Research article Special Issues

Sociopolitical conflicts on the establishment of protected natural areas: The case of Portofino National Park (Genoa, North-West Italy)

  • Received: 12 July 2023 Revised: 13 November 2023 Accepted: 20 November 2023 Published: 28 November 2023
  • This work traces the main stages of environmental and landscape protection of the Portofino Promontory, located in Riviera Ligure di Levante (N-W Italy), with particular regard on the recent establishment of Portofino National Park. From 2017, when the institution law was enacted, to date, the park has not yet been established due to the socio-political conflicts that have arisen between some stakeholders and institutions of the territory. These conflicts include not only environmentalists against hunters and constructors but also disagreement between municipalities and region (Regione Liguria) and between region and the Ministry of Environment. Today the situation is still stalled, and funds for a park larger than the current one (Portofino Regional Park) have not been allocated. In spite of this, the tug-of-war continues through legal actions. The aim of the article is to analyze the perception of the enlargement of the park by the community and local governance and how this is communicated by the press. The research was conducted through the analysis of the results of a questionnaire aimed at understanding the level of knowledge of the main functions of a national park and the position of the people with respect to it. Second, an analysis of the press was carried out to understand the narratives on this environmental measure. The results of the questionnaire showed a positive consensus toward the park, while press analysis showed little involvement of experts on the subject to foster a political debate without concrete arguments, which damaged the park's image.

    Citation: Lorenzo Brocada. Sociopolitical conflicts on the establishment of protected natural areas: The case of Portofino National Park (Genoa, North-West Italy)[J]. AIMS Geosciences, 2023, 9(4): 713-733. doi: 10.3934/geosci.2023038

    Related Papers:

    [1] Jehad Shaikhali, Gunnar Wingsle . Redox-regulated transcription in plants: Emerging concepts. AIMS Molecular Science, 2017, 4(3): 301-338. doi: 10.3934/molsci.2017.3.301
    [2] Amedea B. Seabra, Halley C. Oliveira . How nitric oxide donors can protect plants in a changing environment: what we know so far and perspectives. AIMS Molecular Science, 2016, 3(4): 692-718. doi: 10.3934/molsci.2016.4.692
    [3] Vittorio Emanuele Bianchi, Giancarlo Falcioni . Reactive oxygen species, health and longevity. AIMS Molecular Science, 2016, 3(4): 479-504. doi: 10.3934/molsci.2016.4.479
    [4] Luís J. del Valle, Lourdes Franco, Ramaz Katsarava, Jordi Puiggalí . Electrospun biodegradable polymers loaded with bactericide agents. AIMS Molecular Science, 2016, 3(1): 52-87. doi: 10.3934/molsci.2016.1.52
    [5] Isabella Martins Lourenço, Amedea Barozzi Seabra, Marcelo Lizama Vera, Nicolás Hoffmann, Olga Rubilar Araneda, Leonardo Bardehle Parra . Synthesis and application of zinc oxide nanoparticles in Pieris brassicae larvae as a possible pesticide effect. AIMS Molecular Science, 2024, 11(4): 351-366. doi: 10.3934/molsci.2024021
    [6] Vahid Pouresmaeil, Marwa Mawlood Salman Al-zand, Aida Pouresmaeil, Seyedeh Samira Saghravanian, Masoud Homayouni Tabrizi . Loading diltiazem onto surface-modified nanostructured lipid carriers to evaluate its apoptotic, cytotoxic, and inflammatory effects on human breast cancer cells. AIMS Molecular Science, 2024, 11(3): 231-250. doi: 10.3934/molsci.2024014
    [7] Giulia Ambrosi, Pamela Milani . Endoplasmic reticulum, oxidative stress and their complex crosstalk in neurodegeneration: proteostasis, signaling pathways and molecular chaperones. AIMS Molecular Science, 2017, 4(4): 424-444. doi: 10.3934/molsci.2017.4.424
    [8] Davide Lovisolo, Marianna Dionisi, Federico A. Ruffinatti, Carla Distasi . Nanoparticles and potential neurotoxicity: focus on molecular mechanisms. AIMS Molecular Science, 2018, 5(1): 1-13. doi: 10.3934/molsci.2018.1.1
    [9] Zhaoping Qin, Patrick Robichaud, Taihao Quan . Oxidative stress and CCN1 protein in human skin connective tissue aging. AIMS Molecular Science, 2016, 3(2): 269-279. doi: 10.3934/molsci.2016.2.269
    [10] Morgan Robinson, Brenda Yasie Lee, Zoya Leonenko . Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease. AIMS Molecular Science, 2015, 2(3): 332-358. doi: 10.3934/molsci.2015.3.332
  • This work traces the main stages of environmental and landscape protection of the Portofino Promontory, located in Riviera Ligure di Levante (N-W Italy), with particular regard on the recent establishment of Portofino National Park. From 2017, when the institution law was enacted, to date, the park has not yet been established due to the socio-political conflicts that have arisen between some stakeholders and institutions of the territory. These conflicts include not only environmentalists against hunters and constructors but also disagreement between municipalities and region (Regione Liguria) and between region and the Ministry of Environment. Today the situation is still stalled, and funds for a park larger than the current one (Portofino Regional Park) have not been allocated. In spite of this, the tug-of-war continues through legal actions. The aim of the article is to analyze the perception of the enlargement of the park by the community and local governance and how this is communicated by the press. The research was conducted through the analysis of the results of a questionnaire aimed at understanding the level of knowledge of the main functions of a national park and the position of the people with respect to it. Second, an analysis of the press was carried out to understand the narratives on this environmental measure. The results of the questionnaire showed a positive consensus toward the park, while press analysis showed little involvement of experts on the subject to foster a political debate without concrete arguments, which damaged the park's image.



    Nonlinear partial differential equation is a very important branch of the nonlinear science, which has been called the foreword and hot topic of current scientific development. In theoretical science and practical application, nonlinear partial differential is used to describe the problems in the fields of optics, mechanics, communication, control science and biology [1,2,3,4,5,6,7,8,9]. At present, the main problems in the study of nonlinear partial differential equations are the existence of solutions, the stability of solutions, numerical solutions and exact solutions. With the development of research, especially the study of exact solutions of nonlinear partial differential equations has important theoretical value and application value. In the last half century, many important methods for constructing exact solutions of nonlinear partial differential equations have been proposed, such as the planar dynamic system method [10], the Jacobi elliptic function method [11], the bilinear transformation method [12], the complete discriminant system method for polynomials [13], the unified Riccati equation method [14], the generalized Kudryashov method [15], and so on [16,17,18,19,20,21,22,23,24].

    There is no unified method to obtain the exact solution of nonlinear partial differential equations. Although predecessors have obtained some analytical solutions with different methods, no scholar has studied the system with complete discrimination system for polynomial method.

    The Fokas system is a very important class of nonlinear partial differential equations. In this article, we focus on the Fokas system, which is given as follows [25,26,27,28,29,30,31,32,33,34,35,36,37]

    {ipt+r1pxx+r2pq=0,r3qyr4(|p|2)x=0, (1.1)

    where p=p(x,y,t) and q=q(x,y,t) are the complex functions which stand for the nonlinear pulse propagation in monomode optical fibers. The parameters r1,r2,r3 and r4 are arbitrary non-zero constants, which are coefficients of nonlinear terms in Eq (1.1) and reflect different states of optical solitons.

    This paper is arranged as follows. In Section 2, we describe the method of the complete discrimination system for polynomial method. In Section 3, we substitute traveling wave transformation into nonlinear ordinary differential equations and obtain the different new single traveling wave solutions for the Fokas system by complete discrimination system for polynomial method. At the same time, we draw some images of solutions. In Section 4, the main results are summarized.

    First, we consider the following partial differential equations:

    {F(u,v,ux,ut,vx,vt,uxx,uxt,utt,)=0G(u,v,ux,ut,vx,vt,uxx,uxt,utt,)=0 (2.1)

    where F and G is polynomial function which is about the partial derivatives of each order of u(x,t) and v(x,t) with respect to x and t.

    Step 1: Taking the traveling wave transformation u(x,t)=u(ξ),v(x,t)=v(ξ),ξ=kx+ct into Eq (2.1), then the partial differential equation is converted to an ordinary differential equation

    {F(u,v,u,v,u,v,)=0,G(u,v,u,v,u,v,)=0. (2.2)

    Step 2: The above nonlinear ordinary differential equations (2.2) are reduced to the following ordinary differential form after a series of transformations:

    (u)2=u3+d2u2+d1u+d0. (2.3)

    The Eq (2.3) can also be written in integral form as:

    ±(ξξ0)=duu3+d2u2+d1u+d0. (2.4)

    Step 3: Let ϕ(u)=u3+d2u2+d1u+d0. According to the complete discriminant system method of third-order polynomial

    {Δ=27(2d3227+d0d1d23)24(d1d223)3,D1=d1d223, (2.5)

    the classification of the solution of the equation can be obtained, and the classification of traveling wave solution of the Fokas system will be given in the following section.

    In the current part, we obtain all exact solutions to Eq (1.1) by complete discrimination system for polynomial method. According to the wave transformation

    p(x,y,t)=φ(η)ei(λ1x+λ2y+λ3t+λ4),q(x,y,t)=ϕ(η),η=x+yvt, (3.1)

    where λ1,λ2,λ3,λ4 and v are real parameters, and v represents the wave frame speed.

    Substituting the above transformation Eq (3.1) into Eq (1.1), we get

    {(v+2r1λ1)iφλ3φ+r1φr1λ21φ+r2φϕ=0,r3ϕ2r4φφ=0. (3.2)

    Integrating the second equation in (3.2) and ignoring the integral constant, we get

    ϕ(η)=r4φ2(η)r3. (3.3)

    Substituting Eq (3.3) into the first equation in (3.2) and setting v=2r1λ1, we get the following:

    r1φ(λ3+r1λ21)φ+r2r4φ3r3=0. (3.4)

    Multiplying φ both sides of the Eq (3.4), then integrating once to get

    (φ)2=a4φ4+a2φ2+a0, (3.5)

    where a4=r2r42r1r3,a2=λ3+r1λ21r1, a0 is the arbitrary constant.

    Let  φ=±(4a4)13ω, b1=4a2(4a4)23,b0=4a0(4a4)13,η1=(4a4)13η. (3.6)

    Equation (3.5) can be expressed as the following:

    (ωη1)2=ω3+b1ω2+b0ω. (3.7)

    Then we can get the integral expression of Eq (3.7)

    ±(η1η0)=dωω(ω2+b1ω+b0), (3.8)

    where η0 is the constant of integration.

    Here, we get the F(ω)=ω2+b1ω+b0 and Δ=b214b0. In order to solve Eq (3.7), we discuss the third order polynomial discrimination system in four cases.

    Case 1:Δ=0 and ω>0.

    When b1<0, the solution of Eq (3.7) is

    ω1=b12tanh2(12b12(η1η0)). (3.9)
    ω2=b12coth2(12b12(η1η0)). (3.10)

    Thus, the classification of all solutions of Eq (3.7) is obtained by the third order polynomial discrimination system. The exact traveling wave solutions of the Eq (1.1) are obtained by combining the above solutions and the conditions (3.6) with Eq (3.1), can be expressed as below:

    p1(x,y,t)=±r3(λ3+r1λ21)r2r4tanh(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))ei(λ1x+λ2y+λ3t+λ4). (3.11)

    In Eq (3.11), p1(x,y,t) is a dark soliton solution, it expresses the energy depression on a certain intensity background. Figure 1 depict two-dimensional graph, three-dimensional graph, contour plot and density plot of the solution.

    q1(x,y,t)=λ3+r1λ21r2tanh2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0)) (3.12)
    p2(x,y,t)=±r3(λ3+r1λ21)r2r4coth(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))ei(λ1x+λ2y+λ3t+λ4), (3.13)
    Figure 1.  Module length graphs of Eq (3.12) when r1=2,r2=1,r3=1,r4=1,λ1=1,λ3=3,η0=0.

    where p1(x,y,t),q1(x,y,t),p2(x,y,t),q2(x,y,t) are hyperbolic function solutions. Specially, p2(x,y,t) is a bright soliton solution.

    q2(x,y,t)=λ3+r1λ21r2coth2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0)). (3.14)

    When b1>0, the solution of Eq (3.7) is

    ω3=b12tan2(12b12(η1η0)). (3.15)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p3(x,y,t)=±r3(λ3+r1λ21)r2r4tan(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))ei(λ1x+λ2y+λ3t+λ4). (3.16)
    q3(x,y,t)=λ3+r1λ21r2tan2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0)). (3.17)

    In Eq (3.16) and Eq (3.17), p3(x,y,t) and q3(x,y,t) are trigonometric function solutions. q3(x,y,t) is a periodic wave solution, and it Shows the periodicity of q3(x,y,t) in Figure 2(a), (b).

    Figure 2.  Module length graphs of Eq (3.17) when r1=2,r2=1,r3=1,r4=1,λ1=1,λ3=1,η0=0.

    When b1=0, the solution of Eq (3.7) is

    ω4=4(η1η0)2. (3.18)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p4(x,y,t)=±(2r2r4r1r3)132(2r2r4r1r3)13η+η0ei(λ1x+λ2y+λ3t+λ4), (3.19)
    q4(x,y,t)=r4r3(2r2r4r1r3)134((2r2r4r1r3)13η+η0)2, (3.20)

    where p4(x,y,t) is exponential function solution, and q4(x,y,t) is rational function solution.

    Case 2: Δ=0 and b0=0.

    When ω>b1 and b1<0, the solution of Eq (3.7) is

    ω5=b12tanh2(12b12(η1η0))b1. (3.21)
    ω6=b12coth2(12b12(η1η0))b1. (3.22)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p5(x,y,t)=±r3(λ3+r1λ21)r2r4(tanh2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))2)ei(λ1x+λ2y+λ3t+λ4), (3.23)
    q5(x,y,t)=λ3+r1λ21r2tanh2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2(λ3+r1λ21)r2, (3.24)
    p6(x,y,t)=±r3(λ3+r1λ21)r2r4(coth2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))2)ei(λ1x+λ2y+λ3t+λ4), (3.25)
    q6(x,y,t)=λ3+r1λ21r2coth2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2(λ3+r1λ21)r2, (3.26)

    where p5(x,y,t),q5(x,y,t),p6(x,y,t) and q6(x,y,t) are hyperbolic function solutions.

    When ω>b1 and b1>0, the solution of Eq (3.7) is

    ω7=b12tan2(12b12(η1η0))b1. (3.27)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p7(x,y,t)=±r3(λ3+r1λ21)r2r4(tan2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2)ei(λ1x+λ2y+λ3t+λ4), (3.28)
    q7(x,y,t)=λ3+r1λ21r2tan2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2(λ3+r1λ21)r2, (3.29)

    where p7(x,y,t) and q7(x,y,t) are trigonometric function solutions.

    Case 3: Δ>0 and b00. Let u<v<s, there u,v and s are constants satisfying one of them is zero and two others are the root of F(ω)=0.

    When u<ω<v, we can get the solution of Eq (3.7) is

    ω8=u+(vu)sn2(su2(η1η0),c), (3.30)

    where c2=vusu.

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p8(x,y,t)=±(2r2r4r1r3)13[u+(vu)sn2(su2((2r2r4r1r3)13η+η0),c)]ei(λ1x+λ2y+λ3t+λ4). (3.31)
    q8(x,y,t)=r4r3(2r2r4r1r3)13[u+(vu)sn2(su2((2r2r4r1r3)13η+η0),c)]. (3.32)

    When ω>s, the solution of Eq (3.7) is

    ω9=vsn2(su(η1η0)/2,c)+scn2(su(η1η0)/2,c). (3.33)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p9(x,y,t)=±(2r2r4r1r3)13vsn2(su2((2r2r4r1r3)13η+η0),c)]+scn2(su2((2r2r4r1r3)13η+η0),c)ei(λ1x+λ2y+λ3t+λ4). (3.34)
    q9(x,y,t)=r4r3(2r2r4r1r3)13vsn2(su2((2r2r4r1r3)13η+η0),c)]+scn2(su2((2r2r4r1r3)13η+η0),c). (3.35)

    Case 4: Δ<0.

    When ω>0, similarly we get

    ω10=2b01+cn(b140(η1η0),c)b0, (3.36)

    where c2=(1b1b02)/2.

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p10(x,y,t)=±2a0(2r2r4r1r3)12[21+cn((4a0(2r2r4r1r3)13)14((2r2r4r1r3)13η+η0),c)+1]ei(λ1x+λ2y+λ3t+λ4), (3.37)
    q10(x,y,t)=r4r32a0(2r2r4r1r3)12[21+cn((4a0(2r2r4r1r3)13)14((2r2r4r1r3)13η+η0),c)+1], (3.38)

    where p8(x,y,t),q8(x,y,t),p9(x,y,t),q9(x,y,t),p10(x,y,t) and q10(x,y,t) are Jacobian elliptic function solutions.

    In this paper, the complete discrimination system of polynomial method has been applied to construct the single traveling wave solutions of the Fokas system. The Jacobian elliptic function solutions, the trigonometric function solutions, the hyperbolic function solutions and the rational function solutions are obtained. The obtained solutions are very rich, which can help physicists understand the propagation of traveling wave in monomode optical fibers. Furthermore, we have also depicted two-dimensional graphs, three-dimensional graphs, contour plots and density plots of the solutions of Fokas system, which explains the state of solitons from different angles.

    This work was supported by Scientific Research Funds of Chengdu University (Grant No.2081920034).

    The authors declare no conflict of interest.



    [1] Pinna M (1984) Atti del convegno sul tema: I parchi nazionali e i parchi regionali in Italia. Memorie della Società Geografica Italiana, 33.
    [2] Ugolini GM (2001) I parchi in Liguria: un equilibrio difficile fra territorio vocato e resistenza sociale, L'importanza sociale ed economica di un'efficiente gestione del sistema dei parchi e delle aree protette, Atti della conferenza internazionale, Genova: Brigati, 281–298.
    [3] Giuntarelli P (2008) Parchi, politiche ambientali e globalizzazione, Milano: Franco Angeli.
    [4] Dixon JA, Sherman PB (1991) Economics of Protected Areas. Ambio 20: 68–74.
    [5] Strickland-Munro JK, Allison HE, Moore SA (2010) Using resilience concepts to investigate the impacts of protected area tourism on communities. Ann Tourism Res 37: 499–519. https://doi.org/10.1016/j.annals.2009.11.001 doi: 10.1016/j.annals.2009.11.001
    [6] Cassola P (2005) Turismo sostenibile e aree naturali protette. Concetti, strumenti e azioni, Edizioni ETS.
    [7] Zanolin G (2022) Geografia dei parchi nazionali italiani, Carocci.
    [8] Colvin RM, Witt GB, Lacey J (2015) The social identity approach to understanding socio-political conflict in environmental and natural resources management. Global Environ Change 34: 237–246. https://doi.org/10.1016/j.gloenvcha.2015.07.011 doi: 10.1016/j.gloenvcha.2015.07.011
    [9] Staniscia B, Komatsu G, Staniscia A (2019) Nature Park establishment and environmental conflicts in coastal areas: The case of the Costa Teatina National Park in central Italy, Ocean Coast Manage 182: 104947. https://doi.org/10.1016/j.ocecoaman.2019.104947 doi: 10.1016/j.ocecoaman.2019.104947
    [10] Cadoret A, Cazals C, Diaw M, et al. (2021) Dynamiques Conflictuelles dans les parcs nationaux de la Réunion et des Calanques. Effort environnemental et équité. Les politiques publiques de l'eau et de la biodiversité en France, Bruxelles: Peter Lang, 195–224.
    [11] Deboudt P (2012) La construction du Parc national des Calanques (1971–2012). Le Parc national des Calanques: Construction territoriale, formes de concertation et principes de légitimité. In Action environnementale: que peut-on encore attendre de la concertation, Versailles: Éditions Quae, 25–51.
    [12] Stringa P (1984) Il Golfo Paradiso: da Genova a Portofino: ragioni e strutture di un paesaggio, Stringa.
    [13] Balletti F, Soppa S (2015) The Landscapes of the Portofino Nature Regional Park. Nature Policies and Landscape Policies. Urban and Landscape Perspectives, Cham: Springer. 18: 415–422.
    [14] Turri E (1998) Il paesaggio come teatro, Venezia: Marsilio.
    [15] Piana P (2020) Paper landscapes. Topographical art and environmental change in Liguria, Aracne Editrice.
    [16] Cavanna M (2010) Verso e dentro il Monte: percorsi di accesso e percorsi all'interno, Sentieri sacri sul monte di Portofino, Milano: Silvana Editoriale, 13–24.
    [17] Zanini A (2012) Un secolo di turismo in Liguria. Dinamiche, percorsi, attori, Franco Angeli.
    [18] Mangano S (2007) Turismo e tempo libero nelle aree naturali protette, Roma: Carocci.
    [19] Gastaldi F (2013) Portofino, fra turismo d'élite e spopolamento. Territorio della ricerca su insediamenti e ambiente 6: 105–114.
    [20] Brandolini P, Mandarino A, Paliaga G, et al. (2021) Anthropogenic landforms in an urbanized alluvial-coastal plain (Rapallo city, Italy). J Maps 17: 86–97. https://doi.org/10.1080/17445647.2020.1793818 doi: 10.1080/17445647.2020.1793818
    [21] Scarin ML (1972) Camogli e Recco nel Golfo Paradiso (ricerche di geografia urbana), Città di Castello: Arti Grafiche.
    [22] Leardi E (1991) Il prezzo e il costo del Mar Ligure. In A. Vallega, La Liguria e il mare, Genova: Pubblicazioni dell'Istituto di Scienze Geografiche dell'Università di Genova.
    [23] Brandolini P, Faccini F, Paliaga G, et al. (2017) Urban geomorphology in coastal environment: Man-made morphological changes in a seaside tourist resort (Rapallo, Eastern Liguria, Italy). Quaestiones Geographicae 36: 97–110. https://doi.org/10.1515/quageo-2017-0027 doi: 10.1515/quageo-2017-0027
    [24] Dell'Agnese E, Bagnoli L (2004) Modi e mode del turismo in Liguria. Da Giovanni Ruffini a Rick Steves, Milano: Cuem.
    [25] Istat, Censimento della popolazione e delle abitazioni, 2021. Available from: http://dati-censimentipermanenti.istat.it/.
    [26] Brandolini P, Faccini F, Piccazzo M (2006) Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy). Nat Hazards Earth Syst Sci 6: 563–571. https://doi.org/10.5194/nhess-6-563-2006 doi: 10.5194/nhess-6-563-2006
    [27] Celata F, Romano A (2022) Overtourism and online short-term rental platforms in Italian cities. J Sustain Tour 30: 1020–1039. https://doi.org/10.1080/09669582.2020.1788568 doi: 10.1080/09669582.2020.1788568
    [28] Jokela S, Minoia P (2021) Tourism Platforms, Situating Sustainability: A Handbook of Contexts and Concepts, Helsinki: Helsinki University Press, 223–237.
    [29] Candia S, Pirlone F, Spadaro I (2018) Sustainable development and the plan for tourism in Mediterranean coastal areas: Case study of the region of Liguria, Italy. WIT Trans Ecol Environ 217: 523–534.
    [30] Galeotti R (2023) La Cooperativa dei Pescatori in liquidazione. Camogli ammaina un pezzo della sua storia. Available from: https://www.ilsecoloxix.it/levante/2023/02/08/news/la_cooperativa_dei_pescatori_in_liquidazione_camogli_ammaina_un_pezzo_della_sua_storia-12629541/.
    [31] Armiero M, Graf von Hardenberg W (2013) Green rhetoric in blackshirts: Italian Fascism and the environment. Environ Hist 19: 283–311. https://doi.org/10.3197/096734013X13690716950064 doi: 10.3197/096734013X13690716950064
    [32] Spotorno M (2005) Le Parc naturel régional de Portofino en Ligurie. Méditerranée 105: 47–52. https://doi.org/10.4000/mediterranee.342 doi: 10.4000/mediterranee.342
    [33] Girani A (2013) Parco di Portofino: una storia lunga 80 anni. Portofino per terra e per mare 3: 6–12. Available from: http://www.parcoportofino.com/parcodiportofino/resources/cms/documents/articolo_una_storia_lunga_80_anni.pdf
    [34] Graziani CA (2019) Appunti per una riflessione critica sui parchi naturali. Ambiente e territorio. I parchi tra crisi e rilancio, Assago: Edizioni ETS, 17–34.
    [35] Piccioni L (2023) Parchi naturali. Storia delle aree protette in Italia, Bologna: Il Mulino.
    [36] Scanu G, Madau C (2001) Prospettive di tutela dell'ambiente in Sardegna nel quadro delle nuove politiche di valorizzazione e gestione delle risorse naturali, Il caso del Monte Arci. Atti della Conferenza Internazionale, a cura di Brandis P, Università di Sassari, Istituto e Laboratorio di geografia, Genova, Brigati, 241–280.
    [37] Generalitat de Catalunya, Parc Natural de Cap de Creus, Història de protecció. Available from: https://parcsnaturals.gencat.cat/ca/xarxa-de-parcs/cap-creus/el-parc/historia-de-proteccio/.
    [38] Piana P (2019) La Valle dei Mulini dell'Acquaviva nel Parco di Portofino. Evoluzione e prospettive di sviluppo di un paesaggio produttivo della Liguria di Levante. Annali di ricerche e studi di geografia 75–76: 39–54.
    [39] Brocada L, Girani A (2022) Itinerari di turismo lento e processi partecipativi per la valorizzazione del territorio nel Golfo Paradiso (Genova): tra conflittualità e collaborazione. Itinerari per la rigenerazione territoriale. Promozione e valorizzazione dei territori: sviluppi reticolari e sostenibili, Milano: Franco Angeli, 362–371.
    [40] Turconi L, Faccini F, Marchese A, et al. (2020) Implementation of nature-based solutions for hydro-meteorological risk reduction in small mediterranean catchments: The case of Portofino Natural Regional Park, Italy. Sustainability 12: 1240. https://doi.org/10.3390/su12031240 doi: 10.3390/su12031240
    [41] Coratza P, Vandellli V, Fiorentini L, et al. (2019) Bridging terrestrial and marine geoheritage: Assessing geosites in Portofino Natural Park (Italy). Water 11: 2112. https://doi.org/10.3390/w11102112 doi: 10.3390/w11102112
    [42] Marchioro C (2018) Dinamiche socio-economiche nelle aree interne della Liguria. Atti della 22 Conferenza ASITA. Bolzano, Italia.
    [43] ISPRA (2018) Istruttoria per l'istituzione del Parco Nazionale di Portofino, Roma.
    [44] ANSA, Sovraffollamento a Portofino, istituite zone rosse. 2023. Available from: https://www.ansa.it/liguria/notizie/2023/04/09/sovraffollamento-a-portofino-istituite-zone-rosse_17a912c4-45e0-46ee-900f-590d2ff780b8.html.
    [45] ANSA, Per San Fruttuoso ipotesi numero chiuso. 2015. Available from: https://www.ansa.it/liguria/notizie/2015/07/11/per-san-fruttuoso-ipotesi-numero-chiuso_adf4eefb-183b-43eb-802d-da7c72b03677.html.
    [46] Vallega A (1999) Fundamentals of integrated Coastal Management, Amsterdam: Kluwer.
    [47] Cadoret A (2009) Conflict Dynamics in Coastal Zones: A Perspective Using the Example of Languedoc-Rousillon (France). J Coast Conserv 13: 151–163. https://doi.org/10.1007/s11852-009-0048-9 doi: 10.1007/s11852-009-0048-9
    [48] ANSA, Parco Portofino: troppi cinghiali, via restrizioni in area contigua. 2023. Available from: https://www.ansa.it/liguria/notizie/2023/01/02/parco-di-portofino-troppi-cinghiali-sospesa-area-contigua_45358df0-b7c9-431f-a466-13784546d22b.html.
    [49] ISPRA, Sintesi delle misure di controllo e prevenzione della psa. 2022. Available from: https://www.isprambiente.gov.it/files2022/notizie/misure-psa-divulgativo-ispra_def-con-loghi.pdf.
    [50] Camerada MV (2015) L'analisi dei Parchi Naturali Italiani attraverso l'applicazione del modello I.S.A. Verso un nuovo paradigma geopolitico, Raccolta di scritti in onore di Gianfranco Lizza. Tomo I, Roma: Aracne Editrice, 311–336.
    [51] Tillett G, French BJ (2006) Resolving Conflict: A Practical Approach, Oxford University Press.
    [52] Gambino R (1991) I parchi naturali. Problemi ed esperienze di pianificazione nel contesto ambientale, Roma: NIS.
    [53] Brandis P, Scanu G (1995) I parchi e le aree protette, La Sardegna nel mondo mediterraneo, IV convegno internazionale di studi, Bologna: Patron Editore.
    [54] Brandis P (2001) L'importanza sociale ed economica di un'efficiente gestione del sistema dei parchi e delle aree protette, Atti della conferenza internazionale. Genova: Brigati.
    [55] Scarlata R (2015) Aree naturali protette, turismo e sviluppo locale sostenibile. Geotema 49: 5–104.
    [56] Strickland-Munro JK, Allison HE, Moore SA (2010) Using resilience concepts to investigate the impacts of protected area tourism on communities. Ann Tourism Res 37: 499–519. https://doi.org/10.1016/j.annals.2009.11.001 doi: 10.1016/j.annals.2009.11.001
    [57] Martínez Quintana V (2017) El turismo de naturaleza: un producto turístico sostenible. Arbor 193: a396. https://doi.org/10.3989/arbor.2017.785n3002 doi: 10.3989/arbor.2017.785n3002
    [58] Gross M, Pearson J, Arbieu U, et al. (2023) Tourists' valuation of nature in protected areas: A systematic review. Ambio 52: 1065–1084. https://doi.org/10.1007/s13280-023-01845-0 doi: 10.1007/s13280-023-01845-0
    [59] European Commission (2020) EU Biodiversity Strategy for 2030. Bringing nature back into our lives, Bruxelles.
    [60] Brocada L, Piana P (2022) Per un'ecologia politica dei borderscapes: il caso del confine tra Polonia e Bielorussia nella foresta di Białowieża. Documenti Geografici 2: 17–30. https://doi.org/10.19246/DOCUGEO2281-7549/202202_02 doi: 10.19246/DOCUGEO2281-7549/202202_02
  • This article has been cited by:

    1. Andrew Geoly, Ernest Greene, Masking the Integration of Complementary Shape Cues, 2019, 13, 1662-453X, 10.3389/fnins.2019.00178
    2. Ernest Greene, Comparing methods for scaling shape similarity, 2019, 6, 2373-7972, 54, 10.3934/Neuroscience.2019.2.54
    3. Hannah Nordberg, Michael J Hautus, Ernest Greene, Visual encoding of partial unknown shape boundaries, 2018, 5, 2373-7972, 132, 10.3934/Neuroscience.2018.2.132
    4. Ernest Greene, Hautus Michael J, Evaluating persistence of shape information using a matching protocol, 2018, 5, 2373-7972, 81, 10.3934/Neuroscience.2018.1.81
    5. Ernest Greene, Jack Morrison, Computational Scaling of Shape Similarity That has Potential for Neuromorphic Implementation, 2018, 6, 2169-3536, 38294, 10.1109/ACCESS.2018.2853656
    6. Ernest Greene, New encoding concepts for shape recognition are needed, 2018, 5, 2373-7972, 162, 10.3934/Neuroscience.2018.3.162
    7. Cheng Chen, Kang Jiao, Letao Ling, Zhenhua Wang, Yuan Liu, Jie Zheng, 2023, Chapter 47, 978-981-19-3631-9, 382, 10.1007/978-981-19-3632-6_47
    8. Bridget A. Kelly, Charles Kemp, Daniel R. Little, Duane Hamacher, Simon J. Cropper, Visual Perception Principles in Constellation Creation, 2024, 1756-8757, 10.1111/tops.12720
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1721) PDF downloads(66) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog