Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Evaluation of open Digital Elevation Models: estimation of topographic indices relevant to erosion risk in the Wadi M’Goun watershed, Morocco

  • Received: 09 April 2020 Accepted: 11 June 2020 Published: 22 June 2020
  • Various Global Digital Elevation Models (DEM) are available freely on the Web. The main objective of this work is to evaluate the latest digital elevation models towards the estimation of morphological and topographic erosion parameters in the Wadi M’Goun watershed. We have evaluated multiple DEMs: SRTM (3-arcsec resolution, 90 m), ASTER GDEM (1-arcsec resolution, 30 m), SRTMGL1 V003 (30 m), and ALOS-PALSAR (12.5 m). We have applied for this purpose open source GIS software. To compare and evaluate each DEM, different processing methods have been applied to estimate the Wadi M’Goun watershed characteristics, namely Hypsometry, topographic slope extraction, retrieval of Slope Length and Steepness factor (LS-factor) and topographic wetness index. The accuracy of the ALOS-PALSAR and SRTMGL1 V003 (30 m) DEMs met the requirements applying to the required morphometric parameters. DEMs vertical accuracy has been evaluated by applying the root mean square error (RMSE) metric to DEM elevations vs. actual heights of 353 sample points extracted from an accurate survey-based map (toposheet). The RMSE was 1718 mm for ALOS-PALSAR, 1736 for SRTM 1-arcsec, 1958 for ASTER GDEM 1-arcsec and, 3189 for SRTM 3-arcsec. These results indicate that best accuracy is achieved with the high-resolution of the ALOS PALSAR DEM. This study suggests potential uncertainties in the open-source DEMs, which should be taken into account when estimating topographical and morphometric parameters related to erosion risk in the Wadi M’Goun watershed.

    Citation: Maryam Khal, Abdellah Algouti, Ahmed Algouti, Nadia Akdim, Sergey A. Stankevich, Massimo Menenti. Evaluation of open Digital Elevation Models: estimation of topographic indices relevant to erosion risk in the Wadi M’Goun watershed, Morocco[J]. AIMS Geosciences, 2020, 6(2): 231-257. doi: 10.3934/geosci.2020014

    Related Papers:

    [1] Lucrezia Cossetti . Bounds on eigenvalues of perturbed Lamé operators with complex potentials. Mathematics in Engineering, 2022, 4(5): 1-29. doi: 10.3934/mine.2022037
    [2] Eleonora Cinti, Roberto Ognibene, Berardo Ruffini . A quantitative stability inequality for fractional capacities. Mathematics in Engineering, 2022, 4(5): 1-28. doi: 10.3934/mine.2022044
    [3] Luz Roncal . Hardy type inequalities for the fractional relativistic operator. Mathematics in Engineering, 2022, 4(3): 1-16. doi: 10.3934/mine.2022018
    [4] Fernando Farroni, Gioconda Moscariello, Gabriella Zecca . Lewy-Stampacchia inequality for noncoercive parabolic obstacle problems. Mathematics in Engineering, 2023, 5(4): 1-23. doi: 10.3934/mine.2023071
    [5] Maurizio Garrione . Beams with an intermediate pier: Spectral properties, asymmetry and stability. Mathematics in Engineering, 2021, 3(2): 1-21. doi: 10.3934/mine.2021016
    [6] Federico Cluni, Vittorio Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, Patrizia Pucci . A mixed operator approach to peridynamics. Mathematics in Engineering, 2023, 5(5): 1-22. doi: 10.3934/mine.2023082
    [7] Pier Domenico Lamberti, Michele Zaccaron . Spectral stability of the curlcurl operator via uniform Gaffney inequalities on perturbed electromagnetic cavities. Mathematics in Engineering, 2023, 5(1): 1-31. doi: 10.3934/mine.2023018
    [8] Alessia E. Kogoj, Ermanno Lanconelli, Enrico Priola . Harnack inequality and Liouville-type theorems for Ornstein-Uhlenbeck and Kolmogorov operators. Mathematics in Engineering, 2020, 2(4): 680-697. doi: 10.3934/mine.2020031
    [9] Serena Dipierro, Giovanni Giacomin, Enrico Valdinoci . The fractional Malmheden theorem. Mathematics in Engineering, 2023, 5(2): 1-28. doi: 10.3934/mine.2023024
    [10] Biagio Cassano, Lucrezia Cossetti, Luca Fanelli . Spectral enclosures for the damped elastic wave equation. Mathematics in Engineering, 2022, 4(6): 1-10. doi: 10.3934/mine.2022052
  • Various Global Digital Elevation Models (DEM) are available freely on the Web. The main objective of this work is to evaluate the latest digital elevation models towards the estimation of morphological and topographic erosion parameters in the Wadi M’Goun watershed. We have evaluated multiple DEMs: SRTM (3-arcsec resolution, 90 m), ASTER GDEM (1-arcsec resolution, 30 m), SRTMGL1 V003 (30 m), and ALOS-PALSAR (12.5 m). We have applied for this purpose open source GIS software. To compare and evaluate each DEM, different processing methods have been applied to estimate the Wadi M’Goun watershed characteristics, namely Hypsometry, topographic slope extraction, retrieval of Slope Length and Steepness factor (LS-factor) and topographic wetness index. The accuracy of the ALOS-PALSAR and SRTMGL1 V003 (30 m) DEMs met the requirements applying to the required morphometric parameters. DEMs vertical accuracy has been evaluated by applying the root mean square error (RMSE) metric to DEM elevations vs. actual heights of 353 sample points extracted from an accurate survey-based map (toposheet). The RMSE was 1718 mm for ALOS-PALSAR, 1736 for SRTM 1-arcsec, 1958 for ASTER GDEM 1-arcsec and, 3189 for SRTM 3-arcsec. These results indicate that best accuracy is achieved with the high-resolution of the ALOS PALSAR DEM. This study suggests potential uncertainties in the open-source DEMs, which should be taken into account when estimating topographical and morphometric parameters related to erosion risk in the Wadi M’Goun watershed.


    Let R and R+ denote the sets of all real numbers and nonnegative real numbers respectively, N the set of all positive integers and ¯A the closure and ¯coA the convex hull closure of A. Additionally, Ξ denotes a Banach space, Ω={Λ:Λ, bounded, closed and convex subset of Ξ}, B(Ξ)={Λ:Λ is bounded subset of Ξ}, kerm={ΛB(Ξ):m(Λ)=0} be the kernel of function m:B(Ξ)R+.

    Fixed point theory has been developed in two directions. One deals with contraction mappings on metric spaces, Banach contraction principle being the first important result in this direction. In the second direction, continuous operators are dealt with convex and compact subsets of a Banach space. Brouwer's fixed point theorem and its infinite dimensional form, Schuader's fixed point theorems are the two important theorems in this second direction. In this paper, Fix(Υ) denotes a set of fixed points of a mapping Υ in Λ.

    Theorem 1.1 (Brouwer's Fixed Point Theorem).[2] Every continuous mapping from the unit ball of Rn into itself has a fixed point.

    Theorem 1.2 (Schauder's Fixed Point Theorem).[15] Let Υ:ΛΛ a compact continuous operator, where ΛΩ. Then Fix(Υ).

    In Brouwer's and Schuader's fixed point theorems, compactness of the space under consideration is required as a whole or as a part. However, later the requirement of the compactness was relaxed by making use of the notion of a measure of noncompactness (in short MNC). Using the notion of MNC, the following theorem was proved by Darbo [5].

    Theorem 1.3. [5] Let ΛΩ and Υ:ΛΛ be a continuous function. If there exists k[0,1) such that

    m(Υ(Λ0))km(Λ0),

    where Λ0Λ and m is MNC defined on Ξ. Then Fix(Υ).

    It generalizes the renowned Schuader fixed point result and includes the existence portion of Banach contraction principle. In the sequel many extensions and generalizations of Darbo's theorem came into existence.

    The Banach principle has been improved and extended by several researchers (see [7,13,14,16]). Jleli and Samet [7] introduced the notion of θ-contractions and gave a generalization of the Banach contraction principle in generalized metric spaces, where θ:(0,)(1,) is such that:

    (θ1) θ is non-decreasing;

    (θ2) for every sequence {κj}(0,), we have

    limjθ(κj)=1limjκj=0+;

    (θ3) there exists L(0,) and (0,1) such that

    limκ0+θ(κ)1κ=L.

    Khojasteh et al. [9] introduced the concept of Z-contraction using simulation functions and established fixed point results for such contractions. Isik et al. [6] defined almost Z-contractions and presented fixed point theorems for such contractions. Cho [3] introduced the notion of L-contractions, and proved fixed point results under such contraction in generalized metric spaces. Using specific form of Z and L, we can deduce other known existing contractions. For some results concerning Z-contractions and its generalizations we refer the reader to [3] and the references cited therein. In particular, Chen and Tang [4] generalized Z-contraction with Zm-contraction and established Darbo type fixed point results.

    The aim of the present work is two fold. First we prove fixed point theorems under generalized Zm-contraction and then we prove fixed point results under Darbo type Lm-contraction in Banach spaces. It is interesting to see that several existing results in fixed point theory can be concluded from our main results. Furthermore, as an application of our results, we have proved the existence of solution to the Caputo fractional Volterra–Fredholm integro-differential equation

    cDμ(ϰ)=g(ϰ)+λ1ϰ0J1(ϰ,t)ξ1(t,μ(t))dt+λ2T0J2(ϰ,t)ξ2(t,μ(t))dt,

    under boundary conditions:

    aμ(0)+bμ(T)=1Γ()T0(Tt)1J3(ϰ,t)dt,

    where (0,1], cD is the Caputo fractional derivative, λ1,λ2 are parameters, and a,b>0 are real constants, μ,g:[0,T]R, J1,J2,J3:[0,T]×[0,T]R and ξ1,ξ2:[0,T]×RR are continuous functions. For the validity of existence result we construct an example.

    In this section, we recall some definitions and results which are further considered in the next sections, allowing us to present the results. The concept of MNC was introduced in [1] as follows:

    Definition 2.1. [1] A map m:B(Ξ)R+ is MNC in Ξ if for all Λ1,Λ2B(Ξ) it satisfies the following conditions:

    (i) kerm and relatively compact in Ξ;

    (ii) Λ1Λ2  m(Λ1)m(Λ2);

    (iii) m(¯Λ1)=m(Λ1);

    (iv) m(¯coΛ1)=m(Λ1);

    (v) m(ηΛ1+(1η)Λ2)ηm(Λ1)+(1η)m(Λ2) η[0,1];

    (vi) if {Λn} is a sequence of closed sets in B(Ξ) with Λn+1Λn, nN and limn+m(Λn)=0, then Λ=+n=1Λn.

    The Kuratowski MNC [11] is the function m:B(Ξ)R+ defined by

    m(K)=inf{ε>0:Kni=1Si,SiΞ,diam(Si)<ε},

    where diam(S) is the diameter of S.

    Khojasteh et al. [9] introduced the concept of Z-contraction using simulation functions as follows:

    Definition 2.2. A function Z:R+×R+R is simulation if:

    (Z1) Z(0,0)=0;

    (Z2) Z(κ1,κ2)<κ2κ1, for all κ1,κ2>0;

    (Z3) if {κn} and {κn} are two sequences in (0,) such that limκnn=limκnn>0, then

    limZ(κn,κn)n<0.

    Roldán-López-de-Hierro et al. [12] slightly modified the Definition 2.2 of [9] as follows.

    Definition 2.3. A mapping Z:R+×R+R is simulation if:

    (Z1) Z(0,0)=0;

    (Z2) Z(κ1,κ2)<κ2κ1, for all κ1,κ2>0;

    (Z3) if {κn}, {κn} are sequences in (0,) such that limκnn=limκnn>0 and κn<κn, then

    limZ(κn,κn)n<0.

    Every simulation function in the original Definition 2.2 is also a simulation function in the sense of Definition 2.3, but the converse is not true, see for instance [12]. Note that Z={Z:Z is a simulation function in the sense of Definition 2.3}. The following are some examples of simulation functions.

    Example 2.4. The mapping Z:R+×R+R defined by:

    1. Z(κ1,κ2)=κ2f(κ1)κ1, for all κ1,κ2R+, where f:R+R+ is a lower semi-continuous function such that f1(0)={0},

    2. Z(κ1,κ2)=κ2φ(κ1)κ1, for all κ1,κ2R+, where φ:R+R+ is a continuous function such that φ(κ1)={0}κ1=0,

    3. Z(κ1,κ2)=κ2(κ2)κ1, for all κ1,κ2R+, where :R+R+ is a function such that lim supnr+ (κ1)<1,

    4. Z(κ1,κ2)=ϕ(κ2)κ1, for all κ1,κ2R+, where ϕ:R+R+ is an upper semi-continuous function such that ϕ(κ1)<κ1, for all κ1>0 and ϕ(0)=0,

    5. Z(κ1,κ2)=κ2κ10λ(x)dx, for all κ1,κ2R+, where λ:R+R+ is a function such that ϵ0λ(x)dx exists and ϵ0λ(x)dx>ϵ, for every ϵ>0,

    6. Z(κ1,κ2)=κ2κ2+1κ1, for all κ1,κ2R+,

    are simulation functions.

    Cho [3] introduced the notion of L-simulation function as follows:

    Definition 2.5. An L-simulation function is a function L:[1,)×[1,)R satisfying the following conditions:

    (L1) L(1,1)=1;

    (L2) L(κ1,κ2)<κ2κ1, for all κ1,κ2>1;

    (L3) if {κn} and {κn} are two sequences in (1,) such that limκnn=limκnn>1 and κn<κn, then

    limL(κn,κn)n<1.

    Note that L(1,1)<1, for all t>1.

    Example 2.6. The functions Lb,Lw:[1,)×[1,)R defined by

    1. Lb(κ1,κ2)=κn2κ1, for all κ1,κ21, where n(0,1);

    2. Lw(κ1,κ2)=κ2κ1ϕ(κ2) κ1,κ21, where ϕ:[1,)[1,) is lower semicontinuous and nondecreasing with ϕ1({1})=1,

    are L-simulation functions.

    Definition 2.7. [8] A continuous non-decreasing function ϕ:R+R+ such that φ(t)=0 if and only if t=0 is called an altering distance function.

    In this section, we obtain the results on generalized Zm-contraction. First we give the following definition.

    Definition 3.1. Let ΛΩ. A self-mapping Υ on Λ is called generalized Zm-contraction if there exists ZZ such that

    Z(m(Υ(Λ1)),Δ(Λ1,Λ2))0, (3.1)

    where Λ1 and Λ2 are subsets of Λ, m(Λ1),m(Υ(Λ1)),m(Υ(Λ2))>0, m is MNC defined in Ξ and

    Δ(Λ1,Λ2)=max{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))}.

    Using the notion of Zm-contraction, we establish the main result of this section.

    Theorem 3.2. Let Υ:ΛΛ be a continuous function, where ΛΩ. Assume that there exists ZZ such that Z non-decreasing function and Υ is a generalized Zm-contraction. Then Fix(Υ).

    Proof. Define a sequence {Λn}n=0 such that

    Λ0=Λ and  Λn=¯co(ΥΛn1), for all  nN. (3.2)

    We need to prove that Λn+1Λn and ΥΛnΛn, for all nN. For proof of the first inclusion, we use induction. If n=1, then by (3.2), we have Λ0=Λ and Λ1=¯co(ΥΛ0)Λ0. Next, assume that ΛnΛn1, then ¯co(Υ(Λn))¯co(Υ(Λn1)), using (3.2), we get the first inclusion

    Λn+1Λn. (3.3)

    To obtained the second inclusion, using the inclusion (3.3) we have

    ΥΛn¯co(ΥΛn)=Λn+1Λn. (3.4)

    Thus Λn+1Λn and ΥΛnΛn,nN.

    Now, we discuss two cases, depending on the values of m. If we consider m as a non-negative integer with m(Λm)=0, then Λm is a compact set and hence by Theorem 1.2, Υ has a fixed point in ΛmΛ. Instead, assume that m(Λn)>0, nN. Then on setting Λ1=Λn+1 and Λ2=Λn in contraction (3.1), we have

    Z(m(Υ(Λn+1)),Δ(Λn+1,Λn))0, (3.5)

    where

    Δ(Λn,Λn+1)=max{m(Λn),m(Υ(Λn)),m(Υ(Λn+1)),12m(Υ(Λn)Υ(Λn+1))}max{m(Λn),m(Λn),m(Λn+1),12m(ΛnΛn+1)}=max{m(Λn),m(Λn),m(Λn+1),12m(Λn)}=m(Λn),

    that is,

    Δ(Λn,Λn+1)m(Λn). (3.6)

    Using inequality (3.6) and the axiom (Z2) of Z-simulation function, inequality (3.5) becomes,

    0Z(m(Υ(Λn+1)),Δ(Λn+1,Λn))Z(m(Λn+1),m(Λn))m(Λn)m(Λn+1), (3.7)

    that is, m(Λn)m(Λn+1) and hence, {m(Λn)} is a decreasing sequence of positive real numbers. Thus, we can find r0 such that limn m(Λn)=r. Next, we claim that r=0. To support our claim, suppose that r0, that is, r>0. Let un=m(Λn+1) and vn=m(Λn), then since un<vn, so by the axiom (Z3) of Z-simulation function, we have

    lim supn Z(m(Λn+1),m(Λn))=lim supn Z(un,vn)<0,

    which is contradiction to (3.7). Thus r=0 and hence {Λn} is a sequence of closed sets in B(Ξ) with Λn+1Λn, for all nN and limn m(Λn)=0, so the intersection set Λ=+n=1Λn is non-empty, closed and convex subset of Λ. Furthermore, since ΛΛn, for all nN, so by Definition 2.1(ii), m(Λ)m(Λn), for all nN. Thus m(Λ)=0 and hence Λkerm, that is, Λ is bounded. But Λ is closed so that Λ is compact. Therefore by Theorem 1.2, Fix(Υ). From Theorem 3.2 we obtain the following corollaries. We assume that ΛΩ.

    Corollary 3.3. Let Υ:ΛΛ be a continuous function such that

    ψ1(m(Υ(Λ1)))ψ2(max{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))}),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC. Then Fix(Υ).

    Corollary 3.4. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))Δ(Λ1,Λ2)f(Δ(Λ1,Λ2)),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and f:R+R+ is a lower semi-continuous function such that f1(0)={0}. Then Fix(Υ).

    The conclusion of Corollary 3.4 is true if f:R+R+ is continuous function such that f(t)=0   t=0.

    Corollary 3.5. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))(Δ(Λ1,Λ2))Δ(Λ1,Λ2),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and :R+R+ is a function with lim supnr+ (t)<1. Then Fix(Υ).

    Corollary 3.6. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))ϕ(max{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))}),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and ϕ:R+R+ is an upper semi-continuous mapping with ϕ(t)<t, t>0 and ϕ(0)=0. Then Fix(Υ).

    Corollary 3.7. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))0λ(x)dxmax{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))},

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and λ:R+R+ is a mapping such that ϵ0λ(x)dx exists and ϵ0λ(x)dx>ϵ, for every ϵ>0. Then Fix(Υ).

    Corollary 3.8. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))Δ(Λ1,Λ2)1+Δ(Λ1,Λ2),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC. Then Fix(Υ).

    In this section, we obtain some results on Lm-contraction. Let us denote by Θ the class of all functions θ:(0,)(1,) that satisfy conditions (θ1) and (θ2). First we introduce the notion of Lm-contraction as:

    Definition 4.1. Let ΛΩ. A self-mapping Υ on Λ is called Lm-contraction with respect to L if there exist θΘ such that, for all ΛΛ with m(Λ)>0,

    L(θ(m(Υ(Λ))),θ(m(Λ)))1, (4.1)

    where m is MNC defined in Ξ.

    Theorem 4.2. Let Υ:ΛΛ be a continuous function. Assume that there exist θΘ and Υ is Lm-contraction with respect to L. Then Fix(Υ).

    Proof. Define a sequence {Λn}n=0 such that

    Λ0=Λ and  Λn=¯co(ΥΛn1), for all  nN. (4.2)

    Then Λn+1Λn and ΥΛnΛn, nN.

    Now, we discuss two cases, depending on the values of m. If we consider m as a non-negative integer with m(Λm)=0, then Λm is a compact set and hence by Theorem 1.2, Υ has a fixed point in ΛmΛ. Instead, assume that m(Λn)>0, for all nN. Then on setting Λ=Λn in contraction (4.1), we have

    1L(θ(m(Υ(Λn))),θ(m(Λn)))θ(m(Λn))θ(m(Υ(Λn))), (4.3)

    that is,

    θ(m(Υ(Λn)))θ(m(Λn)).

    Since θ is nondecreasing, so that

    m(Υ(Λn))m(Λn). (4.4)

    Now, using inequality (4.4), we have

    m(Λn+1)=m(¯co(Υ(Λn)))=m(Υ(Λn))m(Λn),

    that is, m(Λn+1)m(Λn) and hence, {m(Λn)} is a decreasing sequence of positive real numbers. Thus, we can find r0 with limn m(Λn)=r. Next, we claim that r=0. To support our claim, suppose that r0. Then in view of (θ2), we get

    limn θ(m(Λn))1,

    which implies that

    limn θ(m(Λn))>1. (4.5)

    Let un=θ(m(Λn+1)) and vn=θ(m(Λn)), then since unvn, so by the axiom (L3) of L-simulation function, we have

    1lim supn L(m(Λn+1),m(Λn))=lim supn L(un,vn)<1,

    which is contradiction. Thus r=0 and hence {Λn} is a sequence of closed sets from B(Ξ) such that Λn+1Λn, for all nN and limn m(Λn)=0, so the intersection set Λ=+n=1Λn is non-empty, closed and convex subset of Λ. Furthermore, since ΛΛn, for all nN, so by Definition 2.1(ii), m(Λ)m(Λn), for all nN. Thus m(Λ)=0 and hence Λkerm, that is, Λ is bounded. But Λ is closed so that Λ is compact. Therefore by Theorem 1.2, Fix(Υ).

    By taking L=Lb in Theorem 4.2, we obtain the following result.

    Corollary 4.3. Let Υ:ΛΛ be a continuous functions such that, for all ΛΛ with m(Λ)>0,

    θ(m(Υ(Λ)))(θ(m(Λ)))k, (4.6)

    where θΘ and k(0,1). Then Fix(Υ).

    Remark 4.4. Corollary 4.3 is the Darbo type version of Theorem 2.1 in [7].

    By taking L=Lw in Theorem 4.2, we obtain the next result.

    Corollary 4.5. Let Υ:ΛΛ be a continuous functions such that, for all ΛΛ with m(Λ)>0,

    θ(m(Υ(Λ)))θ(m(Λ))ϕ(θ(m(Λ))), (4.7)

    where θΘ and ϕ:[1,)[1,) is lower semi-continuous and nondecreasing with ϕ1({1})=1. Then Fix(Υ).

    By taking θ(t)=et, for all t>0 in Corollary 4.5, we obtain next result.

    Corollary 4.6. Let Υ:ΛΛ be a continuous functions such that, for all ΛΛ with m(Λ)>0,

    m(Υ(Λ))m(Λ)φ(m(Λ)), (4.8)

    where φ:R+R+ is lower semi-continuous and nondecreasing with φ1({0})=0. Then Fix(Υ).

    Remark 4.7. Corollary 4.6 is the Rhoades's Theorem of Darbo type [13].

    Let B(a,r) be the closed ball with center at a and radius r and Br be the ball B(0,r). We check the existence of solution to Caputo fractional Volterra–Fredholm integro differential equation

    cDμ(ϰ)=g(ϰ)+λ1ϰ0J1(ϰ,t)ξ1(t,μ(t))dt+λ2T0J2(ϰ,t)ξ2(t,μ(t))dt, (5.1)

    under boundary conditions:

    aμ(0)+bμ(T)=1Γ()T0(Tt)1J3(ϰ,t)dt, (5.2)

    where (0,1], cD is the Caputo fractional derivative, λ1,λ2 are parameters, and a,b>0 are real constants, μ,g:[0,T]R, J1,J2,J3:[0,T]×[0,T]R and ξ1,ξ2:[0,T]×RR are continuous functions.

    Lemma 5.1. [10] For plR, l=0,1,,r1, we have

    I[cDh(t)]=h(t)+p0+p1t+p2t2+...+pr1tr1.

    Using Lemma 5.1, we can easily establish the following result.

    Lemma 5.2. Problem (5.1) is equivalent to the integral equation

    μ(ϰ)=1Γ()ϰ0(ϰϑ)1g(ϑ)dϑb(a+b)Γ()T0(Tϑ)1g(ϑ)dϑ+1Γ()ϰ0(ϰϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑb(a+b)Γ()T0(Tϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑ+1(a+b)Γ()T0(Tt)1J3(ϰ,t)dt. (5.3)

    Proof. Using Lemma 5.1, we obtain

    μ(ϰ)=c0+I(g(ϰ))+λ1I(ϰ0J1(ϰ,t)ξ1(t,μ(t))dt+λ2T0J2(ϰ,t)ξ2(t,μ(t))dt) (5.4)

    Apply boundary conditions, we deduce that

    c0=b(a+b)Γ()T0(Tϑ)1g(ϑ)dϑ1(a+b)Γ()T0(Tt)1J3(ϰ,t)dt+b(a+b)Γ()T0(Tϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑ.

    Thus by substituting the values of c0 in (5.4), we get integral equation (5.3).

    Notice that the solution of Eq (5.1) is equivalent to Eq (5.3). Now, we are in a position to present the existence result.

    Theorem 5.3. Let μ,νBr,ϑ,τ[0,T], and a,b>0 be real constants. If μ,g:[0,T]R, J1,J2,J3:[0,T]×[0,T]R and ξ1,ξ2:[0,T]×RR are continuous functions satisfying the following axioms:

    1. there exist Ci>0,i=1,2 such that

    |ξi(t,μ(t))ξi(t,ν(t))|Ci (5.5)

    2. there exist real numbers \lambda_{1} and \lambda_{2} with \left|\lambda_{1}\right|C_{1}\mathfrak{K}_{1} +\left|\lambda_{2}\right|C_{2}\mathfrak{K}_{2} < \frac{\Gamma(\wp+1)}{2\mathfrak{T}^{p}} such that

    \begin{equation} \frac{2\left[\left\|\mathfrak{g}\right\|+\left|\lambda_{1}\right|\mathfrak{K}_{1}\mathfrak{F}_{1} +\left|\lambda_{2}\right|\mathfrak{K}_{2}\mathfrak{F}_{2}\right]+\mathfrak{K}_{3}} {\mathfrak{T}^{-\wp}\Gamma(\wp+1)-2\left[\left|\lambda_{1}\right|C_{1}\mathfrak{K}_{1} +\left|\lambda_{2}\right|C_{2}\mathfrak{K}_{2}\right]} \leq r, \end{equation} (5.6)

    where \mathfrak{F}_{1} = {\sup} |\xi_{1}\left(t, 0\right)|, \mathfrak{F}_{2} = {\sup} |\xi_{2}\left(t, 0\right)| and

    \begin{equation} \mathfrak{K}_{1} = \sup\int_{0}^{\vartheta}\left|\mathfrak{J}_{1}\left(\vartheta, \tau\right)\right|d\tau < \infty, \end{equation} (5.7)

    and

    \begin{equation} \mathfrak{K}_{i} = \sup\int_{0}^{\mathfrak{T}}\left|\mathfrak{J}_{i}\left(\vartheta, \tau\right)\right|d\tau < \infty, \ \ i = 2, 3. \end{equation} (5.8)

    Then problem (5.3) has a solution in B_{r} , equivalently problem (5.1) has a solution in B_{r} .

    Proof. Let B_{r} = \left\{\mu\in \mathcal{C}\left(\left[0, \mathfrak{T}\right], \mathbb{R}\right):\left\|\mu\right\|\leq r\right\} . Then, B_{r} is a non-empty, closed, bounded, and convex subset of \mathcal{C}\left(\left[0, \mathfrak{T}\right], \mathbb{R}\right) . Define the operator \Upsilon : B_{r}\rightarrow B_{r} by

    \begin{equation*} \label{App1Z-int-op} \begin{split} \Upsilon \mu(\varkappa) = &\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}\mathfrak{g}(\vartheta)d\vartheta -\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}\mathfrak{g}(\vartheta)d\vartheta\\ &+\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}\left(\lambda_{1}\int_{0}^{\vartheta}\mathfrak{J}_{1}\left(\vartheta, t\right) \xi_{1}\left(t, \mu\left(t\right)\right)dt +\lambda_{2}\int_{0}^{\mathfrak{T}}\mathfrak{J}_{2}\left(\vartheta, t\right)\xi_{2}\left(t, \mu\left(t\right)\right)dt\right)d\vartheta\\ &-\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}\bigg(\lambda_{1} \int_{0}^{\vartheta}\mathfrak{J}_{1}\left(\vartheta, t\right)\xi_{1}\left(t, \mu\left(t\right)\right)dt\\ &+\lambda_{2}\int_{0}^{\mathfrak{T}}\mathfrak{J}_{2}\left(\vartheta, t\right)\xi_{2}\left(t, \mu\left(t\right)\right)dt\bigg)d\vartheta +\frac{1}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-t)^{\wp-1} \mathfrak{J}_{3}\left(\varkappa, t\right) dt. \end{split} \end{equation*}

    Our first claim is \Upsilon : B_{r}\rightarrow B_{r} is well-defined. Let \mu\in B_{r} , for some r . Then for all \varkappa\in\left[0, \mathfrak{T}\right] , we have

    \begin{align*} \begin{split} \left|\Upsilon \mu(\varkappa)\right| \leq&\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}\left|\mathfrak{g}(\vartheta)\right|d\vartheta +\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}\left|\mathfrak{g}(\vartheta)\right|d\vartheta\\ &+\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1} \bigg(\left|\lambda_{1}\right|\int_{0}^{\vartheta}\left|\mathfrak{J}_{1}\left(\vartheta, t\right)\right| \left|\xi_{1}\left(t, \mu\left(t\right)\right)\right|dt\\ &+\left|\lambda_{2}\right|\int_{0}^{\mathfrak{T}}\left|\mathfrak{J}_{2}\left(\vartheta, t\right)\right| \left|\xi_{2}\left(t, \mu\left(t\right)\right)\right|dt\bigg)d\vartheta +\frac{1}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-t)^{\wp-1} \left|\mathfrak{J}_{3}\left(\varkappa, t\right)\right|dt\\ &+\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1} \bigg(\left|\lambda_{1}\right|\int_{0}^{\vartheta}\left|\mathfrak{J}_{1}\left(\vartheta, t\right)\right| \left|\xi_{1}\left(t, \mu\left(t\right)\right)\right|dt\\ &+\left|\lambda_{2}\right|\int_{0}^{\mathfrak{T}}\left|\mathfrak{J}_{2}\left(\vartheta, t\right)\right| \left|\xi_{2}\left(t, \mu\left(t\right)\right)\right|dt\bigg)d\vartheta\\ \leq&\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}\left|\mathfrak{g}(\vartheta)\right|d\vartheta +\frac{1}{\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}\left|\mathfrak{g}(\vartheta)\right|d\vartheta\\ &+\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1} \bigg\{\left|\lambda_{1}\right|\int_{0}^{\vartheta}\left|\mathfrak{J}_{1}\left(\vartheta, t\right)\right| \left(\left|\xi_{1}\left(t, \mu\left(t\right)\right)-\xi_{1}\left(t, 0\right)\right| +\left|\xi_{1}\left(t, 0\right)\right|\right)dt\\ &+\left|\lambda_{2}\right|\int_{0}^{\mathfrak{T}}\left|\mathfrak{J}_{2}\left(\vartheta, t\right)\right| \left(\left|\xi_{2}\left(t, \mu\left(t\right)\right)-\xi_{2}\left(t, 0\right)\right| +\left|\xi_{2}\left(t, 0\right)\right|\right)dt\bigg\}d\vartheta\\ &+\frac{1}{\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1} \bigg\{\left|\lambda_{1}\right|\int_{0}^{\vartheta}\left|\mathfrak{J}_{1}\left(\vartheta, t\right)\right| \left(\left|\xi_{1}\left(t, \mu\left(t\right)\right)-\xi_{1}\left(t, 0\right)\right| +\left|\xi_{1}\left(t, 0\right)\right|\right)dt\\ &+\left|\lambda_{2}\right|\int_{0}^{\mathfrak{T}}\left|\mathfrak{J}_{2}\left(\vartheta, t\right)\right| \left(\left|\xi_{2}\left(t, \mu\left(t\right)\right)-\xi_{2}\left(t, 0\right)\right| +\left|\xi_{2}\left(t, 0\right)\right|\right)dt\bigg\}d\vartheta\\ &+\frac{1}{\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-t)^{\wp-1} \left|\mathfrak{J}_{3}\left(\varkappa, t\right)\right|dt \end{split} \end{align*}
    \begin{align*} \begin{split} \leq&\frac{\left\|\mathfrak{g}\right\|}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}d\vartheta +\frac{\left\|\mathfrak{g}\right\|}{\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}d\vartheta +\frac{\mathfrak{K}_{3}}{\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-t)^{\wp-1}dt\\ &+\frac{\left|\lambda_{1}\right|\mathfrak{K}_{1}\left(C_{1}\left\|\mu\right\|+\mathfrak{F}_{1}\right) +\left|\lambda_{2}\right|\mathfrak{K}_{2}\left(C_{2}\left\|\mu\right\|+\mathfrak{F}_{2}\right)} {\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}d\vartheta\\ &+\frac{\left\{\left|\lambda_{1}\right|\mathfrak{K}_{1}\left(C_{1}\left\|\mu\right\|+\mathfrak{F}_{1}\right) +\left|\lambda_{2}\right|\mathfrak{K}_{2}\left(C_{2}\left\|\mu\right\|+\mathfrak{F}_{2}\right)\right\}} {\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}d\vartheta, \end{split} \end{align*}

    with the help of (5.6) , (5.7) and (5.8) , we get

    \begin{equation*} \begin{split} \left|\Upsilon \mu(\varkappa)\right| \leq&\frac{\left\|\mathfrak{g}\right\|}{\Gamma(\wp)}\frac{\varkappa^{\wp}}{\wp} +\frac{\left\|\mathfrak{g}\right\|}{\Gamma(\wp)}\frac{\mathfrak{T}^{\wp}}{\wp} +\frac{\left|\lambda_{1}\right|\mathfrak{K}_{1}\left(C_{1}r+\mathfrak{F}_{1}\right) +\left|\lambda_{2}\right|\mathfrak{K}_{2}\left(C_{2}r+\mathfrak{F}_{2}\right)}{\Gamma(\wp)}\frac{\varkappa^{\wp}}{\wp}\\ &+\frac{\left|\lambda_{1}\right|\mathfrak{K}_{1}\left(C_{1}r+\mathfrak{F}_{1}\right) +\left|\lambda_{2}\right|\mathfrak{K}_{2}\left(C_{2}r+\mathfrak{F}_{2}\right)} {\Gamma(\wp)}\frac{\mathfrak{T}^{\wp}}{\wp} +\frac{r+\mathfrak{K}_{3}}{\Gamma(\wp)}\frac{\mathfrak{T}^{\wp}}{\wp}\\ \leq& \left(2\left\|\mathfrak{g}\right\|+2\left|\lambda_{1}\right|\mathfrak{K}_{1}\left(C_{1}r+\mathfrak{F}_{1}\right) +2\left|\lambda_{2}\right|\mathfrak{K}_{2}\left(C_{2}r+\mathfrak{F}_{2}\right) +\mathfrak{K}_{3}\right)\frac{\mathfrak{T}^{\wp}}{\Gamma(\wp+1)}\\ = & \left\{2\left(\left\|\mathfrak{g}\right\|+\left|\lambda_{1}\right|\mathfrak{K}_{1}\mathfrak{F}_{1} +\left|\lambda_{2}\right|\mathfrak{K}_{2}\mathfrak{F}_{2}\right)+2r\left(\left|C_{1}\lambda_{1}\right|\mathfrak{K}_{1} +\left|\lambda_{2}\right|C_{2}\mathfrak{K}_{2}\right)+\mathfrak{K}_{3}\right\}\frac{\mathfrak{T}^{\wp}}{\Gamma(\wp+1)}\\ \leq& r. \end{split} \end{equation*}

    That is, \left\|\Upsilon\left(\mu\right)\right\|\leq r , for all \mu\in B_{r} , which implies that \Upsilon\left(\mu\right)\in B_{r} and hence \Upsilon : B_{r}\rightarrow B_{r} is well-defined. Now, we have to show that \Upsilon : B_{r}\rightarrow B_{r} is continuous. For this, using (5.7) , (5.5) and (5.8) , we have

    \begin{align*} \begin{split} \bigg|\Upsilon \mu\left(\varkappa\right)&-\Upsilon \nu\left(\varkappa\right)\bigg|\\ = &\bigg|\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}\left(\lambda_{1}\int_{0}^{\vartheta}\mathfrak{J}_{1}\left(\vartheta, t\right) \xi_{1}\left(t, \mu\left(t\right)\right)dt +\lambda_{2}\int_{0}^{\mathfrak{T}}\mathfrak{J}_{2}\left(\vartheta, t\right)\xi_{2}\left(t, \mu\left(t\right)\right)dt\right)d\vartheta\\ &-\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}\left(\lambda_{1} \int_{0}^{\vartheta}\mathfrak{J}_{1}\left(\vartheta, t\right)\xi_{1}\left(t, \mu\left(t\right)\right)dt +\lambda_{2}\int_{0}^{\mathfrak{T}}\mathfrak{J}_{2}\left(\vartheta, t\right)\xi_{2}\left(t, \mu\left(t\right)\right)dt\right)d\vartheta\\ &-\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}\left(\lambda_{1}\int_{0}^{\vartheta}\mathfrak{J}_{1}\left(\vartheta, t\right) \xi_{1}\left(t, \nu\left(t\right)\right)dt +\lambda_{2}\int_{0}^{\mathfrak{T}}\mathfrak{J}_{2}\left(\vartheta, t\right)\xi_{2}\left(t, \nu\left(t\right)\right)dt\right)d\vartheta\\ &+\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}\left(\lambda_{1} \int_{0}^{\vartheta}\mathfrak{J}_{1}\left(\vartheta, t\right)\xi_{1}\left(t, \nu\left(t\right)\right)dt +\lambda_{2}\int_{0}^{\mathfrak{T}}\mathfrak{J}_{2}\left(\vartheta, t\right)\xi_{2}\left(t, \nu\left(t\right)\right)dt\right)d\vartheta \bigg|\\ \leq&\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1} \left(\left|\lambda_{1}\right|\int_{0}^{\vartheta}\left|\mathfrak{J}_{1}\left(\vartheta, t\right)\right|\left|\xi_{1}\left(t, \mu\left(t\right)\right) -\xi_{1}\left(t, \nu\left(t\right)\right)\right|dt\right)d\vartheta\\ &+\frac{1}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1} \left(\left|\lambda_{2}\right|\int_{0}^{\mathfrak{T}}\left|\mathfrak{J}_{2}\left(\vartheta, t\right)\right|\left|\xi_{2}\left(t, \mu\left(t\right)\right) -\xi_{2}\left(t, \nu\left(t\right)\right)\right|dt\right)d\vartheta\\ &+\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1} \left(\left|\lambda_{1}\right|\int_{0}^{\vartheta}\left|\mathfrak{J}_{1}\left(\vartheta, t\right)\right|\left|\xi_{1}\left(t, \mu\left(t\right)\right) -\xi_{1}\left(t, \nu\left(t\right)\right)\right|dt\right)d\vartheta\\ &+\frac{b}{(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1} \left(\left|\lambda_{2}\right|\int_{0}^{\mathfrak{T}}\left|\mathfrak{J}_{2}\left(\vartheta, t\right)\right|\left|\xi_{2}\left(t, \mu\left(t\right)\right) -\xi_{2}\left(t, \nu\left(t\right)\right)\right|dt\right)d\vartheta \end{split} \end{align*}
    \begin{align*} \begin{split} \leq&\frac{C_{1}\mathfrak{K}_{1}\left|\lambda_{1}\right|\left\|\mu-\nu\right\| +C_{2}\mathfrak{K}_{2}\left|\lambda_{2}\right|\left\|\mu-\nu\right\|}{\Gamma(\wp)}\int_{0}^{\varkappa}(\varkappa-\vartheta)^{\wp-1}d\vartheta\\ &+\frac{bC_{1}\mathfrak{K}_{1}\left|\lambda_{1}\right|\left\|\mu-\nu\right\| +bC_{2}\mathfrak{K}_{2}\left|\lambda_{2}\right|\left\|\mu-\nu\right\|} {(a+b)\Gamma(\wp)}\int_{0}^{\mathfrak{T}}(\mathfrak{T}-\vartheta)^{\wp-1}d\vartheta\\ = & \frac{\left(C_{1}\mathfrak{K}_{1}\left|\lambda_{1}\right|\left\|\mu-\nu\right\| +C_{2}\mathfrak{K}_{2}\left|\lambda_{2}\right|\left\|\mu-\nu\right\|\right)\varkappa^{\wp}}{\Gamma(\wp+1)}\\ &+\frac{C_{1}\left(\mathfrak{K}_{1}\left|\lambda_{1}\right|\left\|\mu-\nu\right\| +C_{2}\mathfrak{K}_{2}\left|\lambda_{2}\right|\left\|\mu-\nu\right\|\right)\mathfrak{T}^{\wp}}{\Gamma(\wp+1)}\\ \leq&\frac{2\left(C_{1}\mathfrak{K}_{1}\left|\lambda_{1}\right| +C_{2}\mathfrak{K}_{2}\left|\lambda_{2}\right|\right)\mathfrak{T}^{\wp}}{\Gamma(\wp+1)}\left\|\mu-\nu\right\|. \end{split} \end{align*}

    But \left|\lambda_{1}\right|C_{1}\mathfrak{K}_{1} +\left|\lambda_{2}\right|C_{2}\mathfrak{K}_{2} < \frac{\Gamma(\wp+1)}{2\mathfrak{T}^{p}} , that is \mathbb{h} = \frac{2\left(C_{1}\mathfrak{K}_{1}\left|\lambda_{1}\right| +C_{2}\mathfrak{K}_{2}\left|\lambda_{2}\right|\right)\mathfrak{T}^{\wp}}{\Gamma(\wp+1)}\in\left(0, 1\right) . It follows from above that

    \begin{equation} \left\|\Upsilon \mu-\Upsilon \nu\right\| \leq\mathbb{h}\left\|\mu-\nu\right\|. \end{equation} (5.9)

    That is, \Upsilon : B_{r}\rightarrow B_{r} is contraction and hence continuous. Next, we have to show that \Upsilon is \mathcal{L}_{\rm{m}} -contraction. Let \Lambda be any subset of B_{r} with {\rm{m}} (\Lambda) > 0, and \mu, \nu\in \Lambda . Then from inequality (5.9) , we write

    \begin{equation} \begin{split} \text{diam}\left(\Upsilon\Lambda\right) \leq\mathbb{h} \text{diam}\left(\Lambda\right). \end{split} \end{equation} (5.10)

    Now, let define \theta:(0, \infty)\rightarrow (1, \infty) by \theta(t) = e^{t} , then clearly \theta\in\Theta . Using inequality (5.10) , we have

    \begin{equation*} \begin{split} \theta\left({\rm{m}}\left(\Upsilon\left(\Lambda\right)\right)\right) = &\theta\left(\text{diam}\left(\Upsilon\left(\Lambda\right)\right)\right)\\ = &e^{\text{diam}\left(\Upsilon\left(\Lambda\right)\right)}\\ \leq&e^{\mathbb{h} \text{diam}\left(\Lambda\right)}\\ = &\left(e^{\text{diam}\left(\Lambda\right)}\right)^{\mathbb{h}}\\ = &\left(e^{{\rm{m}}\left(\Lambda\right)}\right)^{\mathbb{h}}\\ = &\left(\theta\left({\rm{m}}\left(\Lambda\right)\right)\right)^{\mathbb{h}}. \end{split} \end{equation*}

    Consequently,

    \begin{equation*} \frac{\left(\theta\left({\rm{m}}\left(\Lambda\right)\right)\right)^{\mathbb{h}}} {\theta\left({\rm{m}}\left(\Upsilon\left(\Lambda\right)\right)\right)}\geq1. \end{equation*}

    Thus for \mathscr{L}(\kappa_{1}, \kappa_{2}) = \frac{\kappa_{2}^{\mathbb{h}}}{\kappa_{1}} , the above inequality becomes

    \begin{equation*} \mathscr{L}(\theta({\rm{m}} (\Upsilon(\Lambda))), \theta({\rm{m}} (\Lambda)))\geq1, \end{equation*}

    That is, \Upsilon : B_{r}\rightarrow B_{r} is \mathcal{L}_{\rm{m}} -contraction and so Theorem 4.2 ensures the existence of a fixed point of \Upsilon in B_{r} , equivalently, the Eq (5.3) has a solution in B_{r} .

    To illustrate the Theorem 5.3 , we present an example.

    Example 5.4. Consider the following Caputo fractional Volterra–Fredholm integro-differential equation

    \begin{equation} \begin{split} ^{c}D^{0.9}\mu(\varkappa) = -\frac{\varkappa^{3}e^{-\varkappa^{4}}}{2} -\frac{1}{7}\int_{0}^{\varkappa}\frac{\varkappa}{3}\sin\left(\frac{\vartheta}{3}\right)\sqrt{2\vartheta+3[\mu(\vartheta)]^{2}}d\vartheta +\frac{1}{22}\int_{0}^{2}\frac{\varkappa^{2}\sqrt{5+2[\mu(\vartheta)]^{2}}}{1+\vartheta\varkappa^{2}}d\vartheta, \end{split} \end{equation} (5.11)

    with boundary condition

    \begin{equation} 5\mu(0)+3\mu(2) = \frac{1}{\Gamma(0.9)}\int_{0}^{2}(2-\vartheta)^{0.9-1}\frac{s\cos\left(\frac{\vartheta}{2}\right)}{\varkappa^{2}+5}d\vartheta, \end{equation} (5.12)

    Compare Eq (5.11) with Eq (5.1) , we get

    \begin{equation*} \begin{split} &\lambda_{1} = \frac{-1}{7}, \lambda_{2} = \frac{1}{22}, a = 5, b = 3, \mathfrak{g}(\varkappa) = -\frac{\varkappa^{3}e^{-\varkappa^{4}}}{2}, \\ &\mathfrak{J}_{1}\left(\varkappa, \vartheta\right) = \frac{\varkappa}{3}\sin\left(\frac{\vartheta}{3}\right), \mathfrak{J}_{2}\left(\varkappa, \vartheta\right) = \frac{\varkappa^{2}}{1+\vartheta\varkappa^{2}}, \mathfrak{J}_{3}\left(\varkappa, \vartheta\right) = \frac{s\cos\left(\frac{\vartheta}{2}\right)}{\varkappa^{2}+5}, \\ &\xi_{1}\left(\vartheta, \mu\left(\vartheta\right)\right) = \sqrt{2\vartheta+3[\mu(\vartheta)]^{2}}, \xi_{2}\left(\vartheta, \mu\left(\vartheta\right)\right) = \sqrt{5+2[\mu(\vartheta)]^{2}}. \end{split} \end{equation*}

    Clearly \mathfrak{g}: [0, 2]\rightarrow \mathbb{R} , \mathfrak{J}_{1}, \mathfrak{J}_{2}, \mathfrak{J}_{3}: [0, 2]\times [0, 2]\rightarrow \mathbb{R} and \xi_{1}, \xi_{2}: [0, 2]\times\mathbb{R}\rightarrow \mathbb{R} are continuous. Now, we have to verify condition (5.5) of Theorem 5.3. Consider

    \begin{equation*} \begin{split} \left|\xi_{1}\left(\vartheta, \mu\left(\vartheta\right)\right)-\xi_{1}\left(\vartheta, \nu\left(\vartheta\right)\right)\right| = &\left|\sqrt{2\vartheta+3[\mu(\vartheta)]^{2}}-\sqrt{2\vartheta+3[\nu(\vartheta)]^{2}}\right|\\ = &\frac{\left|2\vartheta+3[\mu(\vartheta)]^{2}-2\vartheta-3[\nu(\vartheta)]^{2}\right|} {\sqrt{2\vartheta+3[\mu(\vartheta)]^{2}}+\sqrt{2\vartheta+3[\nu(\vartheta)]^{2}}}\\ \leq&\frac{3\left|[\mu(\vartheta)]^{2}-[\nu(\vartheta)]^{2}\right|} {3[\left|\mu(\vartheta)\right|+\left|\nu(\vartheta)\right|]}\\ = &\frac{\left|\mu(\vartheta)-\nu(\vartheta)\right|\left|\mu(\vartheta)+\nu(\vartheta)\right|} {\left|\mu(\vartheta)\right|+\left|\nu(\vartheta)\right|}\\ \leq&\left\|\mu-\nu\right\|. \end{split} \end{equation*}

    Similarly,

    \begin{equation*} \begin{split} \left|\xi_{2}\left(\vartheta, \mu\left(\vartheta\right)\right)-\xi_{2}\left(\vartheta, \nu\left(\vartheta\right)\right)\right| \leq\left\|\mu-\nu\right\|. \end{split} \end{equation*}

    Thus \xi_{1}, \xi_{2}: \mathbb{R}\rightarrow \mathbb{R} are Lipschitz with C_{1} = C_{2} = 1 .

    Next, we have to verify the conditions (5.7) and (5.8) of Theorem 5.3. To do this, we have

    \begin{equation*} \begin{split} \mathfrak{K}_{1} = \sup\int_{0}^{\varkappa}\left|\frac{\varkappa}{3}\sin\left(\frac{\vartheta}{3}\right)\right|d\vartheta = \sup\left(-\left|\varkappa\right|\cos\left(\frac{\varkappa}{3}\right)\right) = 0, \end{split} \end{equation*}
    \begin{equation*} \begin{split} \mathfrak{K}_{2} = \sup\int_{0}^{\varkappa}\left|\frac{\varkappa^{2}}{1+\vartheta\varkappa^{2}}\right|d\vartheta = \sup\left(\ln(1+\varkappa^{3})\right) \approx 2.197, \end{split} \end{equation*}

    and

    \begin{equation*} \begin{split} \mathfrak{K}_{3} & = \sup\left(\frac{1}{\varkappa^{2}+5}\int_{0}^{\varkappa}\vartheta\cos\left(\frac{\vartheta}{2}\right)d\vartheta\right) = \sup\left(\frac{2\varkappa\sin\left(\frac{\varkappa}{2}\right)+4\cos\left(\frac{\varkappa}{2}\right)-4}{\varkappa^{2}+5}\right)\approx 0.17. \end{split} \end{equation*}

    Finally, to verify condition (5.6) of Theorem 5.3 . Let B_{2} = \left\{\mu\in \mathcal{C}\left(\left[0, 2\right], \mathbb{R}\right):\left\|\mu\right\|\leq 2\right\} , then since \left\|\mathfrak{g}\right\| = 0, \mathfrak{K}_{1} = 0, \mathfrak{K}_{2}\approx 2.197, \mathfrak{K}_{3} = 0.17 , \mathfrak{F}_{1} = 2, and \mathfrak{F}_{2} = \sqrt{5} , so we have

    \begin{equation*} \left|\lambda_{1}\right|C_{1}\mathfrak{K}_{1}+\left|\lambda_{2}\right|C_{2}\mathfrak{K}_{2} \approx 0.104619 < 0.2576988\approx \frac{\Gamma(\wp+1)}{2\mathfrak{T}^{p}}, \end{equation*}

    and

    \begin{equation*} \begin{split} \frac{2\left[\left\|\mathfrak{g}\right\|+\left|\lambda_{1}\right|\mathfrak{K}_{1}\mathfrak{F}_{1} +\left|\lambda_{2}\right|\mathfrak{K}_{2}\mathfrak{F}_{2}\right]+\mathfrak{K}_{3}} {\mathfrak{T}^{-\wp}\Gamma(\wp+1)-2\left[\left|\lambda_{1}\right|C_{1}\mathfrak{K}_{1} +\left|\lambda_{2}\right|C_{2}\mathfrak{K}_{2}\right]} \approx & 1.953315 < 2. \end{split} \end{equation*}

    Thus Theorem 5.3 ensures the existence of a solution of (5.11) in B_{2} .

    Darbo type contractions are introduced and fixed point results are established in a Banach space using the concept of measure of non compactness. Various existing results are deduced as corollaries to our main results. Further, our results are applied to prove the existence and uniqueness of solution to the Caputo fractional Volterra–Fredholm integro-differential equation under integral type boundary conditions which is further illustrated by appropriate example. Our study paves the way for further studies on Darbo type contractions and its applications.

    The authors are thankful to the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia, for supporting this research.

    All authors declare no conflicts of interest in this paper.



    [1] Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. No. OSU/DGSS-355, Ohio State University.
    [2] Müller-wohlfeil DI, lahmer W, krysanova V, et al. (1996) Topography-based hydrological modeling in the Elbe River drainage basin. In: Third International Conference/Workshop on Integrating GIS and Environmental Modeling, National Center for Geographic Information and Analysis, C.A, Santa Fe.
    [3] Mark DM, Smith B (2004) A science of topography: from qualitative ontology to digital representations. In: Bishop MP, Shroder JF (Eds.), Geographic Information Science and Mountain Geomorphology, Springer-Praxis, Chichester, England, 75-97.
    [4] Khal M, Algouti Ab, Algouti A (2018) Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software. In: World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering, 12: 1102-1106.
    [5] Mcluckie D, NFRAC (2008) Flood risk management in Australia. Aust J Emerg Manag 23: 21-27.
    [6] Ait Mlouk M, Algouti Ab, Algouti Ah, et al. (2018) Assessment of river bank erosion in semi-arid climate regions using remote sensing and GIS data: a case study of Rdat River, Marrakech, Morocco. Estud Geol 74: 81. doi: 10.3989/egeol.43217.493
    [7] Williams J (2009) Weather Forecasting. The AMS Weather Book: The Ultimate Guide to America's Weather. American Meteorological Society, Boston, MA. doi: 10.1007/978-1-935704-55-3
    [8] Da ros D, Borga M (1997) Use of digital elevation model data for the derivation of the geomorphological instantaneous unit hydrograph. Hydrol Process 11: 13-33. doi: 10.1002/(SICI)1099-1085(199701)11:1<13::AID-HYP400>3.0.CO;2-M
    [9] Tesfa TK, Tarboton DG, Watson DW, et al. (2011) Extraction of hydrological proximity measures from DEMs using parallel processing. Environ Model Softw 26: 1696-1709. doi: 10.1016/j.envsoft.2011.07.018
    [10] Jobin T, Prasannakumar V (2015) Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto Int 30: 346-364. doi: 10.1080/10106049.2014.955063
    [11] Kishan SR, Anil KM, Vinay KS, et al. (2012) Comparative evaluation of horizontal accuracy of elevations of selected ground control points from ASTER and SRTM DEM with respect to CARTOSAT-1 DEM: a case study of Shahjahanpur district, Uttar Pradesh, India. Geocarto Int 28: 439-452.
    [12] Tian Y, Lei S, Bian Z, et al. (2018) Improving the Accuracy of Open Source Digital Elevation Models with Multi-Scale Fusion and a Slope Position-Based Linear Regression Method. Remote Sens 10: 1861. doi: 10.3390/rs10121861
    [13] Cuartero A, Felicsimo AM, Ariza FJ (2004) Accuracy of DEM generation from TERRA-ASTER stereo data. Int Arch Photogramm Remote Sens 35: 559-563.
    [14] Day T, Muller J (1988) Quality assessment of digital elevation models produced by automatic stereo-matchers from SPOT image pairs. Photogramm Rec 12: 797-808. doi: 10.1111/j.1477-9730.1988.tb00630.x
    [15] Fujisada H (1994) Overview of ASTER instrument on EOS-AM1 platform. In: Proceedings of SPIE, 2268: 14-36. doi: 10.1117/12.185838
    [16] Toutin T (2008) ASTER DEMs for geomatic and geoscientific applications. Int J Remote Sens 29: 1855-1875. doi: 10.1080/01431160701408477
    [17] Bolstad PV, Stowe T (1994) An evaluation of DEM accuracy: elevation, slope, and aspect. Photogramm Eng Remote Sens 60: 1327-1332.
    [18] Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: A review. Hydrol Process 9: 251-290. doi: 10.1002/hyp.3360090305
    [19] Vijith H, Seling LW, Dodge-Wan D (2015) Comparison and Suitability of SRTM and ASTER Digital Elevation Data for Terrain Analysis and Geomorphometric Parameters: Case Study of Sungai PatahSubwatershed (Baram River, Sarawak, Malaysia). Environ Res Eng Manag 71: 23-35. doi: 10.5755/j01.erem.71.3.12566
    [20] Beven KJ, Moore ID (1993) Terrain analysis and distributed modelling in hydrology. New York: Wiley.
    [21] Wang XH, Yin ZY (1998) A comparison of drainage networks derived from digital elevation models at two scales. J Hydrol 210: 221-241. doi: 10.1016/S0022-1694(98)00189-9
    [22] Wang W, Yang X, Yao T (2012) Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrol Process 26: 213-225. doi: 10.1002/hyp.8127
    [23] Nikolakopoulos KG, Kamaratakis EK, Chrysoulakis N (2006) SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int J Remote Sens 27: 4819-4838. doi: 10.1080/01431160600835853
    [24] Pryde JK, Osorio J, Wolfe ML, et al. (2007) USGS. An ASABE Meeting Presentation Paper Number: 072093, Minneapolis Convention Center Minneapolis, Minnesota, June; 072093.
    [25] Jing C, Shortridge A, Lin S, et al. (2014) Comparison and validation of SRTM and ASTER GDEM for a subtropical landscape in Southeastern China. Int J Digit Earth 7: 969-992. doi: 10.1080/17538947.2013.807307
    [26] Dewitt JD, Warner TA, Conley JF (2015) Comparison of DEMS derived from USGS DLG, SRTM, a statewide photogrammetry program, ASTER GDEM and LiDAR: implications for change detection. GIScience Remote Sens 52: 179-197. doi: 10.1080/15481603.2015.1019708
    [27] Moudrý V, Lecours V, Gdulová K, et al. (2018) On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecol Modell 383: 3-9. doi: 10.1016/j.ecolmodel.2018.05.006
    [28] Zhang K, Gann D, Ross M, et al. (2019) Comparison of TanDEM-X DEM with LiDAR Data for Accuracy Assessment in a Coastal Urban Area. Remote Sens 11: 876. doi: 10.3390/rs11070876
    [29] Kinsey-Henderson AE, Wilkinson SN (2012) Evaluating Shuttle radar and interpolated DEMs for slope gradient and soil erosion estimation in low relief terrain. Environ Modell Softw 40: 128-139. doi: 10.1016/j.envsoft.2012.08.010
    [30] Lin S, Jing C, Coles NA, et al. (2013) Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stoch Environ Res Risk Assess 27: 209-221. doi: 10.1007/s00477-012-0577-x
    [31] Williams JR, Berndt HD (1977) Sediment yield prediction based on watershed hydrology. Transactions of the American Society of Agricultural and Biological Engineers. Trans ASAE 20: 1100-1104. doi: 10.13031/2013.35710
    [32] Rexer M, Hirt C (2014) Comparison of free high-resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Aust J Earth Sci 61: 213-226.
    [33] Renard KG, Foster GR, Weesies GA, et al. (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook, U.S. Department of Agriculture, No 703, 404.
    [34] Prasuhn V, Liniger H, Gisler S, et al. (2013) A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy 32: 281-291. doi: 10.1016/j.landusepol.2012.11.006
    [35] Mondal A, Khare D, Kundu S, et al. (2016) Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs. Geosci Front 8: 425-436. doi: 10.1016/j.gsf.2016.03.004
    [36] Mondal A, Khare D, Kundu S (2017) Uncertainty analysis of soil erosion modelling using different resolution of open-source DEMs. Geocarto Int 32: 334-349. doi: 10.1080/10106049.2016.1140822
    [37] Uhlemann S, Thieken AH, Merz B (2014) A quality assessment framework for natural hazard event documentation: application to trans-basin flood reports in Germany. Nat Hazards Earth Syst Sci 14: 189-208. doi: 10.5194/nhess-14-189-2014
    [38] USGS (2006) Earth Resources Observation and Science. Available from: https://www.usgs.gov/centers/eros.
    [39] Wang L, Liu H (2006) An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int J Geogr Inf Sci 20: 193-213. doi: 10.1080/13658810500433453
    [40] Das A, Agrawala R, Mohan S (2015) Topographic correction of ALOS-PALSAR images using InSAR-derived DEM. Geocarto Int 30: 145-153.
    [41] Jäger R, Kaminskis J, Balodis J (2012) Determination of Quasi-geoid as Height Component of the Geodetic Infrastructure for GNSS-Positioning Services in the Baltic States. Latv J Phys Tech Sci 49: 2.
    [42] Ghilani CD, Wolf PR (2006) Adjustment Computations: Spatial Data Analysis, 4th Edition, John Wiley & Sons, Hoboken.
    [43] Al-Fugara A (2015) Comparison and Validation of the Recent Freely Available DEMs over Parts of the Earth's Lowest Elevation Area: Dead Sea, Jordan. Int J Geosci 6: 1221-1232. doi: 10.4236/ijg.2015.611096
    [44] Shaw EM (1988) Van Nostrand Reinhold International, London, United Kingdom. Hydrology in practice.
    [45] Strahler AN (1964) Quantitative geomorphology of drainage basin and channel network. In Chow VT (ed), Handbook of Applied Hydrology, McGrawHill, NewYork, NY, USA.
    [46] Wanielista MP, Kersten R, Eaglin R (1997) Hydrology: Water Quantity and Quality Control, Wiley, New York.
    [47] Musy A (2001) Ecole Polytechnique Fédérale, Lausanne, Suisse, e-drologie.
    [48] Roche M (1963) Hydrologie de Surface. Gauthier-Villars, Paris, 140: 659.
    [49] Horton RE (1945) Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Geol Soc Am Bull 56: 275-370. doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
    [50] Strahler AN (1952) Hypsometric analysis of erosional topography. Bull Geol Soc Am 63: 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
    [51] Schumm SA (1956) Evolution of drainage systems and slopes in badlands at perth amboy, new jersey. Geol Soc Am Bull 67: 597-646. doi: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
    [52] Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24: 43-69. doi: 10.1080/02626667909491834
    [53] Pandey A, Chowdary VM, Mal BC (2007) Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour Manage 21: 729-746. doi: 10.1007/s11269-006-9061-z
    [54] Freeman TG (1991) Calculating Catchment Area With Divergent Flow Based on a Regular Grid. Comput Geosci 17: 413-422. doi: 10.1016/0098-3004(91)90048-I
    [55] Kamp U, Bolch T, Olsenholler J (2005) Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of digital elevation models (DEMs) from ASTER remote sensing data and contour maps. Geocarto Int 20: 23-33. doi: 10.1080/10106040508542333
    [56] Datta PS, Schack-Kirchner H (2010) Erosion Relevant Topographical Parameters Derived from Different DEMs-A Comparative Study from the Indian Lesser Himalayas. Remote Sens 2: 1941-1961. doi: 10.3390/rs2081941
    [57] Luo W (1998) Hypsometric analysis with a geographic information system. Comput Geosci 24: 815-821. doi: 10.1016/S0098-3004(98)00076-4
    [58] Vaze J, Teng J, Spencer G (2010) Impact of DEM accuracy and resolution on topographic indices. Environ Modell Softw 25: 1086-1098. doi: 10.1016/j.envsoft.2010.03.014
    [59] Holmes KW, Chadwick OA, Kyriankidis PC (2000) Error in USGS 30-meter digital elevation model and its impact on terrain modelling. J Hydrol 233: 154-173. doi: 10.1016/S0022-1694(00)00229-8
    [60] Huggel C, Schneider D, Miranda PJ, et al. (2008) Evaluation of ASTER and SRTM DEM data for lahar modelling: A case study on lahars from Popocatépetl volcano, Mexico. J Volcanol Geotherm Res 170: 99-110. doi: 10.1016/j.jvolgeores.2007.09.005
    [61] De Vente J, Poesen J, Govers G, et al. (2009) The implications of data selection for regional erosion and sediment yield modelling. Earth Surf Process Landf 34: 1994-2007. doi: 10.1002/esp.1884
    [62] Nitheshnirmal S, Thilagaraj P, Abdul Rahaman S, et al. (2019) Erosion risk assessment through morphometric indices for prioritisation of Arjuna watershed using ALOS-PALSAR DEM. Model Earth Syst Environ 5: 907-924. doi: 10.1007/s40808-019-00578-y
    [63] Bhakar R, Srivastav SK, Punia M (2010) Assessment of the relative accuracy of aster and SRTM digital elevation models along irrigation channel banks of Indira Gandhi Canal. J Water Land-use Manage 10: 1-11.
    [64] Hasan A, Pilesjo P, Persson A (2011) The use of LIDAR as a data source for digital elevation models-a study of the relationship between the accuracy of digital elevation models and topographical attributes in northern peatlands. Hydrol Earth Syst Sci Discuss 8: 5497-5522. doi: 10.5194/hessd-8-5497-2011
  • This article has been cited by:

    1. Stefano Biagi, Dimitri Mugnai, Eugenio Vecchi, Necessary condition in a Brezis–Oswald-type problem for mixed local and nonlocal operators, 2022, 132, 08939659, 108177, 10.1016/j.aml.2022.108177
    2. Cristiana De Filippis, Giuseppe Mingione, Gradient regularity in mixed local and nonlocal problems, 2022, 0025-5831, 10.1007/s00208-022-02512-7
    3. Xiangrui Li, Shuibo Huang, Meirong Wu, Canyun Huang, Existence of solutions to elliptic equation with mixed local and nonlocal operators, 2022, 7, 2473-6988, 13313, 10.3934/math.2022735
    4. Prashanta Garain, Erik Lindgren, Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations, 2023, 62, 0944-2669, 10.1007/s00526-022-02401-6
    5. G.C. Anthal, J. Giacomoni, K. Sreenadh, A Choquard type equation involving mixed local and nonlocal operators, 2023, 527, 0022247X, 127440, 10.1016/j.jmaa.2023.127440
    6. Serena Dipierro, Kanishka Perera, Caterina Sportelli, Enrico Valdinoci, An existence theory for superposition operators of mixed order subject to jumping nonlinearities, 2024, 37, 0951-7715, 055018, 10.1088/1361-6544/ad3793
    7. Alberto Maione, Dimitri Mugnai, Eugenio Vecchi, Variational methods for nonpositive mixed local–nonlocal operators, 2023, 26, 1311-0454, 943, 10.1007/s13540-023-00147-2
    8. Sabri Bahrouni, Symmetrization for Mixed Operators, 2024, 2391-4238, 10.2478/amsil-2024-0013
    9. João Vitor da Silva, Alessio Fiscella, Victor A. Blanco Viloria, Mixed local-nonlocal quasilinear problems with critical nonlinearities, 2024, 408, 00220396, 494, 10.1016/j.jde.2024.07.028
    10. Gianmarco Giovannardi, Dimitri Mugnai, Eugenio Vecchi, An Ahmad-Lazer-Paul-type result for indefinite mixed local-nonlocal problems, 2023, 527, 0022247X, 127442, 10.1016/j.jmaa.2023.127442
    11. Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci, Some maximum principles for parabolic mixed local/nonlocal operators, 2024, 0002-9939, 10.1090/proc/16899
    12. Sun-Sig Byun, Deepak Kumar, Ho-Sik Lee, Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities, 2024, 63, 0944-2669, 10.1007/s00526-023-02631-2
    13. Xifeng Su, Enrico Valdinoci, Yuanhong Wei, Jiwen Zhang, On some regularity properties of mixed local and nonlocal elliptic equations, 2025, 416, 00220396, 576, 10.1016/j.jde.2024.10.003
    14. Nicolò Cangiotti, Maicol Caponi, Alberto Maione, Enzo Vitillaro, Klein–Gordon–Maxwell Equations Driven by Mixed Local–Nonlocal Operators, 2023, 91, 1424-9286, 375, 10.1007/s00032-023-00387-0
    15. Prashanta Garain, Wontae Kim, Juha Kinnunen, On the regularity theory for mixed anisotropic and nonlocal p-Laplace equations and its applications to singular problems, 2024, 36, 0933-7741, 697, 10.1515/forum-2023-0151
    16. Shuibo Huang, Hichem Hajaiej, Lazer-mckenna type problem involving mixed local and nonlocal elliptic operators, 2025, 32, 1021-9722, 10.1007/s00030-024-01007-5
    17. Lovelesh Sharma, Brezis Nirenberg type results for local non-local problems under mixed boundary conditions, 2024, 16, 2836-3310, 872, 10.3934/cam.2024038
    18. Dimitri Mugnai, Edoardo Proietti Proietti Lippi, Quasilinear Fractional Neumann Problems, 2024, 13, 2227-7390, 85, 10.3390/math13010085
    19. Carlo Alberto Antonini, Matteo Cozzi, Global gradient regularity and a Hopf lemma for quasilinear operators of mixed local-nonlocal type, 2025, 425, 00220396, 342, 10.1016/j.jde.2025.01.030
    20. Tuhina Mukherjee, Lovelesh Sharma, On singular problems associated with mixed operators under mixed boundary conditions, 2025, 27, 1661-7738, 10.1007/s11784-025-01183-6
    21. R. Lakshmi, Sekhar Ghosh, Mixed local and nonlocal eigenvalue problems in the exterior domain, 2025, 1311-0454, 10.1007/s13540-025-00416-2
    22. Stefano Biagi, Serena Dipierro, Enrico Valdinoci, Eugenio Vecchi, A Brezis-Nirenberg type result for mixed local and nonlocal operators, 2025, 32, 1021-9722, 10.1007/s00030-025-01068-0
    23. Tuhina Mukherjee, Lovelesh Sharma, On elliptic problems with mixed operators and Dirichlet-Neumann boundary conditions, 2025, 32, 1021-9722, 10.1007/s00030-025-01093-z
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7150) PDF downloads(584) Cited by(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog