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1. Introduction

Mathematical programs with vanishing constraints (MPVCs) have garnered significant attention in
recent years due to their relevance across diverse fields and the unique mathematical challenges they
pose. These optimization problems, characterized by constraints that may vanish under certain condi-
tions, bear a close resemblance to mathematical programs with equilibrium constraints (MPECs) [1,2].
The problem that is being referred to as mathematical programs with vanishing constraints was
initially researched by Achtziger and Kanzow in [3] and this model can be used as a reference for
various problems related to topology and structural optimization ( [3-5]). For further information
on mathematical programs involving vanishing constraints, we refer to (see [6-9]) and references therein.
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Multiobjective optimization problems involve the optimization of multiple objective functions
and are also known as multicriteria optimization problems. Multiobjective programming problems
emerge across various practical contexts, spanning fields such as economic systems, strategic decision
analysis, financial planning and investment portfolios, data communication networks, distribution of
assets, mechanical systems, and control engineering applications [10-12]. A classical example in
financial planning is mean-variance portfolio optimization, which captures the fundamental trade-off
between maximizing returns and minimizing risk. This approach generates a Pareto-optimal frontier,
allowing investors to choose portfolios based on their risk-return preferences [13]. Similarly, in the asset
distribution networks, such as urban water distribution systems, often require designs that minimize
installation and operational costs while maximizing reliability and resilience to failure. Multiobjective
evolutionary algorithms have been successfully applied to benchmark networks, including those in
Hanoi and New York [14].

In mechanical and structural engineering, Pareto fronts emerge when optimizing weight against
stiffness or deflection in steel truss design. Multiobjective genetic algorithms assist engineers in
navigating these nonlinear trade-offs [15]. In control and mechatronic systems, multiobjective tuning
of PID controllers (or nonlinear MIMO controllers) seeks optimal trade-offs between integrated
error and actuator effort or control rate. This enables the selection of “best compromise” parameter
sets from the Pareto front [16]. These concepts also extend into data science and machine learning
applications, where fairness, accuracy, and energy consumption constitute competing objectives
in hyperparameter tuning. This leads to diverse yet Pareto-ideal configurations, illustrating how
multiobjective programming provides a coherent framework across economics, engineering, control,
and data-driven decision-making [17]. Over the last 50 years, the field of multiobjective optimization
has seen significant growth in various areas, particularly in the development of duality theory and
optimality conditions. In recent years, significant attention has been directed toward a specific
class of nondifferentiable multiobjective optimization problems, namely those that are directionally
differentiable. These problems have emerged as a focal point for researchers aiming to address
challenges arising from nonsmooth structures in optimization. Huang and Zhu [18] focused on
establishing stationary conditions for Borwein proper efficient solutions to nonsmooth multiobjective
problems with vanishing constraints. Their work is significant because it extends the concept of
Borwein’s proper efficiency, a refinement of efficiency that avoids pathological solutions to the
nonsmooth context. By utilizing advanced variational analysis tools, they provided necessary conditions
that ensure proper efficiency even in the presence of nonsmoothness and vanishing constraints. This
contribution enhances the robustness of solution concepts in multiobjective optimization. Wang,
Kang, and Zhang [19] explored the optimality conditions and duality in multiobjective fractional
optimization problems that involve vanishing constraints. Their work specifically addresses the
challenges posed by the fractional structure, commonly found in problems related to ratios, such as
efficiency measures or return-to-risk ratios. They established both necessary and sufficient conditions
for optimality, along with duality results. This contribution expands the theoretical framework for
fractional multiobjective optimization while accounting for vanishing constraints. Numerous authors
have established foundational results in optimization theory for this class of problems (see, [20-26]).
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The methodology for solving optimization problems under interval-valued constraints has been
advanced by several researchers (see, e.g., [27-30]. In a parallel development, Wu established the
foundational optimality conditions for problems featuring interval-valued objective functions [31-33].
The study of optimality conditions in interval-valued optimization was advanced by Bhurjee and
Panda [34], who presented a methodology for efficient solutions when the objective function is
differentiable. Later, Singh et al. [35] explored this by formulating the necessary Karush-Kuhn-Tucker
(KKT) conditions for the more complex case involving both interval-valued objective and constraint
functions. Here are some recent and highly relevant research works on interval-valued multi-objective
optimization, particularly in contexts involving nonsmooth objectives, vanishing constraints, and
duality (see, [36—40]). Later, Antczak [41], studied a class of directionally differentiable multiobjective
programming problems with equality, inequality, and vanishing constraints. Under the Abadie
Constraint Qualification (ABCQ) and its modified form, they established necessary KKT optimality
conditions. Their approach leveraged the nonlinear Gordan theorem of the alternative for convex
functions and specifically considered problems with standard, non-interval-valued objective functions.
To the best of our knowledge, no existing work has derived optimality conditions for convex
multi-objective optimization problems with directionally differentiable components and vanishing
constraints, particularly when objectives are expressed as interval-valued functions.

The structure of this work is outlined as follows: Section 2, introduces the necessary preliminaries
and foundational concepts. In Section 3, we investigate a multiobjective interval-valued optimization
problem with vanishing constraints (MPIVC), where the objectives are directionally differentiable.
Our primary contribution is the development of a comprehensive optimality theory for (MPIVC). This
begins with the derivation of KKT-type necessary conditions for (weak) Pareto solutions. To overcome
the potential failure of classical constraint qualifications, we propose a novel VC-Abadie Constraint
Qualification (VC-ABCQ), which is less restrictive. Using the VC-ABCQ, we then establish valid KKT
necessary conditions. We also present sufficient conditions for optimality under convexity assumptions
and validate the entire framework with an illustrative example. The paper concludes with a summary in
Section 4.

2. Preliminaries and definitions
This section of the article contains definitions, results, and frequently used equalities and inequalities.
Throughout this article, we adopt standard notations for vectors, distinguishing between column
and row representations only when necessary for clarity. Let R” denote the n-dimensional Euclidean
space, and let R represent its non-negative orthant. Additionally, let I(R) denote the set of all closed
and bounded intervals in R. For simplicity, we use A; € I(R) to represent a closed interval, written as

Ay = [, %1, where % and x are the lower and upper bounds of the interval, respectively.

For two intervals A; = [x§, %] ] and A, = [Bf, 55 ], the order relation <, is as follows:

o Ay <py Ay iff xf < B and ] < Bf.
° Al <Lu Az iff A1 <tv Az and Al * Az.
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It is straightforward to verify that A; <,y A; holds if one of the following conditions is satisfied:

() =5 <pBandx) <pBY,

(i) =5 <pBhandxf <pBy.
Definition 1. Relative interior of a set C C R", denoted by relint C and defined as:
relint C ={a € C : (a,r) Nnaff C C C for some r > 0},

where:

e (a,r) represents the closed ball of radius r > 0 centered at a in R", given by:
(a,r)={yeR":|ly—al <r}.
o aft C denotes the affine hull of C, which is the smallest affine subspace containing C. Formally, it

is defined as:
k k
aff C = {Z%iai:%ieR, Z%i: 1, al,...,kaC}.

i=1 i=1

Definition 2. [41] Let F : C — R be a mapping defined on C C R". The mapping F is said to possess a
directional derivative at a point b € C in the direction ¢ € R" if the following limit exists and is finite:

P56 = lim F(b + xc) — F(b)
’ x—0t b4 '

Furthermore, F is said to be directionally differentiable at b if the directional derivative F*(b; c) exists
finitely for all directions ¢ € R".

Definition 3. A mapping F : C — I(R), defined on C C R", is called directionally differentiable at a
point b € C in the direction c € R" if the following two limits exist as finite values:

FL(b —FL(b
FL* (b o) = lim 2P %9 —F ()
x—0* X
FU(b _FYG
FU*(b;c) = lim Gbtx)-F &)
x—0t b

Here, F and FY represent the lower and upper bounds of the interval-valued function F, respectively.
The mapping F is said to be directionally differentiable at b if both F**(b; ¢) and FY*(b; ¢) exist finitely
for all directions ¢ € R".

Remark 1. For an interval-valued function F : C — I(R), directional differentiability at b € C in a
direction v € R" is defined by the existence of finite limits for its lower and upper bounds, denoted

FE(b;v) and FY*(b; v).

Definition 4. A mapping F : C — I(R) is convex if F* and FV are convex on the nonempty convex set
C cR
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Proposition 1. [42] LetF : R" — R be a convex mapping. Then, for any point u € R" and any direction
c € R", the directional derivative F*(u; c) exists.

Moreover, because the convexity of F guarantees that the directional derivative along b — u exists
Vb € R", the subsequent inequality holds:

F(b) — F(u) = F"(u; b — u). 2.1

Lemma 1. [42] Let C C R" be an open set, and let u € C be given. Consider the functionsF,p : C - R
and a direction ¢ € R" and assuming that directional derivatives of F and ¢ at u in the direction c exist,
i.e., F*(u; c) and ¢*(u; c) are well-defined. Then, the directional derivative of the product F - ¢ also
exists, and it satisfies the following equation:

(F - @) (u;0) = Fuw)g™ (u; ¢) + F*(u; 0)p(w).

Theorem 1. Let C C R” be a nonempty convex set, and consider the interval-valued map F : C — IR,
the convex function ¢ : C — R/, and the linear function h : R" — RY. Suppose there exists a point
bg € relint C such that

on(bp) <0, m=1,...,j, and hyby) <0, p=1,...,q
Then,
Fib) <0, k=1,...,1,
F'(b)<0, k=1,...,
(b)) <0, m=1,...,]
h,(b) <0, p=1,...,q,
has no solution if and only if 3 (6,9,)° € R] X R{; X R? with 6 # 0 such that:
0" FX(b) + 9" (b) + B"h(b) > 0, VbeC,
0"FU(b) + 9 o(b) + B"h(b) >0, VbeC.

Proof. The result is a direct consequence of a nonlinear alternative theorem (Theorem 2.8 in [44]).
Specifically, applying that result with the convex constraints ¢ and linear constraints 4 yields the
equivalence between the infeasibility of the system and the existence of multipliers (6, I, 8) satisfying
2.2). O

T

(2.2)

Definition 5. [41] The cone of sequential linear directions to a set E C R" at b € E is denoted by
Z(E; b) and is defined as:

Z(E;b) := {c e R" | A¢ex) c Ry, #; | O such that b+ »yc € E, Yk € N}.

The tangent cone to E at b € cl E is defined as:

_ - by—b
T(E;b) = {c e R" | A(by) CE, (%) CR, suchthat »; | 0, by — b, and k% - c}
k

= {CGR” | e, — ¢, »#; | O such that b + x,c;, € E, VkeN}.
Here, cl E represents the closure of the set E. It is worth noting that these cones are always nonempty.
While cone T(E; b) is closed, but not necessarily be convex. Additionally, the following inclusion is

always satisfied:
Z(E;b) C T(E; D).
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3. Interval-valued multiobjective optimization problem with vanishing constraints

In this article, we consider following constrained multiobjective interval-valued optimization problem
with vanishing constraints defined as

(MPIVC) V -minimize F(b) := (F,(b), ...,F.(b))
o) 20,n=1,...,J,
hy(b) =0, p=1,...,q,
(b)20,¢6=1,..,1,
L(b)D(b)£0,c=1,..,r, beC,

here:

e EachF; : R" > I(R), keI ={1,...,7},1s an interval-valued function, written as
Fu(b) = [F{(b),F{ (®)];

e, :R'>R,neM={l,...,jk

o, :R" >R, peS§ ={l,...,rh

e [,D.:R">R,ceV={l...,rh
e C # @ 1s a convex open subset of R".

To make our presentation easier to understand, we will be using some consistent notations throughout
this article. Let

Q={beC:pb)<0,neMhyb)=0,peS,(b)20,,(bH)D(b) < 0,6 € V)

be the feasible set for (MPIVC). Further, we define the following sets at the point b € Q :

e The active set: M(b) := {7 € M : ¢,(b) = 0};
e The inactive set: M<(b) ={ne1,2,...,j: go,,(l_)) < 0}.

These sets form a partition of M, such that M(b) U M<(b) = M.

Definition 6. We say that a feasible point b € Q is a Pareto solution to (MPIVC) iff there does not exist
any point b € Q such that

F(b) <pu F(b).

Definition 7. A feasible point b € Q is called a beak Pareto solution (or weakly efficient solution, or
weak minimum) for (MPIVC) if there exists no other feasible point b € Q satisfying

F(b) <Lu F(b).
Now, for any feasible solution b, we give the following index sets

Vi) = {s € V: {,(B) > 0},
Vo(b) = (s € V : £(b) = O},
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Moreover, let us divide the index set V..(b) into these two index subsets:

Vio() = {s € V : £u(B) > 0, D(b) = 0},
Vi (B) = (s € V: £i(B) > 0, Dy(b) < O},

Likewise, we can divide the index set V,(b) into three distinct subgroups in the following manner:

Vo) = {s € V : £,(B) = 0,D(B) > O},
Voo®) = {5 € V : £,(B) = 0, Dy(b) = 0},
Vo-(B) = {s € V : £(b) = 0, D(b) < O},

Further, we represent using the notation Vy(b) the set of indexes ¢ € V defined by
Vi(b) = Voo(b) U Vo (b) U Vo_(b) U V(D).

Next, we will introduce Abadie constraint qualification for directionally differentiable multi-objective
interval-valued optimization problem with vanishing constraints.

We now introduce the constraint qualification discussed previously. For a given point b € Q, we
define the sets E'(b) (where [ = 1,2, ...7) and E(b) as follows:

E'(b) :={b € C :Fu(b) Sy Fub),Vk = 1,2, ...1,k 1,
@y(b) £0,¥n e M,
h,(b) =0,¥p € S,
Ls(b) 2 0,VYg €,
Lo(b)Dy(b) £ 0,¥5 € V},

E() :={b € C Fu(b) <1p Fe(B), Yk = 1,2, ....7,
@y(b) £ 0,V € M,
ho(b) = 0,¥p € S,
L(b) 20,5 €V,
L()Dy(b) £ 0,Ys € V).

We now present almost linearizing cone in the context of the MPIVC problem, which incorporates
interval-valued functions. Preda and Chitescu [45] first introduced the almost linearizing cone for
directionally differentiable multiobjective problems with inequality constraints. The concept presented
here is a generalization of their work.

Definition 8. We define w(Q; b) as the almost linearizing cone to the set Q at the point b if it is given by
@(Q:b) = {c € R" : F{*(bi¢) <0 and F{*(b;c) < 0, Vk € I,
¢r(bic) <0, Y € M(b),
h;(b; c)=0, Vp €S,
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{i(b;c) 20, Vs e,

({:De)*(bsc) <0, Ys € V. (3.1)
We now establish result that provides formulation of almost linearizing cone for sets E'(b), | =
1,2,..., p, incorporating interval-valued functions.

Proposition 2. Let b € Q be a Pareto solution of directionally-differentiable multiobjective interval-
valued programming problem (MPIVC) with vanishing constraints. Then, for eachl = 1,2, ..., p, the
linearizing cone to E'(b) satisfies the following equality:

@(E'(B);b) = {c € R" : F{*(bic) <0 and F{*(b;c) < OVk € I, k #1,
@y (b;c) <0V e M(b), hy(b;c)=0VpeS,
{i(b;0) = 06 € Vou(b),  £i(bsc) =0V € Voo(b) U Vo(b),
Di(b;c) <0 Vs € Vio(b)}. (3.2)
Proof. Assume that b € Q is a Pareto solution for the (MPIVC) problem. By applying definitions
of almost linearizing cone and the associated index sets, we can characterize the conditions defining

@(E'(b); b). These conditions ensure that the directional derivatives satisfy the constraints imposed by
the problem’s structure.

@(E'(B):b) = {c € R" :F{*(b:c) 0, F*(bsc) €0, Yk € Lk #1,
¢ (B;0) < 0, ¥ € M(D),
h;(b;c) =0, Vp €S,
LI(bic) = 0, Vg € Vo, (b),
{i(b;e) 2 0, Vs € Vy(b),
({:De)*(Bsc) £ 0, g € Vo(b) U Vo). (3.3)
Using Lemma 1, we get
(£sDg)"(b; ¢) = De(b)(Ls) (b5 ¢) + {(D)(Dg) " (b ©). (3.4)
Using definition of index sets with (3.4), we get
(£:De)! (b; ¢) = {D(B)L (b; ) if 6 € Vo, (b) U Vo (b) 0 if & € Voo (b)
L(b)D(b;c) if ¢ € V € Voo(b)}. (3.5)
Combining (3.3)—(3.5), we have (3.2). The proof is now complete. O
Remark 2. It is important to see that almost linearizing cone to E(b) at b € E(b) is given by
@(E(b); b) = NI_,@(E'(b); b). (3.6)
Where w(E(D); b) is given as
@(E();b) :={c e R" : F{*(b;c) £ 0,and F/*(b;c) S0V k €1,
@y (b;c) £0,¥n € M(b),h(b;c) = 0,Yp € 8,7 (b;c) = 0,V € Vo, (D),
£i(b;¢) 2 0,V € Vio(b) U Vo_(B), (D) (bs ¢) £ 0,¥6 € V(b)) (3.7)
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Definition 9. The Abadie constraint qualification (ABCQ) holds at b for (MPIVC) iff
@(E(b); b) < () Z(E' (D) D). (3.8)
1=1

The following theorem provides a necessary condition for efficiency in (MPIVC).

Theorem 2. Let b € Q be an efficient solution for (MPIVC). Assume the following:

1. For every c € Z(C, b), the directional derivatives exist for:

e All interval-valued functions FZ(B; o, k=1,...,7
e The constraint functions:
- ¢i(bsc), n€ M), hi(bic), peS, Libic), s € Vob)

= {E(bsc), s € Voo(b) U Vor(b) U Vo (b),  DL(bic), s € Vio(b)

2. The following functions are continuous at b:
¢ NEM®D), &, s€Vib), D g€V, (b)
3. The (ABCQ) holds at b for (MPIVC)
Then, for every l = 1,...,1, the following system holds:

Fit(b;c) £0, Fi*(b;c) <0,k =1,..,1,k #1, (3.9)
FU*(byc) <0, FY*(b;c) < 0,k = 1, ..., 1,k # I,

@y (b;c) £0,n € M(D), (3.10)
hi(b;c) =0,p €S, (3.11)

— {H(b;e) £0,6 € Vy(b), (3.12)
({:Dg)* (b;¢) £ 0,6 € Viyg(b) (3.13)

and has no solution ¢ € R".

Proof. Assume, for the sake of contradiction, that there exist [y € {1, ..., 7} such that the system

Fir(b;e) £ 0,F; (bse) < 0,k =1,..., 1,k # ,
FUr(bio) S 0,F(b;0) < 0,k = 1,..,7,k # Lo, (3.14)

gr(b;c) £0,n € M(b), (3.15)
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h;(l_v; c)=0,p€S, (3.16)
— {I(b;c) 20,6 € Viy(b), (3.17)
(Do) (b;c) £ 0,6 € Vig(b) (3.18)

has a solution ¢ € R". Then by (3.5), we have

Fit(bie) £0, Fif(b;e) <0,k =1,..., 1,k # I,

Fl*(bye) 20, FlM(bic) < 0,k = 1,..,7,k # Ly, (3.19)
@r(b;c) £0,n € M(D), (3.20)

I (b;c) = 0,p €S, (3.21)

{I(bc) =0V g € Vo (b), (3.22)
£I(byc) 2 0,6 € Vio(b) U Vo_(b), (3.23)
Di(bic) £ 0,6 € V.o(b) (3.24)

has a solution ¢ € R”, it is evident that ¢ belongs to w(E(b), b). Since (ABCQ) is satisfied at b for
(MPIVC), with Definition 9, we get ¢ € ([, Z(E'(b); b). Thus, ¢ € Z(E";b). Using Definition 5,
3 () € Ry, 2 | 0, such that b + »,c € E*(b) for all k € N. Hence, b + x;c € C and, furthermore,

Fi(b +xic) S FE(b), k=1, ...,1,k # I,

FY(b + xc) SFY(D),Vk = 1,..., 1,k # , (3.25)
@n(b + %) £0,Yn € M(D), (3.26)
ho(b +2ic) = 0,¥p = 1, ..., q, (3.27)
(b + i) = 0,96 € Vo, (b), (3.28)
Le(b + i) 2 0,V € Vo(b), (3.29)
D.(b + xc) £ 0,V € V,o(b). (3.30)
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Using index sets, it can be concluded that
@,(b) <0, n e M<(b), £{(b) >0, ¢ € V.(b),D(D) <0, s €V, (b).
Therefore, due to the continuity of
@11 € M(D), D¢, s € Vi (b), i 5 € Vi(b),

at b, there exist ky € N such that for all k > k,

@n(b + x,0) £ 0,Ym ¢ M(b), (3.31)
Lo(b + x0) 2 0,V € V.(b), (3.32)
D(b + %) £0,Y5 € V,_(D). (3.33)

Therefore, by (3.26) to (3.33) we conclude that
A6>0 : b+xc € QN Bb;6),
which implies that b € Q is an efficient solution in (MPIVC). From Definition 6

35 >0 : weQn B(b;6) does not exist which satisfies,
Fi(b) Sry Fu(b), k = {1,2,...,7}, (3.34)

F.(b) <.y Fi(D), for some k € {1,2, ..., T}. (3.35)

Since b + xc € Q N B(b; 6) and (3.25) hold, by (3.34) and (3.35), our conclusion is that the inequality
for every k € N

FIO(B + %kC) >1u Flo(l_))
holds. Therefore, the inequality above indicates that
Fi(b;c) 2 0and F*(bic) 2 0

holds. This contradicts (3.14). Thus, the proof is complete. O

Remark 3. The argument used to prove Theorem (2) shows that if the system (3.9)—(3.13) has c € R"
(a solution), then ¥ | = 1, ..., T, the nonlinear system

Fir(b;c) £ 0,Fi(b;c) < 0,k =1,...,1,k # 1, (3.36)

FU*(byc) £ 0,F{*(b;c) < 0,k =1,..., 1,k # L, (3.37)
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¢;(b;c) £ 0,Yn € M(D),
I (b;c) = O¥p € S,
£I(byc) = 0V € Vo, (D),
{E(bic) = OV € Voo(b) U Vo (b),

D} (b;c) £ O¥g € Vo(b)
has no solution ¢ € R".

Now let us define

F=(F,..,Fysuchthat F;, :R" - I(R),k=1,.,7,

B+ Voo B+ Vo BV w0 (B
P = (Pl coor OB Ve B Vo BV so(y) - R — RIMOFV0OHT-GV00)
and

h = (hl, ceey hq+|V()+(l_7)|) : Rn — Rq+|VO+(B)|
as follows

Fy(c) == F(bs o),
Fl(c):=F/*(b;c),k e,

©.(¢) :={¢] (b;c) for I € M(b),x = 1,..., M(D),
ff(l;,c) for I € Vo(b), % = |M(D)| + 1, ..., IM()| + | Voo (D),
- {;r(l_), c) for 1 € Vy_(b),x = IM(D)| + |Voo(D)| + 1, ..., IM(D)|+
Voo (D)l + [Vo-(B)| + [Voo(D), L € Vo(b),
D;r(l_?;c) for % = [M(b)| + |[Voo(b)| + Vo (B)| + 1, ..., |IM(D)|+
Voo (D) + [Voo(D)| + [V.o(D)1},

hg(c) :={h; (b;co)for I =1,...,q, =1, ....,q,
L (bsce) forl € Vou(b),B=q+1,...q + [Vo.(b)I}.

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

We can now formulate the Karush-Kuhn-Tucker necessary optimality condition under the Abadie
constraints qualification (ABCQ) for a feasible solution b to be an efficient solution in (MPIVC).

Theorem 3. (K.K.T. Necessary Optimality Condition) Let b € Q be an efficient solution for the
directionally differentiable interval-valued multiobjective optimization problem (MPIVC) with vanishing

constraints. Assume the following conditions hold:
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1. The functions Fy, k € 1, are directionally differentiable interval-valued functions, and ¢, (n € M),
h,(peS) {(s€V) and D, (_g‘ € V) are directionally differentiable at b.

2. The directional derivatives F(b;-), k € I, are interval-valued convex functions, and the following
functions are convex:

@y ;) neM, —{l(b;-), s € Voo(b) U Vo-(B), DL(b;-), s € Vig(b).

3. The functions h;(l;; ), p €S, and {;(l_); ), ¢ € Vo (b), are linear.
4. The functions ¢,, n € M <(b), ., SE V.(b), and D, s € Vo(b) U V._(b), are continuous at b.
5. The (ABCQ) is satisfied at b for (MPIVC).

Furthermore, suppose there exists cy € relint Z(C; b) such that ¢(co) < 0 and h(c) < 0. Then, 6 € R7,
A €ER,E€RY ¥ € R, and ¥ € R" exist as multipliers of Lagrange satisfying the necessary optimality
conditions.

T

J b
OF " (b o) + Zﬁ,,(p;(l_o; c) + Z ' (b; ¢)—

k=1 n=1 p=1
2—g+-. O Dy > 7
VLl Bs o)+ Y cPDib; ) 2 0, Y € Z(C3 D),
¢=1 ¢=1

T

Jj b
6iFV*(b; o) + Zﬂ,,@;(fa; c) + Z & (b; c)—

k=1 n=1 o=1

2 YLt (b c) + Z c?Dl(b;c) 2 0,Ve € Z(C; b), (3.46)

s=1 ¢=1
finpn(D) = 0,m € M, (3.47)
Yilo(b) = 0,5 €V, (3.48)
y2Dy(b) = 0,5 €V, (3.49)
020,a20, (3.50)
s = 0,6 € Vo(B), 7 2 0,6 € Voo(b) U Vo (b), V5 free, s € Vo (D), (3.51)
7 = 0,6 € Voo(b) U Voo (b) U Vo (b) U V- (b), 7 2 0,5 € V(D) (3.52)

hold.
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Proof. Let b € Q be an efficient solution for (MPIVC). Since ABCQ is satisfied at b for (MPIVC), using
Remark 3, we get that the system (3.36) to (3.42) has no solution y € R". By (3.43) to (3.45), one has

(Fiy) <0,k=1,2,...,1,
Fl(y)<0,k=1,2,..,71,
‘1077(7) é 07]7 = 1’2a ""j’
hy(y) £0,0=1,2,....q}
admit no solutions. Hence by Theorem 1, 3 (6, 3,6)* € RY X Rf; X R, 0 # 0, satisfying

0" F (y) + 9" o(y) + B"h(y) 2 0, ¥y € R",
0" FY(y) + 9 o(y) + B h(y) 2 0,y € R".

Using (3.43)—(3.45), we get

T b
DIOF B+ D OB+ Y BB~ D Ol (Biy)-
k=1 1

neM(d) p= s€Voo(B)uVo-(b)

Z Boli(byy) + Z 9:D(b;y) 2 0,y e R",

seVos(b) seVio(b)
T b
D OF By + D ey + D BBy = > L Biy)-
k=1 neM(b) p=1 s€Voo(b)UVo-(b)
Z Bl (byy) + Z 3D (b;y) 2 0,Vy €R". (3.53)
sV (D) seVio(D)
Let us set

i, = 19, if n € M(b),
0if m ¢ M(b)}, (3.54)

& =Pp,s=1,2..,q, (3.55)

772 = {9, if ¢ € Voo(b U Vo_(D), x = [M(b)| + 1, ...,IM(D)| + |Voo(b)| + |Vo_(b)],
Brif s e Vo (b),x = q+1,....,q+ Vo, (D),
Oifge V+([3)} (3.56)

Ve =10, if ¢ € Vig(b), . = IM(B)| + [Voo(B)] + [Vo-(D)] + 1, ..., IM(B)] + [Voo(D)] + [Vso(D)),
0if ¢ € Voo(B) U Vo (B) U Vo (B) U V,_(B)}. (3.57)

If we substitute (3.54)—(3.57) into (3.53), we obtain the KKT optimality conditions (3.46). Additionally,
(3.54)—(3.57) imply the KKT conditions (3.47) to (3.52). Hence proved. O
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We substitute the constraint {.D.(b) £ 0 for 7 in V with the constraints

£i(b) = 0,Dc(b) 2 0,6 € Vo.(b)
£i(b) 2 0, De(b) £ 0,6 € Voo(b) U Vo(b) U Vo_(b) U V,_(b),
where the index sets depend on b.

We now introduce the multiobjective minimization model, which is built from (MPIVC), where several
constraints are dependent on the optimal point b:

(MPI)(b) V - minimize F(b) := (F,(b),Fy(b), ...,F (b))
o) =0,m=1,.... j,
h,(b) =0,p=1,...,q,
(b)z20,6=1,..,1,
Z:(b) = 0,Dy(b) 2 0,5 € Vi, (D),
£,(b) 2 0,Dy(b) < 0,6 € Voo(B) U V,(B) U Vo (B) U V,_(B), b € C.

To present the modified Abadie Constraint Qualification (ABCQ), we define the set Elb),1=1,...,1,
and E(b) as follows, for b € Q:

E'(b) :={b e C: Fub) S1v Fr(D), Yk =1,..., 1,k £,
oy(b) £0,Yn=1,..., j,
h,=0,Yp=1,..,q,
Le(b) = 0,De(b) 2 0,Y¢ € Vo, (b),
£e(b) 2 0,De(b) £ 0,Ys € Voo(b) U Voo(b) U Vo_(b) U V._(b)},
and

E(b) :={b € C;F(b) <1y Fi(b),
(b)) 20,Yn=1,...,J,
h,(b) =0,Yp =1,...,q,
Le(b) = 0,D(b) 2 0,Ys € Vo, (b),
Le(b) 2 0,Ds(b) £ 0,6 € Voo(b) U Voo U Vo_(b) U V,_(b)}.

Then, almost linearizing cone for set £ (D) is defined as

@(E'(b);b) :={c e R" : F} (b;c) <1y 0,Yk € Ik # 1, (3.58)
go:;(l_); c) £0,Yn € M(b), h;(l_x c)=0,Yp € S,{;’(Z_J; c) =0,Y¢ € Vi, (b)
{Z(bsc) 2 0,Y6 € Voo(b) U Vo (b), DL (b; ) £ 0,V € Voo(b) U V(b))

Thus, almost linearizing cone for set E(b) is defined as
@(Eb);b) = () @(E'(B); b). (3.59)
I=1
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Remark 4. The sole distinction between the cones w(E(b); b) and w(E(b); b) lies in the inclusion of
the inequality D;(E; ¢) £0, V¢ € Vy(b) in w(E(b); b). Specifically, we have the containment relation:

@(E(b); b) C w(E(b);b). (3.60)

Proposition 3. Let b be a feasible solution in (MPIVC). Then
ﬁﬂﬂ&@cﬂﬂ&@. (3.61)
I=1

Proof. By Proposition 2, we get
ﬁﬂm&mcmﬂ&m. (3.62)
I=1

Moreover, as inferred from the proof of Proposition 2, we have
Z(E'(b); b) ¢ w(E'(b); ),V =1,..,7. (3.63)

Thus, (3.63) and (3.59) yield

ﬂaﬂ&@cﬂw@®@:mﬂ&m (3.64)
=1 =1
Since E!(b) c E!(b),l = 1, ..., 7, therefore, one has
Z(E'(D); b) C Z(E\(b); b),¥Il =1, ..., T, (3.65)
@(E(D); b) C w(ED);b). (3.66)
Combining (3.62) to (3.66), we get (3.61). O

We are introducing the VC-Abadie constraints qualification, which is a modified version of the
Abadie constraints qualification.

Definition 10. We say that the VC-Abadie constraint qualification (VC-ABCQ) holds at an efficient
solution b € Q of (MPIVC) iff

mﬂ&@gﬂaﬂh@. (3.67)
=1

We will now define the Abadie constraints qualification for MPI(b). We will also demonstrate that
(VC-ABCQ) is valid at b for (MPIVC), even in cases where the (ABCQ) is not met.

Definition 11. We say that the modified Abadie constraint qualification (MABCQ) holds at a (weakly)
efficient solution b € Q for (MPI(b)) iff

mmmagﬂaﬂmm. (3.68)
=1
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We will now state the sufficient condition for satisfying the VC-Abadie constraints qualification at an
efficient solution in (MPIVC).

Lemma 2. Let b € Q be an efficient solution in MPIVC. If MABCQ holds at b for MPI(b), then
VC-ABCQ holds at b for MPIVC.

Proof. Assuming b € Q is an efficient solution in MPIVC and MABCQ holds at b for MPI(b), then,
using Definition 11, we get

@(Eb);b) C ﬂ Z(E'(B): b). (3.69)
=1

Since E!(b) C E'(b),l = 1, ..., 7, we have that

Z(E'(b); b) C Z(E'(b); D), I =1, ..., 1, (3.70)

w(E'(b);D) C w(E'(D);b),l=1,...,T. (3.71)

Hence, by (3.71), we have
S E®:5) = (| E D) < [\ EB:b) = aEB:D) 67
. =i
Thus, (3.70) gives
ﬁ Z(E'(b); b) C ﬂ Z(E'(); b). (3.73)
- =1
Thus, by (3.69), (3.72) and (3.73), we get
@(Eb);b) C ﬂ Z(E'(b): b),
=1

as was to be shown. m|

Theorem 4. (KKT-Type Necessary Conditions of Optimality ) Let b € Q be an efficient solution for the
(MPIVC) problem. Assume the following:

e The interval-valued functions Fy (k € I) are directionally differentiable at b
e The functions ¢, (n € M), h, (p € S), {; (s € V), and D, (s € V) are directionally differentiable at
b

e The following are convex functions:
- F;;(E; 2) for k E_I
— @, forn € M(b)

— —{1(B) for 6 € Vio(B) U Vo_(B)
~ D(b:) for s € Vao(b) U V(D)
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e The following are linear functions:
- h;(?; ) forpeS )
= {5 (bs-) for ¢ € Vo, (D)

e The following are continuous at b:

— @y forn € M<(b)
— (. fors € V.(b)
— D, forg € Vo(b) U V._(b)

e The (VC-ABCQ) constraint qualification is satisfied at b for (MPIVC).

If A ¢y € relint Z(C;b) : @(co) < 0and h(cy) <0, then A6 € R*, fe R/, E€ RY, y¢ € R’, and yP € R’
( multipliers of Lagrange) satisfying the following conditions:

T J b
DOFT B+ Y e Bre) + Y E (B )=
k=1 n=1 p=1

D V(B + ) YPDL(B;¢) 2 0 Ve € Z(C; ),

¢=1 =1
T J B b )
Z B FU* (b; ) + Z it (B c) + Z & (b;c)-
k=1 n=1 p=1
D VL By + ) yPDLB;¢) 2 0 Ve € Z(C; b), (3.74)
¢=1 ¢=1
fnen(B) = 0. € M, (3.75)
¥L:(b) = 0,6 €V, (3.76)
y?D(b) = 0,5 € V, (3.77)
0>0, i1>0, (3.78)
Y. =0,6 € Vi(b), ¥, 2 0, ¢ € Voo(b) U Vo_(b), ¥- free ¢ € Vo.(b), (3.79)
Y. =0, ¢ € Voo(b) U Vo (b) U V._(b), 7_’? >0, ¢ € Vio(b) U Voo(b) (3.80)

After establishing the necessary convexity assumptions, we demonstrate that the KKT conditions of
optimality are sufficient for solving the directional differential multiobjective optimization model with
vanishing constraints and interval values. Presently, we confirm the sufficiency of these conditions for
the directional differential multiobjective optimization model under suitable convexity assumptions.
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Theorem 5. Let b be a feasible solution of (MPIVC) satisfying the KKT-type necessary optimality
conditions (3.46)—(3.52) at b with Lagrange multipliers:

6eR, £€cRY, ¥ R, y” eR".
Furthermore, assume the following convexity properties on €.

e [, are interval-valued convex functions for all k € 1
@y, are convex for alln € M(b)

h, are convex for allp € S*(b) :=f{p € S : &, > 0}
—h, are convex forallp € S~(b) :={p €S : &, <0}
—{. are convex for all ¢ € Voo(b) U Vi, (D)

D are convex for all ¢ € V.o(b)

Then b is a weak Pareto solution for (MPIVC).

Proof. We proceed by considering a proof by contradiction. To do this, we will assume the opposite: b
is not a weak Pareto solution in (MPIVC), and explore the implications of this assumption. Definition 6
provides b € Q such that

F(b) <pu F(b). (3.81)

If we suppose that F is an interval-valued convex mapping at b on Q, the Proposition 1 implies that
inequality (3.81) yields

F*b;b—D) < 0,k = 1,...,7,
FU*(b;b-b) < 0,k=1,..,. (3.82)

since 6 > 0, the inequality (3.82) gives
D OF (bib-b) <0,
k=1

> 0F*(b;b-b) <. (3.83)

k=1

From b, b € Q and the definition of M(b), it follows that

(D) < @y(b) = 0,17 € M(b), (3.84)

hp() = hy(b) = 0,p € S, (3.85)

~ (D) £ ~L(b) = 0,5 € Vio(b) U Vo-(b) U Vo (D), (3.86)
D (b) £ D(b) = 0,5 € V,o(b). (3.87)
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By assumption, ¢,, n € M(b), hy,p € ST(b) ={p €S : & >0}, —h,, pe S () ={peS :§ <
0}, —Zer s € Voo(b)U Vio(b)U Vi, (b), D, s € V,o(b), are convex on Q. Then by Definition 1, inequalities

(3.84) to (3.87) imply, respectively,

¢y (b;b—b) £0,n € M(D),
hy(b;b —b) < 0,p € S*(b),
—h,(b;b—b) £ 0,p €S (D),

- (b b—b) 20,5 € Voo(b) U Vo_(b) U Vo, (b),

D (b;b —Db) < 0,5 € V,o(b).

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

Considering that i1, = 0, 17 € M<(b), Ep =0, s¢ STb)US (D), )‘/f. =0,¢eV.(b), ¥’ =0, ¢c¢

Voo(b) U Vi (b) U V(D) U V,_(b), we get,

> ¥2D%(b;b - b) < 0.
¢=1
Combining (3.83) and (3.93)—(3.96), we get the inequalities
r j b
D OF(B:b=b)+ Y fue(b;b—b)+ Y Ehi(B;b—b)
k=1 n=1 p=1

= > VL Bsb-b)+ Y yPDE(bb - b) <0,
s=1 ¢=1

T

k=1 n=1

= > YL bib =B+ ) yPDi(B;b-b) <0
s=1 ¢=1

J b
OF* (b; b - b) + Z,ango;(l_o; b—-b)+ Z &1 (b;b - b)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

holds. Which contradicts KKT conditions (3.46). Thus, b is weakly Pareto-optimal for (MPIVC). O
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To establish the KKT type necessary conditions of optimality required for a feasible solution b to
qualify as a Pareto solution in (MPIVC), we need to enforce strict convexity on the objective functions.

Theorem 6. Let b bet a feasible solution in (MPIVC) and KKT type necessary optimality condition
(3.46) to (3.52) be satisfied at b for (MPIVC) with Lagrange multipliers 6 € R, ji € Ri, EeRY, ¥
and yP € R’. Furthermore, we suppose that Fy, k € I are strictly convex interval valued functions on
Q¢ 1 €MD), hy, peST(B)={p€eS: & >0}, —h,, p € S ) :={pes: & <0l -4, s€
Voo(b) U Vo_(b) U Vi (b), D, s € Vio(b), are convex on . Then b is Pareto solution in (MPIVC).

Now, we demonstrate the findings presented in the paper with an example.

Example 1. Consider the (MPIVCI1) problem
V- minimize
F(b) =(F1(b),F2(b))
=([FT. FYL.IF5.F5D) = (Uil = 2Ibal, 1b1] + |b2), [=1b1] + 21bal, |b1] + b2]]),
41(D) = by +|ba| 2 0,
L1(b)G1(b) = (b1 + |b2[)(=D1 — |by]) £ 0.

Note that
Q = {(b1,by) €R? : by + |by] 2 0, (by + |bal)(=by — |by]) < 0},b = (0,0)

is a feasible solution in (MPIVC1) and Vyy(b) = 1. Now, we define the sets E'(b), E*(b), E(b),
E(b). We get

E'(b) = {(b1,by) € R? : [=|by| + 2|bs), 11| + 21bal] Z1iy O, £1(b) = by + 2] 2 0,
G1(D)G(D) = (by + |b2)(=by = |b2]) = 0},
E*(b) = {(b1,b2) € R? < [Iby] = 2lbal, Ib1| + b2l Z1uy 0, £1(b) = by +1ba| 2 0,
§1(D)G(D) = (by + |b2)(=by = |ba]) = 0} ;
E(b) = {(b1,b2) € R : [=|by| + 2Ibal, |b1| + 2Ibal] <11y 0, [11] = 2o, |b1] + [b2] <10 O,
§1(D) = by +|b2| 2 0,51(D)G1(D) = (by + |b2])(=by = |b2]) = 0} )
Eb) = {(b1,b2) € R : [=|by| + 2Ibal, by + 2Ibal] Zu O, [Ib1] = 2Ibal, 11| + 2] 10 0,
§1(D) = by +|by| 2 0,G1(D) = (=by = |b2]) £ 0}

Additionally, using Definition 5 alongside the almost linearizing cone definitions (3.2) and (3.7), we
can deduce the following

Z(E'(b); b) = {(c15¢2) € R : [=ley| + 2leals ¢1 + 2leal] Spv 0561 + [eal 2 0,

(c1 + leaD)(=¢1 = leal) £ 0},

Z(E*(D); D) = {(c15¢2) € R? : [le1| = 2leals leal + leall Sru Os¢1 + leal 20,

(c1 + leal)(=c1 = leal) = 04,

@(E(b); b) = {(c1;¢2) € R? < [=eg| + 2leal; ler| + 2leal] S1v 0, [leil = 2leal, lei| + lea] S10 0,

c1 + ezl 2 04,
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@(E(b); b) = {(c1;¢2) € R? : [—|ey| + 2leal; el + 2leall v 0, (el = 2leal, el + lea] <1y O,
¢+l 20,—c; =] £ 0}

The example illustrates that VC-ABCQ is weaker than the classical ABCQ. At the point (0, 0) in
problem MPVC1, ABCQ fails because the linearized cone is not contained within the tangent cone.
However, VC-ABCQ still holds true because the modified linearized cone for vanishing constraints
meets the necessary inclusion. This demonstrates that VC-ABCQ can be applied in situations where
ABCQ does not, making it more suitable for handling problems with vanishing constraints.

The KKT type necessary optimality conditions (3.74)—(3.80) are fulfilled at b with the Lagrange
multipliers 6, = 1,6, = 1, )‘/{ = 1,7 = —1. Furthermore, we emphasize that all functions in MPIVC1
are convex on €, and the objective F is both strictly convex and interval-valued on Q. A key limitation
of existing literature (see, e.g., [46]) is that its optimality conditions do not hold for problem MPIVC1
with vanishing constraints. The absence of suitable constraint qualifications renders these earlier results
invalid in our context.

4. Conclusions

This study explores a new class of nonsmooth multiobjective mathematical programming problems
in which functions are directionally differentiable and the objective function is interval-valued. We
establish necessary and sufficient optimality conditions for the considered optimization problem.
The Abadie constraint qualification (ABCQ) is not guaranteed to hold in multicriteria optimization
frameworks of this type. To overcome this limitation, a refined version of the ABCQ is proposed. Under
suitable convexity assumptions and directional differentiability, KKT necessary optimality criteria are
demonstrated to act as sufficient conditions for the studied class of optmization problem.

This research represents a significant advancement in multiobjective optimization by developing
optimality conditions for a new category of problems: directionally differentiable, interval-valued
problems with vanishing constraints. The key innovation of this work is its integration of three
challenging aspects-uncertainty (through interval values), nonsmoothness (through directional
differentiability), and complex constraint structures (via vanishing constraints)-into a unified framework.
By refining ABCQ and establishing KKT conditions in these contexts, the study offers a robust
theoretical foundation for future research.

However, many important questions remain unanswered. For instance, how can we design efficient
algorithms to tackle these problems? How stable are the solutions when there are slight changes in the
input data? Additionally, can this approach be extended to more general scenarios, such as set-valued,
fuzzy, or stochastic objective functions? Future research should also explore second-order conditions,
investigate duality gaps, and apply these theories to real-world problems to enhance their practicality
and utility.
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