula, A. K. Tyagi, K. Naithani, S. Kumari, Blockchain-empowered internet of things (iots) platforms for automation in various sectors, In A. K.Tyagi, S. Tiwari, S. K. Arumugam, A. K. Sharma, editors, Blockchain Technologies for Smart Automation, Wiley, 2024.
    [29] A. Rai, Explainable ai: from black box to glass box, J. Acad. Mark. Sci., 48 (2020), 137–141. https://doi.org/10.1007/s11747-019-00710-5 doi: 10.1007/s11747-019-00710-5
    [30] D. D. H. Shin, Blockchain: The emerging technology of digital trust, Telematics Inf., 45 (2019), 101278. https://doi.org/10.1016/j.tele.2019.101278 doi: 10.1016/j.tele.2019.101278
    [31] V. V. Acharya, S. Steffen, The risk of being a fallen angel and the corporate dash for cash in the midst of covid-19, Rev. Corporate Finance Stud., 9 (2020), 430–471. https://doi.org/10.1093/rcfs/cfaa013 doi: 10.1093/rcfs/cfaa013
    [32] C. Cachin, Architecture of the hyperledger blockchain fabric, In Workshop on Distributed Cryptocurrencies and Consensus Ledgers, 310 (2016), 1–4.
    [33] F. Casino, T. K. Dasaklis, C. Patsakis, A systematic literature review of blockchain-based applications: Current status, classification and open issues, Telematics Inf., 36 (2019), 55–81. https://doi.org/10.1016/j.tele.2018.11.006 doi: 10.1016/j.tele.2018.11.006
    [34] P. A. Pavlou, Institution-based trust in interorganizational exchange relationships: the role of online b2b marketplaces on trust formation, J. Strategic Inf. Syst., 11 (2002), 215–243. https://doi.org/10.1016/S0963-8687(02)00017-3 doi: 10.1016/S0963-8687(02)00017-3
    [35] S. M. Rashid, I. Aliyu, A. Isah, M. Hahn, J. Kim, Blockchain-based task placement and resource management in edge computing: A survey, Electronics, 14 (2025), 3398. https://doi.org/10.3390/electronics14173398 doi: 10.3390/electronics14173398
    [36] O. Muñoz, A. Pascual-Iserte, J. Vidal, Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading, IEEE Trans. Veh. Technol., 64 (2015), 4738–4755. https://doi.org/10.1109/TVT.2014.2372852 doi: 10.1109/TVT.2014.2372852
    [37] J. Cao, M. Ma, H. Li, Y. Zhang, Z. Luo, A survey on security aspects for lte and lte-a networks, IEEE Commun. Surv. Tutorials, 16 (2014), 283–302. https://doi.org/10.1109/SURV.2013.041513.00174 doi: 10.1109/SURV.2013.041513.00174
    [38] Y. Wang, W. Wang, V. K. N. Lau, T. Nakachi, Z. Zhang, Stochastic resource allocation and delay analysis for mobile edge computing systems, IEEE Trans. Commun., 71 (2023), 4018–4033. https://doi.org/10.1109/TCOMM.2023.3266353 doi: 10.1109/TCOMM.2023.3266353
    [39] Z. Tong, X. Deng, J. Mei, L. Dai, K. Li, K. Li, Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing, J. Syst. Archit., 137 (2023), 102847. https://doi.org/10.1016/j.sysarc.2023.102847 doi: 10.1016/j.sysarc.2023.102847
    [40] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. K. Wong, R. Schober, User association in 5g networks: A survey and an outlook, IEEE Commun. Surv. Tutorials, 18 (2016), 1018–1044. https://doi.org/10.1109/COMST.2016.2516538 doi: 10.1109/COMST.2016.2516538
    [41] Z. Wang, M. Goudarzi, R. Buyya, {ReinFog: A Deep Reinforcement Learning Empowered Framework for Resource Management in Edge and Cloud Computing Environments}, J. Network and Comput. Appl., 242 (2025), 104250. https://doi.org/10.1016/j.jnca.2025.104250 doi: 10.1016/j.jnca.2025.104250
    [42] S. Yuan, Q. Zhou, J. Li, S. Guo, H. Chen, C. Wu, Adaptive incentive and resource allocation for blockchain-supported edge video streaming systems: A cooperative learning approach, IEEE Trans. Mobile Comput., 24 (2025), 539–556. https://doi.org/10.1109/TMC.2024.3437745 doi: 10.1109/TMC.2024.3437745
    [43] J. B. Rosen, Existence and uniqueness of equilibrium points for concave n-person games, Econometrica, 33 (1965), 520–534. https://doi.org/10.2307/1911749 doi: 10.2307/1911749
    [44] T. Roughgarden, É. Tardos, Bounding the inefficiency of equilibria in nonatomic congestion games, Games Econ. Behav., 47 (2004), 389–403. https://doi.org/10.1016/j.geb.2003.06.004 doi: 10.1016/j.geb.2003.06.004
    [45] F. P. Kelly, A. K. Maulloo, D. K. H. Tan, Rate control for communication networks: shadow prices, proportional fairness and stability, J. Oper. Res. Soc., 49 (1998), 237–252. https://doi.org/10.1057/palgrave.jors.2600523 doi: 10.1057/palgrave.jors.2600523
    [46] V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, On QoS-aware Scheduling of Data Stream Applications over Fog Computing Infrastructures, In 2015 IEEE Symposium on Computers and Communication (ISCC), 271–276, 2015.
    [47] P. J. Lambert, The distribution and redistribution of income, In P. M. Jackson, editor, Current Issues in Public Sector Economics, Current Issues in Economics. Palgrave, London, 1992.
    [48] A. Jobin, M. Ienca, E. Vayena, The global landscape of ai ethics guidelines, Nat. Mach. Intell., 1 (2019), 389–399. https://doi.org/10.1038/s42256-019-0088-2 doi: 10.1038/s42256-019-0088-2
    [49] S. Barocas, M. Hardt, A. Narayanan, Fairness and Machine Learning: Limitations and Opportunities. MIT Press, 2023.
    [50] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias and fairness in machine learning, ACM Comput. Surv., 54 (2021), 1–35. https://doi.org/10.1145/3457607 doi: 10.1145/3457607
    [51] L. Hurwicz, S. Reiter, Designing Economic Mechanisms. Cambridge University Press, 2006.
    [52] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat., 22 (1951), 400–407. https://doi.org/10.1214/aoms/1177729586 doi: 10.1214/aoms/1177729586
    [53] D. Bertsekas, A. Nedic, A. Ozdaglar, Convex analysis and optimization, 1, Athena Scientific, 2003.
    [54] S. Bubeck, N. Cesa-Bianchi, Regret analysis of stochastic and nonstochastic multi-armed bandit problems, Foundations and Trends in Machine Learning, 2012.
    [55] S. Boyd, L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441
    [56] A. Nedić, A. Olshevsky, W. Shi, C. A. Uribe, Geometrically convergent distributed optimization with uncoordinated step-sizes, In Proceedings of the American Control Conference (ACC), 3192–3197, 2017.
    [57] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Cham, 2 edition, 2017.
    [58] K. J. Arrow, L. Hurwicz, On the stability of the competitive equilibrium, ⅰ, Econometrica, 26 (1958), 522–552. https://doi.org/10.2307/1907515 doi: 10.2307/1907515
    [59] A. Mas-Colell, M. D. Whinston, J. R. Green, Microeconomic Theory, Oxford University Press, 1995.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(247) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog