West African coasts are experiencing a significant retreat on average, albeit highly variable according to sections. Shoreline changes were analyzed in ten sections along the Gambian coast between 2011 and 2023. The results indicated a predominant retreat, ranging from 1.27 to 4.51 m per year, with the most severe retreat occurring in the northern part of the country. However, localized accretion zones were also detected, where the coastline has expanded by 0.54 m per year. Coastal vulnerability is linked not only to the intensity of erosive processes but also to the degree of urbanization. In areas with severe retreat but limited construction, sea advance forms new beaches inland, but in developed areas, it leads to the destruction of infrastructure and buildings, causing major social impacts. Coastal planning must be adjusted to accommodate the future evolution of the shoreline, enabling beaches to shift inland. While this may result in land loss, it will enable the preservation of beaches, a vital tourism resource for Gambia's economy.
Citation: Álvaro Enríquez-de-Salamanca. Coastal dynamics and risk assessment in the Gambia[J]. AIMS Geosciences, 2025, 11(4): 806-827. doi: 10.3934/geosci.2025034
West African coasts are experiencing a significant retreat on average, albeit highly variable according to sections. Shoreline changes were analyzed in ten sections along the Gambian coast between 2011 and 2023. The results indicated a predominant retreat, ranging from 1.27 to 4.51 m per year, with the most severe retreat occurring in the northern part of the country. However, localized accretion zones were also detected, where the coastline has expanded by 0.54 m per year. Coastal vulnerability is linked not only to the intensity of erosive processes but also to the degree of urbanization. In areas with severe retreat but limited construction, sea advance forms new beaches inland, but in developed areas, it leads to the destruction of infrastructure and buildings, causing major social impacts. Coastal planning must be adjusted to accommodate the future evolution of the shoreline, enabling beaches to shift inland. While this may result in land loss, it will enable the preservation of beaches, a vital tourism resource for Gambia's economy.
| [1] |
Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Change 64: 41–58. https://doi.org/10.1023/B:CLIM.0000024690.32682.48 doi: 10.1023/B:CLIM.0000024690.32682.48
|
| [2] |
Mentaschi L, Vousdoukas MI, Pekel JF, et al. (2018) Global long-term observations of coastal erosion and accretion. Sci Rep 8: 12876. https://doi.org/10.1038/s41598-018-30904-w doi: 10.1038/s41598-018-30904-w
|
| [3] |
Luijendijk A, Hagenaars G, Ranasinghe R, et al. (2018) The state of the world's beaches. Sci Rep 8: 6641. https://doi.org/10.1038/s41598-018-24630-6 doi: 10.1038/s41598-018-24630-6
|
| [4] |
Amrouni O, Hzami A, Heggy E (2019) Photogrammetric assessment of shoreline retreat in North Africa: Anthropogenic and natural drivers. ISPRS J Photogramm Remote Sens 157: 73–92. https://doi.org/10.1016/j.isprsjprs.2019.09.001 doi: 10.1016/j.isprsjprs.2019.09.001
|
| [5] |
Diadhiou YB, Ndour A, Niang I, et al. (2016) Étude comparative de l'évolution du trait de côte sur deux flèches sableuses de la Petite Côte (Sénégal): cas de Joal et de Djiffère. Norois 240: 25–42. https://doi.org/10.4000/norois.5935 doi: 10.4000/norois.5935
|
| [6] | Bakhoum PW, Niang I, Sambou B, et al. (2018) Une presqu'île en érosion côtière? Dakar, la capitale sénégalaise face à l'avancée de la mer dans le contexte du changement climatique. Environ Water Sci Public Heath Territ Intell 2: 91–109. |
| [7] |
Ndour A, Laïbi RA, Sadio M, et al. (2018) Management strategies for coastal erosion problems in west Africa: Analysis, issues, and constraints drawn from the examples of Senegal and Benin. Ocean Coast Manage 156: 92–106. https://doi.org/10.1016/j.ocecoaman.2017.09.001 doi: 10.1016/j.ocecoaman.2017.09.001
|
| [8] |
Enríquez-de-Salamanca Á (2020) Evolution of coastal erosion in Palmarin (Senegal). J Coast Conserv 24: 25. https://doi.org/10.1007/s11852-020-00742-y doi: 10.1007/s11852-020-00742-y
|
| [9] |
Koulibaly CT, Ayoade JO (2021) The application of GIS and remote sensing in a spatiotemporal analysis of coastline retreat in Rufisque, Senegal. Geomatics Environ Eng 15: 55–80. https://doi.org/10.7494/geom.2021.15.3.55 doi: 10.7494/geom.2021.15.3.55
|
| [10] |
Sadio M, Sakho I, Samou M, et al. (2022) Multi-decadal dynamics of the Saloum River delta mouth in climate change context. J Afr Earth Sci 187: 104451. https://doi.org/10.1016/j.jafrearsci.2022.104451 doi: 10.1016/j.jafrearsci.2022.104451
|
| [11] |
Thior M, Sané T, Dièye EB, et al. (2019) Coastline dynamics of the northern Lower Casamance (Senegal) and southern Gambia littoral from 1968 to 2017. J Afr Earth Sci 160: 103611. https://doi.org/10.1016/j.jafrearsci.2019.103611 doi: 10.1016/j.jafrearsci.2019.103611
|
| [12] |
Appeaning Addo K, Walkden M, Mills JP (2008) Detection, measurement and prediction of shoreline recession in Accra, Ghana. ISPRS J Photogramm Remote Sens 63: 543–558. https://doi.org/10.1016/j.isprsjprs.2008.04.001 doi: 10.1016/j.isprsjprs.2008.04.001
|
| [13] |
Jonah FE, Mensah EA, Edziyie RE et al. (2016) Coastal erosion in Ghana: causes, policies, and management. Coast Manag 44: 116–130. https://doi.org/10.1080/08920753.2016.1135273 doi: 10.1080/08920753.2016.1135273
|
| [14] |
Guerrera F, Martín-Martín M, Tramontana M, et al. (2021) Shoreline changes and coastal erosion: the case study of the coast of Togo (Bight of Benin, West Africa Margin). Geosciences 11: 40. https://doi.org/10.3390/geosciences11020040 doi: 10.3390/geosciences11020040
|
| [15] |
Konko Y, Umaru ET, Nimon P, et al. (2024) Climate change and coastal erosion hotspots in West Africa: The case of Togo. Reg Stud Mar Sci 77: 103691. https://doi.org/10.1016/j.rsma.2024.103691 doi: 10.1016/j.rsma.2024.103691
|
| [16] |
De Longueville F, Hountondji YC, Assogba L, et al. (2020) Perceptions of and responses to coastal erosion risks: The case of Cotonou in Benin. Int J Disaster Risk Reduct 51: 101882. https://doi.org/10.1016/j.ijdrr.2020.101882 doi: 10.1016/j.ijdrr.2020.101882
|
| [17] | Wöppelmann G, Martín B, Créach R (2008) Tide gauge records at Dakar, Senegal (Africa): towards a 100-years consistent sea-level time series? European Geophysical Union, General Assembly 2008, Vienna, Austria, 13–18. |
| [18] | Nicholls RJ, Hanson SE, Lowe JA, et al. (2011) Constructing sea-level scenarios for impact and adaptation assessment of coastal area: a guidance document. Geneva: Intergovernmental Panel on Climate Change (IPCC). |
| [19] |
Sagoe-Addy K, Appeaning Addo K (2013) Effect of predicted sea level rise on tourism facilities along Ghana's Accra coast. J Coast Conserv 17: 155–166. https://doi.org/10.1007/s11852-012-0227-y doi: 10.1007/s11852-012-0227-y
|
| [20] |
Tano RA, Aman A, Kouadio KY, et al. (2016) Assessment of the Ivorian coastal vulnerability. J Coast Res 32: 1495–1503. https://doi.org/10.2112/JCOASTRES-D-15-00228.1 doi: 10.2112/JCOASTRES-D-15-00228.1
|
| [21] |
Aman A, Tano RA, Toualy E, et al. (2019) Physical forcing induced coastal vulnerability along the Gulf of Guinea. J Environ Prot 10: 1194–1211. https://doi.org/10.4236/jep.2019.109071 doi: 10.4236/jep.2019.109071
|
| [22] | Schaeffer M, Baarsch F, Balo G, et al. (2015) Africa's adaptation gap 2: bridging the gap—mobilising sources. Technical Report. Nairobi: UNEP. |
| [23] | Blivi A (2000) Vulnérabilité de la côte togolaise à l'élévation du niveau marin: une analyse de prévision et d'impact. Patrimoines 10: 643–660. Available from: https://aquadocs.org/items/f587fb8e-d006-45aa-bcf7-82aff2b2b997. |
| [24] | Dossou KMR, Gléhouenou-Dossou B (2007) The vulnerability to climate change of Cotonou (Benin): the rise in sea level. Environ Urban 19: 65–79. |
| [25] |
Bevacqua A, Yu D, Zhang Y (2018) Coastal vulnerability: evolving concepts in understanding vulnerable people and places. Environ Sci Policy 82: 19–29. https://doi.org/10.1016/j.envsci.2018.01.006 doi: 10.1016/j.envsci.2018.01.006
|
| [26] |
Hadipour V, Vafaie F, Deilami K (2020) Coastal flooding risk assessment using a GIS-based spatial multi-criteria decision analysis approach. Water 12: 2379. https://doi.org/10.3390/w12092379 doi: 10.3390/w12092379
|
| [27] |
Yahia Meddah R, Ghodbani T, Senouci R, et al. (2023) Estimation of the coastal vulnerability index using multi-criteria decision making: the coastal social–ecological system of Rachgoun, Western Algeria. Sustainability 15: 12838. https://doi.org/10.3390/su151712838 doi: 10.3390/su151712838
|
| [28] |
Alcántara-Carrió J, García Echavarría L, Jaramillo-Vélez A (2024) Is the coastal vulnerability index a suitable index? Review and proposal of alternative indices for coastal vulnerability to sea level rise. Geo-Mar Lett 44: 8. https://doi.org/10.1007/s00367-024-00770-9 doi: 10.1007/s00367-024-00770-9
|
| [29] |
Marzouk M, Azab S (2024) Modeling climate change adaptation for sustainable coastal zones using GIS and AHP. Environ Monit Assess 196: 147. https://doi.org/10.1007/s10661-023-12287-2 doi: 10.1007/s10661-023-12287-2
|
| [30] |
Arda T, Bayrak OC, Uzar M (2025) Analyzing coastal vulnerability using analytic hierarchy process and best–worst method: a case study of the Marmara Gulf Region. Arab J Sci Eng 50: 1851–1869. https://doi.org/10.1007/s13369-024-09128-w doi: 10.1007/s13369-024-09128-w
|
| [31] |
Hamid AIA, Din AHM, Abdullah NM, et al. (2021) Exploring space geodetic technology for physical coastal vulnerability index and management strategies: a review. Ocean Coast Manage 214: 105916. https://doi.org/10.1016/j.ocecoaman.2021.105916 doi: 10.1016/j.ocecoaman.2021.105916
|
| [32] |
Kantamaneni K, Sudha Rani NNV, Rice L, et al. (2019) A systematic review of coastal vulnerability assessment studies along Andhra Pradesh, India: a critical evaluation of data gathering, risk levels and mitigation strategies. Water 11: 393. https://doi.org/10.3390/w11020393 doi: 10.3390/w11020393
|
| [33] |
McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: A tool for coastal managers? Environ Hazards 9: 233–248. https://doi.org/10.3763/ehaz.2010.0052 doi: 10.3763/ehaz.2010.0052
|
| [34] |
Vousdoukas MI, Ranasinghe R, Mentaschi L, et al. (2020) Sandy coastlines under threat of erosion. Nat Clim Chang 10: 260–263. https://doi.org/10.1038/s41558-020-0697-0 doi: 10.1038/s41558-020-0697-0
|
| [35] | Field CB, Barros VR, Dokken DJ, et al. (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. |
| [36] |
Adger WN (2006) Vulnerability. Glob Environ Change 16: 268–281. http://doi.org/10.1016/j.gloenvcha.2006.02.006 doi: 10.1016/j.gloenvcha.2006.02.006
|
| [37] |
Tanim AH, Goharian E, Moradkhani H (2022) Integrated socio-environmental vulnerability assessment of coastal hazards using data-driven and multi-criteria analysis approaches. Sci Rep 12: 11625. https://doi.org/10.1038/s41598-022-15237-z doi: 10.1038/s41598-022-15237-z
|
| [38] |
Bohle HG, Downing TE, Watts MJ (1994) Climate change and social vulnerability. Glob Environ Change 4: 37–48. https://doi.org/10.1016/0959-3780(94)90020-5 doi: 10.1016/0959-3780(94)90020-5
|
| [39] |
Aswani S, Howard JAE, Gasalla MA, et al. (2018) An integrated framework for assessing coastal community vulnerability across cultures, oceans and scales. Clim Dev 11: 365–382. https://doi.org/10.1080/17565529.2018.1442795 doi: 10.1080/17565529.2018.1442795
|
| [40] |
Barbier EB, Hacker SD, Kennedy C, et al. (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81: 169–193. https://doi.org/10.1890/10-1510.1 doi: 10.1890/10-1510.1
|
| [41] |
Temmerman S, Meire P, Bouma T, et al. (2013) Ecosystem-based coastal defence in the face of global change. Nature 504: 79–83. https://doi.org/10.1038/nature12859 doi: 10.1038/nature12859
|
| [42] |
Keck F, Peller T, Alther R, et al. (2025) The global human impact on biodiversity. Nature 641: 395–400. https://doi.org/10.1038/s41586-025-08752-2 doi: 10.1038/s41586-025-08752-2
|
| [43] |
Dada OA, Almar R, Morand P (2024) Coastal vulnerability assessment of the West African coast to flooding and erosion. Sci Rep 14: 890. https://doi.org/10.1038/s41598-023-48612-5 doi: 10.1038/s41598-023-48612-5
|
| [44] |
Tano RA, Aman A, Toualy E, et al. (2018) Development of an integrated coastal vulnerability index for the Ivorian Coast in West Africa. J Environ Prot 9: 1171–1184. https://doi.org/10.4236/jep.2018.911073 doi: 10.4236/jep.2018.911073
|
| [45] |
Burzel A, Dassanayake D, Naulin M, et al. (2011) Integrated flood risk analysis for extreme storm surges (XTREMRISK). Coast Eng Proc 1: 9. https://doi.org/10.9753/icce.v32.management.9 doi: 10.9753/icce.v32.management.9
|
| [46] | Birkmann J (2013) Measuring vulnerability to natural hazards: towards disaster resilient societies, 2nd edition. Tokyo, New York and Paris: United Nations University Press. |
| [47] |
Yin J, Yin Z, Xu S (2013) Composite risk assessment of typhoon-induced disaster for China's coastal area. Nat Hazards 69: 1423–1434. https://doi.org/10.1007/s11069-013-0755-2 doi: 10.1007/s11069-013-0755-2
|
| [48] | Marin FM, Vernaccini L, Poljansek K (2017) Inform—Index for Risk Management Concept and Methodology Report—Version 2017, EUR 28655 EN. Luxembourg: European Union. |
| [49] | Jallow BP, Barrow MKA, Leatherman SP (1996) Vulnerability of the coastal zone of The Gambia to sea level rise and development of response strategies and adaptation options. Clim Res 6: 165–177. |
| [50] |
Bojang A, Oyedotun TDT, Sawa BA, et al. (2023) Spatio-temporal coastline dynamics of the Gambia littoral zone from 1989 to 2019. Geosyst Geoenviron 2: 100194. https://doi.org/10.1016/j.geogeo.2023.100194 doi: 10.1016/j.geogeo.2023.100194
|
| [51] | Dekking FM, Kraaikamp C, Lopuhaä HP, et al. (2005) A modern introduction to probability and statistics. Understanding why and how. London: Springer-Verlag. |
| [52] |
Amuzu J, Jallow BP, Kabo-Bah AT et al. (2018) The climate change vulnerability and risk management matrix for the coastal zone of The Gambia. Hydrology 5: 14. https://doi.org/10.3390/hydrology5010014 doi: 10.3390/hydrology5010014
|
| [53] |
Gomez MLA, Adelegan OJ, Ntajal J, et al. (2020) Vulnerability to coastal erosion in The Gambia: empirical experience from Gunjur. Int J Disaster Risk Reduct 45: 101439. https://doi.org/10.1016/j.ijdrr.2019.101439 doi: 10.1016/j.ijdrr.2019.101439
|
| [54] | Croitoru L, Miranda JJ, Sarraf M (2019) The cost of coastal zone degradation in West Africa: Benin, Côte d'Ivoire, Senegal and Togo. World Bank. Washington DC. |
| [55] |
Amuzu J, Jallow BP, Kabo-Bah AT, et al. (2018) The socio-economic impact of climate change on the coastal zone of The Gambia. Nat Resour Conserv 6: 13–26. https://doi.org/10.13189/nrc.2018.060102 doi: 10.13189/nrc.2018.060102
|
| [56] |
Alves B, Angnuureng DB, Morand P, et al. (2020) A review on coastal erosion and flooding risks and best management practices in West Africa: what has been done and should be done. J Coast Conserv 24: 38. https://doi.org/10.1007/s11852-020-00755-7 doi: 10.1007/s11852-020-00755-7
|
| [57] |
Ankrah J, Monteiro A, Madureira H (2023) Shoreline change and coastal erosion in West Africa: A systematic review of research progress and policy recommendation. Geosciences 13: 59. https://doi.org/10.3390/geosciences13020059 doi: 10.3390/geosciences13020059
|
| [58] |
Neumann B, Vafeidis AT, Zimmermann J, et al. (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. Plos One 10: e0118571. https://doi.org/10.1371/journal.pone.0131375 doi: 10.1371/journal.pone.0131375
|
| [59] | Mant R, Simonson W, Osti M, et al. (2016) Options for ecosystem-based adaptation (EBA) in coastal environments: a guide for environmental managers and planners. UNEP. Nairobi. Available from: https://www.unep.org/gan/resources/toolkits-manuals-and-guides/options-ecosystem-based-adaptation-coastal-environments. |
| [60] | Niang I, Nai G, Folorunsho R, et al. (2012) A guide on adaptation options for local decision makers—Guidance for decision making to cope with coastal changes in West Africa. IOC Manual and Guide 62. Paris: UNESCO. |
| [61] |
Williams AT, Rangel-Buitrago N, Pranzini E, et al. (2018) The management of coastal erosion. Ocean Coast Manage 156: 4–20. https://doi.org/10.1016/j.ocecoaman.2017.03.022 doi: 10.1016/j.ocecoaman.2017.03.022
|
| [62] |
Enríquez-de-Salamanca Á, Díaz-Sierra R, Martín-Aranda RM, et al. (2017) Environmental impacts of climate change adaptation. EIA Review 64: 87–96. https://doi.org/10.1016/j.eiar.2017.03.005 doi: 10.1016/j.eiar.2017.03.005
|
| [63] |
Andrieu J (2018) Land cover changes on the West-African coastline from the Saloum Delta (Senegal) to Rio Geba (Guinea-Bissau) between 1979 and 2015. Eur J Remote Sens 51: 314–325. https://doi.org/10.1080/22797254.2018.1432295 doi: 10.1080/22797254.2018.1432295
|
| [64] | Ceesay A, Wolff M, Njie E, et al. (2016) Adapting to the inevitable: the case of Tanbi Wetland National Park, The Gambia, In: Leal W, Musa H, Cavan G, et al., Eds., Climate change adaptation, resilience and hazards. Climate change management. Cham: Springer, Cham, 257–274. https://doi.org/10.1007/978-3-319-39880-8_16 |