In this scholarly article, we analyze the results of error estimates and phenomena of superconvergence associated with the mixed covolume approximation method, which is applied to a particular class of linear elliptic optimal control problems. The control variable is discretized using piecewise constant functions. Additionally, the state and the costate variables are both approximated using the lowest-order Raviart–Thomas ($ RT_0 $) mixed finite element method. First, mixed covolume approximation of optimal control problems is constructed. Second, "a priori error estimations" for each variable are computed. Third, a superconvergence result is established, and it is proved that there exists a second-order superconvergence relationship between the centroid interpolation of variable $ u $ and its numerical solution. Finally, two carefully designed numerical examples are presented to validate the reliability of the theoretical findings, providing concrete evidence to corroborate the above results and strengthen the coherence of the study's conclusions.
Citation: Chunjuan Hou, Yanping Chen, Jian Huang, Jiawang Liu, Fangfang Qin. Error estimates and superconvergence of mixed covolume approximations for elliptic optimal control problems[J]. Journal of Industrial and Management Optimization, 2026, 22(2): 832-859. doi: 10.3934/jimo.2026030
In this scholarly article, we analyze the results of error estimates and phenomena of superconvergence associated with the mixed covolume approximation method, which is applied to a particular class of linear elliptic optimal control problems. The control variable is discretized using piecewise constant functions. Additionally, the state and the costate variables are both approximated using the lowest-order Raviart–Thomas ($ RT_0 $) mixed finite element method. First, mixed covolume approximation of optimal control problems is constructed. Second, "a priori error estimations" for each variable are computed. Third, a superconvergence result is established, and it is proved that there exists a second-order superconvergence relationship between the centroid interpolation of variable $ u $ and its numerical solution. Finally, two carefully designed numerical examples are presented to validate the reliability of the theoretical findings, providing concrete evidence to corroborate the above results and strengthen the coherence of the study's conclusions.
| [1] | J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Berlin: Springer, 1971. |
| [2] |
J. Lin, Y. Chen, Y. Huang, A finite element method for elliptic optimal control problem in the unbounded domain, J. Appl. Math. Comput., 71 (2025), 4375–4396. https://doi.org/10.1007/s12190-025-02381-8 doi: 10.1007/s12190-025-02381-8
|
| [3] |
R. Li, W. B. Liu, N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33 (2007), 155–182. https://doi.org/10.1007/s10915-007-9147-7 doi: 10.1007/s10915-007-9147-7
|
| [4] |
X. Lin, Y. Chen, Y. Huang, A priori and a posteriori error analysis of hp spectral element discretization for optimal control problems with elliptic equations, J. Comput. Appl. Math., 423 (2023), 114960. https://doi.org/10.1016/j.cam.2022.114960 doi: 10.1016/j.cam.2022.114960
|
| [5] |
Y. Chen, Y. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206–221. https://doi.org/10.1007/s10915-008-9258-9 doi: 10.1007/s10915-008-9258-9
|
| [6] |
C. Meyer, A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970–985. https://doi.org/10.1137/S0363012903431608 doi: 10.1137/S0363012903431608
|
| [7] | D. Yang, Y. Chang, W. Liu, A priori error estimates and superconvergence analysis for an optimal control problems of bilinear type, J. Comput. Math., 4 (2008), 471–487. https://www.jstor.org/stable/43693457 |
| [8] |
N. Yan, Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations, Appl. Math., 54 (2009), 267–283. https://doi.org/10.1007/s10492-009-0017-5 doi: 10.1007/s10492-009-0017-5
|
| [9] |
Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77 (2008), 1269–1291. https://doi.org/10.1090/S0025-5718-08-02104-2 doi: 10.1090/S0025-5718-08-02104-2
|
| [10] |
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite element methods, Inter. J. Numer. Meths. Eng., 75 (2008), 881–898. https://doi.org/10.1002/nme.2272 doi: 10.1002/nme.2272
|
| [11] |
Y. Chen, Y. Huang, W. B. Liu, N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42 (2010), 382–403. https://doi.org/10.1007/s10915-009-9327-8 doi: 10.1007/s10915-009-9327-8
|
| [12] |
T. Hou, C. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comp. Math. Appl., 74 (2017), 714–726. https://doi.org/10.1016/j.camwa.2017.05.021 doi: 10.1016/j.camwa.2017.05.021
|
| [13] |
T. Hou, H. Leng, T. Luan, Two-grid methods for $P_0^2$-$P_1$ mixed finite element approximation of general elliptic optimal control problems with low regularity, Numer. Meth. Part. Differ. Equ., 36 (2020), 1184–1202. https://doi.org/10.1002/num.22471 doi: 10.1002/num.22471
|
| [14] |
A. Rösch, B. Vexler, Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing, SIAM J. Numer. Anal., 44 (2006), 1903–1920. https://doi.org/10.1137/050637364 doi: 10.1137/050637364
|
| [15] |
X. Yang, W. Wang, Z. Zhou, H. X. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
|
| [16] |
T. Liu, H. Zhang, X. Yang, The BDF2-ADI compact difference scheme on graded meshes for the three-dimensional PIDEs with multi-term weakly singular kernels, Numer. Algorithms, 2025, 1–34. https://doi.org/10.1007/s11075-025-02246-y doi: 10.1007/s11075-025-02246-y
|
| [17] |
J. Zhang, X. Yang, S. Wang, A three-layer FDM for the Neumann initial-boundary value problem of 2D Kuramoto-Tsuzuki complex equation with strong nonlinear effects, Commun. Nonlinear Sci. Numer. Simul., (2025), 109255. https://doi.org/10.1016/j.cnsns.2025.109255 doi: 10.1016/j.cnsns.2025.109255
|
| [18] |
Z. Zhang, X. Yang, S. Wang, The alternating direction implicit difference scheme and extrapolation method for a class of three dimensional hyperbolic equations with constant coefficients, Electron. Res. Arch., 33 (2025), 3348–3377. https://doi.org/10.3934/era.2025148 doi: 10.3934/era.2025148
|
| [19] |
T. F. Russell, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22 (1985), 970–1013. https://doi.org/10.1137/0722059 doi: 10.1137/0722059
|
| [20] |
X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
|
| [21] |
X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
|
| [22] |
X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
|
| [23] |
J. Douglas, E. J. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44 (1985), 39–52. https://doi.org/10.1090/S0025-5718-1985-0771029-9 doi: 10.1090/S0025-5718-1985-0771029-9
|
| [24] | M. Fortin, F. Brezzi, Mixed and Hybrid Finite Element Methods, New York: Springer-Verlag, 1991. https://doi.org/10.1007/978-1-4612-3172-1 |
| [25] |
S. Yang, Z. W. Jiang, Mixed covolume method for parabolic problems on triangular grids, Appl. Math. Comput., 215 (2009), 1251–1265. https://doi.org/10.1016/j.amc.2009.06.068 doi: 10.1016/j.amc.2009.06.068
|
| [26] | P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston-London-Melbourne, 1985. https://doi.org/10.1137/1.9781611972030 |
| [27] |
J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68 (1994), 311–324. https://doi.org/10.1007/s002110050064 doi: 10.1007/s002110050064
|