Research article Special Issues

Full-scale load tests to assess the bearing capacity of peat at Zegveld

  • Received: 12 April 2025 Revised: 10 August 2025 Accepted: 01 September 2025 Published: 16 October 2025
  • Great lengths of railway embankments are constructed on organic clay and peat layers, which are highly susceptible to significant deformations under train loading. The growing demand for transportation necessitates a re-evaluation of the stability of railway embankments constructed on peat. Current national railway stability design codes require the undrained shear strength of soils as a key strength parameter. However, the intrinsic heterogeneity of peat, coupled with the presence of fibres and peat's exceptionally high friction angle, complicates laboratory-scale characterisation. Consequently, full-scale field load tests are increasingly essential as critical benchmarks to validate laboratory findings. This study introduces a method for conducting load tests on peat soil at an instrumented benchmark peatland site in Zegveld, the Netherlands. The site setup is described in detail, and selected results from static load tests and in situ probe tests are presented and correlated. These results are then used to conduct a preliminary analysis of the in situ operational shear strength of the peat layer.

    Citation: J Zhang, T de Gast, C Zwanenburg, KG Gavin. Full-scale load tests to assess the bearing capacity of peat at Zegveld[J]. AIMS Geosciences, 2025, 11(4): 828-845. doi: 10.3934/geosci.2025035

    Related Papers:

  • Great lengths of railway embankments are constructed on organic clay and peat layers, which are highly susceptible to significant deformations under train loading. The growing demand for transportation necessitates a re-evaluation of the stability of railway embankments constructed on peat. Current national railway stability design codes require the undrained shear strength of soils as a key strength parameter. However, the intrinsic heterogeneity of peat, coupled with the presence of fibres and peat's exceptionally high friction angle, complicates laboratory-scale characterisation. Consequently, full-scale field load tests are increasingly essential as critical benchmarks to validate laboratory findings. This study introduces a method for conducting load tests on peat soil at an instrumented benchmark peatland site in Zegveld, the Netherlands. The site setup is described in detail, and selected results from static load tests and in situ probe tests are presented and correlated. These results are then used to conduct a preliminary analysis of the in situ operational shear strength of the peat layer.



    加载中


    [1] Prorail, Ontwerpvoorschrift—Baanlichaam en Geotechniek. OVS00056-7.1. Dutch. 2016. Available from: https://www.prorail.nl/.
    [2] Prorail, Richtlijn—Beoordelen constructieve veiligheid bestaande Baanlichamen. RLN00414-1. Dutch. 2016. Available from: https://www.prorail.nl/.
    [3] Gavin K, Adekunte A, O'Kelly B (2009) A field investigation of vertical footing response on sand. Proc Inst Civ EngGeotech Eng 162: 257–267. https://doi.org/10.1680/geng.2009.162.5.257 doi: 10.1680/geng.2009.162.5.257
    [4] de Gast T (2019) Dykes and embankments: a geostatistical analysis of soft terrain, PhD Thesis. Delft University of Technology.
    [5] Gavin K, Igoe D (2021) A field investigation into the mechanisms of pile ageing in sand. Géotechnique 71: 120–131. https://doi.org/10.1680/jgeot.18.P.235 doi: 10.1680/jgeot.18.P.235
    [6] L'Heureux J-S, Lindgård A, Emdal A, et al. (2019) The Tiller-Flotten research site: Geotechnical characterisation of a very sensitive clay deposit. AIMS Geosci 5: 831–867. https://doi.org/10.3934/geosci.2019.4.831 doi: 10.3934/geosci.2019.4.831
    [7] Blaker Ø, Carroll R, Paniagua P, et al. (2019) Halden research site: geotechnical characterisation of a post glacial silt. AIMS Geosci 5: 184–234. https://doi.org/10.3934/geosci.2019.2.184 doi: 10.3934/geosci.2019.2.184
    [8] Boylan N, Long M, Mathijssen FAJM (2011) In situ strength characterisation of peat and organic soil using full-flow penetrometers. Can Geotech J 48: 1085–1099. https://doi.org/10.1139/t11-023 doi: 10.1139/t11-023
    [9] Muraro S, Jommi C (2021) Experimental determination of the shear strength of peat from standard undrained triaxial tests: correcting for the effects of end restraint. Géotechnique 71: 76–87. https://doi.org/10.1680/jgeot.18.P.346 doi: 10.1680/jgeot.18.P.346
    [10] Zwanenburg C, Jardine RJ (2015) Laboratory, in situ and full-scale load tests to assess flood embankment stability on peat. Géotechnique 65: 309–326. https://doi.org/10.1680/geot.14.P.257 doi: 10.1680/geot.14.P.257
    [11] Long M, Boylan N (2012) In Situ Testing of Peat—a Review and Update on Recent Developments. Geotech Eng J SEAGS AGSSEA 43: 41–55. https://doi.org/10.14456/seagj.2012.5 doi: 10.14456/seagj.2012.5
    [12] Zwanenburg C, Erkens G (2019) Uitdam, the Netherlands: test site for soft fibrous peat. AIMS Geosci 5: 804–830. https://doi.org/10.3934/geosci.2019.4.804 doi: 10.3934/geosci.2019.4.804
    [13] Zwanenburg C, Den Haan EJ, Kruse GAM, et al. (2012) Failure of a trial embankment on peat in Booneschans, the Netherlands. Géotechnique 62: 479–490. https://doi.org/10.1680/geot.9.P.094 doi: 10.1680/geot.9.P.094
    [14] Lehtonen VJ, Meehan CL, Länsivaara TT, et al. (2015) Full-scale embankment failure test under simulated train loading. Géotechnique 65: 961–974. https://doi.org/10.1680/jgeot.14.P.100 doi: 10.1680/jgeot.14.P.100
    [15] Simonini P, Mangraviti V (2025) Comprehensive analysis of test sites for soil stiffness characterisation in the Venice lagoon. AIMS Geosci 11: 298–317. https://doi.org/10.3934/geosci.2025013 doi: 10.3934/geosci.2025013
    [16] Viana da Fonseca A, Ferreira C, Ramos C, et al. (2019) The geotechnical test site in the greater Lisbon area for liquefaction characterisation and sample quality control of cohesionless soils. AIMS Geosci 5: 325–343. https://doi.org/10.3934/geosci.2019.2.325 doi: 10.3934/geosci.2019.2.325
    [17] Pineda JA, Kelly RB, Suwal L, et al. (2019) The Ballina soft soil Field Testing Facility. AIMS Geosci 5: 509–534. https://doi.org/10.3934/geosci.2019.3.509 doi: 10.3934/geosci.2019.3.509
    [18] Massop HTL, Hessel R, van den Akker JJH, et al. (2024) Monitoring long-term peat subsidence with subsidence platens in Zegveld, the Netherlands. Geoderma 450: 117039. https://doi.org/10.1016/j.geoderma.2024.117039 doi: 10.1016/j.geoderma.2024.117039
    [19] Landva AO (2007) Characterisation of Escuminac peat and construction on peatland. In: Tan TS, Phoon KK, Hight DW, et al. Eds., Characterisation and Engineering Properties of Natural Soils, Taylor & Fransic Group London, 2135–2191.
    [20] Hobbs NB (1986) Mire morphology and the properties and behaviour of some British and foreign peats. Q J Eng Geol Hydrogeol 19: 7–80. https://doi.org/10.1144/GSL.QJEG.1986.019.01.02 doi: 10.1144/GSL.QJEG.1986.019.01.02
    [21] Konstadinou (2024) Effect of cyclic preloading on the generation of excess pore water pressure and strain accumulation for cohesive soils, experimental testing for RESET factual report, Deltares report nr 11208747–003.
    [22] Deltares, TKI verbeteren zettingsprognose, incremental loading oedometer tests Zegveld NOBV, Deltares report nr 11203922–004–GEO–0003. 2021.
    [23] NEN, NEN-EN-ISO 17892-5. Geotechnical investigation and testing—Laboratory testing of soil—Part 5: Incremental loading oedometer test. Delft, the Netherlands, 2017. Available from: https://www.nen.nl/.
    [24] Den Haan EJ, Kruse GAM (2007) Characterisation and engineering properties of Dutch peats. Characterisation and Engineering Properties of Natural Soils, London Taylor & Francis, 3: 2101–2133.
    [25] Mesri G, Ajlouni M (2007) Engineering properties of fibrous peats. J Geotech Geoenviron Eng 133: 850–866. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850) doi: 10.1061/(ASCE)1090-0241(2007)133:7(850)
    [26] Casagrande A, Fadum RE (1940) Notes on soil testing for engineering purposes. Harvard Graduate School of Engineering.
    [27] ASTM Committee D-18 on Soil and Rock, Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International West Conshohocken, USA. 2011.
    [28] Noorlandt R, Drijkoningen G, Dams J, et al. (2015) A seismic vertical vibrator driven by linear synchronous motors. Geophysics 80: 57–67. https://doi.org/10.1190/geo2014-0295.1 doi: 10.1190/geo2014-0295.1
    [29] Lunne T, Powell JJM, Robertson PK (2002) Cone Penetration Testing in Geotechnical Practice, CRC Press.
    [30] Robertson PK, Cabal KL (2010) Estimating soil unit weight from CPT. 2nd International symposium on cone penetration testing, California, USA: Gregg Drilling & Testing Inc, 2–40.
    [31] Lengkeek A (2024) CPT based classification with focus on organic soils. 7th International Conference on Geotechnical and Geophysical Site Characterisation, Barcelona, 18–21. https://doi.org/10.23967/isc.2024.154
    [32] NEN, NEN EN-ISO 22476-1: 2012, IDT Geotechnical investigation and testing—Field testing—Part1: electrical cone and piezocone penetration test. Delft, the Netherlands, 2013. Available from: https://www.nen.nl/.
    [33] Rijkswaterstaat, Schematiseringshandleiding macrostabiliteit (Version 4.0). Ministerie van Infrastructuur en Milieu. In Dutch. 2021. Available from: https://iplo.nl/@205756/schematiseringshandleiding-macrostabiliteit/.
    [34] Schneider JA, Randolph MF, Mayne PW, et al. (2008) Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters. J Geotech Geoenviron Eng 134: 1569–1586. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:11(1569) doi: 10.1061/(ASCE)1090-0241(2008)134:11(1569)
    [35] Vesterberg B, Mattias A, Burman F, et al. (2025) CiPPT—A new in situ method for sounding and strength determination in peat. AIMS Geosci 11: 558–576. https://doi.org/10.3934/geosci.2025024 doi: 10.3934/geosci.2025024
    [36] Terzaghi K (1943) Theoretical soil mechanics, John Wiley & Sons, Inc., New York.
    [37] Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12: 155–164. https://doi.org/10.1063/1.1712886 doi: 10.1063/1.1712886
    [38] Zhang WW, Zhu G, Wang R, et al. (2009) Solution charts for the consolidation of circular footings embedded in a finite stratum. Can Geotech J 46: 708–718. https://doi.org/10.1139/T09‑005 doi: 10.1139/T09‑005
    [39] Georgiadis K (2010) Undrained Bearing Capacity of Strip Footings on Slopes. J Geotech Geoenviron Eng 136: 677–685. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000269 doi: 10.1061/(ASCE)GT.1943-5606.0000269
    [40] Houlsby GT, Martin CM (2003) Undrained bearing capacity factors for conical footings on clay. Geotechnique 53: 513–520. https://doi.org/10.1680/geot.53.5.513.37507 doi: 10.1680/geot.53.5.513.37507
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(410) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog