In this article, we examine the theoretical properties of interval-valued multiobjective optimization problems that are directionally differentiable and include equality, inequality, and vanishing constraints. The objective functions in these problems are considered interval-valued. Necessary conditions for optimality in nondifferentiable multiobjective optimization are derived under the Abadie and a modified Abadie constraint qualification. Furthermore, sufficient optimality conditions are proven under appropriate convexity assumptions. A Numerical example is also presented to validate the theoretical results of this work.
Citation: Murari Kumar Roy, Bhuwan Chandra Joshi, Satya Jeet Singh, Abdelouahed Hamdi. Some results on directionally differentiable multicriteria interval-valued optimization problems with vanishing constraints[J]. Journal of Industrial and Management Optimization, 2026, 22(2): 806-831. doi: 10.3934/jimo.2026029
In this article, we examine the theoretical properties of interval-valued multiobjective optimization problems that are directionally differentiable and include equality, inequality, and vanishing constraints. The objective functions in these problems are considered interval-valued. Necessary conditions for optimality in nondifferentiable multiobjective optimization are derived under the Abadie and a modified Abadie constraint qualification. Furthermore, sufficient optimality conditions are proven under appropriate convexity assumptions. A Numerical example is also presented to validate the theoretical results of this work.
| [1] |
A. Khare, T. Nath, Enhanced Fritz John stationarity, new constraint qualifications and local error bound for mathematical programs with vanishing constraints, J. Math. Anal. Appl., 472 (2019), 1042–1077. https://doi.org/10.1016/j.jmaa.2018.11.063 doi: 10.1016/j.jmaa.2018.11.063
|
| [2] | J. Outrata, M. Kocvara, J. Zowe, Nonsmooth approach to optimization problems with equilibrium constraints: theory, applications and numerical results, Springer Science and Business Media, 28 (1998). |
| [3] |
W. Achtziger, C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications, Math. Program., 114 (2008), 69–99. https://doi.org/10.1007/s10107-006-0083-3 doi: 10.1007/s10107-006-0083-3
|
| [4] |
Y. An, G Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval $(b_1, b_2)$-convex functions, Mathematics, 7 (2019), 436. https://doi.org/10.3390/math7050436 doi: 10.3390/math7050436
|
| [5] | M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear programming: theory and algorithms, John wiley and sons, 2006. |
| [6] | M. P. Bendsoe, O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science and Business Media, 2013. |
| [7] |
T. Antczak, Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints, OR-Q J Oper. Res., 20 (2022), 417–442. https://doi.org/10.1007/s10288-021-00482-1 doi: 10.1007/s10288-021-00482-1
|
| [8] |
B. C. Joshi, M. K. Roy, A. Hamdi, On semi-infinite optimization problems with vanishing constraints involving interval-valued functions, Mathematics, 12 (2024), 1008. https://doi.org/10.3390/math12071008 doi: 10.3390/math12071008
|
| [9] |
S. K. Mishra, V. Singh, V. Laha, On duality for mathematical programs with vanishing constraints, Ann. Oper. Res., 243 (2016), 249–272. https://doi.org/10.1007/s10479-015-1814-8 doi: 10.1007/s10479-015-1814-8
|
| [10] | K. Miettinen, Nonlinear multiobjective optimization, Springer Science and Business Media, 1999. https://doi.org/10.1007/978-1-4615-5563-6 |
| [11] | T. Stewart, O. Bandte, H. Braun, N. Chakraborti, M. Ehrgott, M. Göbelt, et al., Real-world applications of multiobjective optimization, In: J. Branke, K. Deb, K. Miettinen, R. Słowiński, (eds), Multiobjective optimization: interactive and evolutionary approaches, (2008), 285–327. https://doi.org/10.1007/978-3-540-88908311 |
| [12] | S. Jameii, K. Faez, M. Dehghan, Multiobjective optimization for topology and coverage control in wireless sensor networks, Int. J. Distrib. Sens. Netw., 11 (2015), 363815. |
| [13] |
A. Ponsich, A. L. Jaimes, C. A. C. Coello, A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications, IEEE Trans. Evol. Comput., 17 (2012), 321–344. https://doi.org/10.1109/TEVC.2012.2196800 doi: 10.1109/TEVC.2012.2196800
|
| [14] |
A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, A. Rezaee, Energy‐aware dynamic‐link load balancing method for a software‐defined network using a multi‐objective artificial bee colony algorithm and genetic operators, IET Commun., 14 (2020), 3284–3293. https://doi.org/10.1049/iet-com.2019.1300 doi: 10.1049/iet-com.2019.1300
|
| [15] |
T. S. Cao, T. T. T. Nguyen, Van-Son Nguyen, V. H. Truong, H. H. Nguyen, Performance of six metaheuristic algorithms for multi-objective optimization of nonlinear inelastic steel trusses, Buildings, 13 (2023), 868. https://doi.org/10.3390/buildings13040868 doi: 10.3390/buildings13040868
|
| [16] |
X. Zhou, X. Zhang, Multi-objective-optimization-based control parameters auto-tuning for aerial manipulators, Int. J. Adv. Robot. Syst., 16 (2019). https://doi.org/10.1177/1729881419828071 doi: 10.1177/1729881419828071
|
| [17] |
A. Candelieri, A. Ponti, F. Archetti, Fair and green hyperparameter optimization via multi-objective and multiple information source Bayesian optimization, Mach. Learn., 113 (2024), 2701–2731. https://doi.org/10.1007/s10994-024-06515-0 doi: 10.1007/s10994-024-06515-0
|
| [18] |
H. Huang, H. Zhu, Stationary condition for Borwein proper efficient solutions of nonsmooth multiobjective problems with vanishing constraints, Mathematics, 10 (2022), 4569. https://doi.org/10.3390/math10234569 doi: 10.3390/math10234569
|
| [19] |
H. Wang, G. Kang, R. Zhang, On optimality conditions and duality for multiobjective fractional optimization problem with vanishing constraints, Electron. Res. Arch., 32 (2024), 5109–5126. https://doi.org/10.3934/era.2024235 doi: 10.3934/era.2024235
|
| [20] |
B.C. Joshi, Mathematical programs with vanishing constraints involving strongly invex functions, Numer. Algorithms, 91 (2022), 505–530. https://doi.org/10.1007/s11075-022-01271-5 doi: 10.1007/s11075-022-01271-5
|
| [21] |
P. Kharbanda, D. Agarwal, D. Sinha, Multiobjective programming under $(\varphi, d)-V-$type I univexity, Opsearch, 52 (2015), 168–185. https://doi.org/10.1007/s12597-013-0164-z doi: 10.1007/s12597-013-0164-z
|
| [22] | B. B. Upadhyay, A. Ghosh, S. Treanţă, Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints on Hadamard manifolds, J. Math. Anal. Appl., 531 (2024), 127785. |
| [23] |
V. Laha, H. N. Singh, On quasidifferentiable mathematical programs with equilibrium constraints, Comput. Manag. Sci., 20 (2023). https://doi.org/10.1007/s10287-023-00461-3 doi: 10.1007/s10287-023-00461-3
|
| [24] |
T. Antczak, Optimality results for nondifferentiable vector optimization problems with vanishing constraints, J. Appl. Anal. Comput., 13 (2023), 2613–2629. https://doi.org/10.11948/20220465 doi: 10.11948/20220465
|
| [25] | M. K. Roy, B. C. Joshi, S. Treanţă, C. F. Marghescu, Efficiency criteria and dual models for multi-objective semi-infinite constrained minimization problems with vanishing restrictions, Comput. Appl. Math., 44 (2025), 158. |
| [26] |
R. R. Sahay, G. Bhatia, Higher order strict global minimizers in non-differentiable multiobjective optimization involving higher order invexity and variational inequality, Opsearch, 61 (2024), 226–244. https://doi.org/10.1007/s12597-023-00670-z doi: 10.1007/s12597-023-00670-z
|
| [27] |
S. Treanţă, O. M. Alsalami, Results on Solution Set in Certain Interval-Valued Controlled Models, Mathematics, 13 (2025), 202. https://doi.org/10.3390/math13020202 doi: 10.3390/math13020202
|
| [28] |
S. Treanţă, O. M. Alsalami, Characterization Results of Extremization Models with Interval Values, Axioms, 14 (2025), 151. https://doi.org/10.3390/axioms14030151 doi: 10.3390/axioms14030151
|
| [29] | S. Treanţă, C. F. Pırje, J. C. Yao, B. B. Upadhyay, Efficiency conditions in new interval-valued control models via modified T-objective functional approach and saddle-point criteria, Math. Model. Control., 5 (2024), 180–192. |
| [30] |
K. Kummari, R. R. Jaichander, S. Treanţă, C. F. Pirje, Robust parametric $E_R$ Karush–Kuhn–Tucker optimality criteria for fractional interval-valued optimization problems, Rend. Circ. Mat. Palermo, Ⅱ. Ser 74, 121 (2025). https://doi.org/10.1007/s12215-025-01239-z doi: 10.1007/s12215-025-01239-z
|
| [31] |
H. C. Wu, On interval-valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299–316. https://doi.org/10.1016/j.jmaa.2007.05.023 doi: 10.1016/j.jmaa.2007.05.023
|
| [32] |
X. Tan, Z. Peng, S. Reich, Y. Shehu, Generalized convex interval-valued functions and interval-valued optimization under total order relations, Fixed Point Methods Optim., 2 (2025), 94–109. https://doi.org/10.69829/fpmo-025-0201-ta06 doi: 10.69829/fpmo-025-0201-ta06
|
| [33] |
H.C. Wu, The Karush–Kuhn–Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, Eur. J. Oper. Res., 196 (2009), 49–60. https://doi.org/10.1016/j.ejor.2008.03.012 doi: 10.1016/j.ejor.2008.03.012
|
| [34] |
A.K. Bhurjee, G. Panda, Efficient solution of interval optimization problem, Math. Method Oper. Res., 76 (2012), 273–288. https://doi.org/10.1007/s00186-012-0399-0 doi: 10.1007/s00186-012-0399-0
|
| [35] | D. Singh, B. Dar, and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonlinear Anal. Optim., 5 (2014), 91–103. |
| [36] | Z. Y. Peng, C. Y. Deng, Y. O. N. G. Zhao, J. Y. Peng, Optimality conditions and duality for E-differentiable fractional multiobjective interval valued optimization problems with E-invexity, Appl. Set Valued Anal. Optim., 6 (2024), 295–307. |
| [37] |
T. Antczak, N. Pokharna, A nonparametric approach to nonsmooth vector fractional interval-valued optimization problems, Chaos Soliton Fract., 199 (2025), 116638. https://doi.org/10.1016/j.chaos.2025.116638 doi: 10.1016/j.chaos.2025.116638
|
| [38] |
Z. Y. Peng, J. Y. Peng, D. Ghosh, Y. Zhao, D. Li, Optimality conditions and duality results for generalized-Hukuhara subdifferentiable preinvex interval-valued vector optimization problems, Fuzzy Sets Syst., 515 (2025), 109416. https://doi.org/10.1016/j.fss.2025.109416 doi: 10.1016/j.fss.2025.109416
|
| [39] | J. Y. Peng, Z. Y. Peng, C. Y. Deng, M. Wen, $E-\alpha-$ Preinvex Interval-Valued Functions and Optimality Conditions, J. Chongqing Norm. Univ. Nat. Sci. Ed., 41 (2024), 7–15. |
| [40] | Z. Y. Peng, J. Y. Peng, E-semi-preinvex interval-valued functions and interval-valued programming, J. Chongqing Norm. Univ. Nat. Sci. Ed., 42 (2025), 117–126. |
| [41] |
T. Antczak, On directionally differentiable multiobjective programming problems with vanishing constraints, Ann. Oper. Res., 328 (2023), 1181–1212. https://doi.org/10.1007/s10479-023-05368-5 doi: 10.1007/s10479-023-05368-5
|
| [42] | J. Jahn, Vector Approximation, Vector Optimization: Theory, Applications, and Extensions, (2004), 211–242. Springer. https://doi.org/10.1007/978-3-540-24828 |
| [43] |
J. Zhang, Q. Zheng, X. Ma, L. Li, Relationships between interval-valued vector optimization problems and vector variational inequalities, Fuzzy Optim. Decis. Mak., 15 (2016), 33–55. https://doi.org/10.1007/s10700-015-9212-x doi: 10.1007/s10700-015-9212-x
|
| [44] | G. Giorgi, Osservazioni sui teoremi dell'alternativa non lineari implicanti relazioni di uguaglianza e vincolo insiemistico, Optim. Econ. Finance Ind., Datanova Editrice Srl, (2002), 171–183. |
| [45] |
V. Preda, I. Chiţescu, On constraint qualification in multiobjective optimization problems: semidifferentiable case, J. Optim. Theory Appl., 100 (1999), 417–433. https://doi.org/10.1023/A:1021794505701 doi: 10.1023/A:1021794505701
|
| [46] | I. Ahmad, D. Singh, B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19–45. |