Research article

Bifurcation analysis in a diffusive predator-prey model with distributed memory and gestation delay

  • Published: 25 December 2025
  • This paper proposes and studies a predator-prey model incorporating distributed memory and gestation delay to more accurately describe animal movement. First, the stability conditions of the positive equilibrium in the absence of delays are analyzed. Second, the conditions for the occurrence of Turing and Hopf bifurcation without gestation delay are derived. Subsequently, the combined effects of memory delay and gestation delay on the stability of the positive equilibrium are investigated, revealing that their interaction can generate more complex spatiotemporal patterns. Furthermore, normal form theory is employed to determine the direction and stability of the Hopf bifurcation induced solely by memory delay in the absence of gestation delay. Finally, numerical simulations are conducted to validate the theoretical results. In addition, variations in the memory-based diffusion coefficient, memory delay, and gestation delay are shown to trigger transitions among spatially homogeneous/nonhomogeneous steady states and spatially homogeneous/nonhomogeneous periodic patterns.

    Citation: Doudou Lou, Yunxian Dai, Weidong Qin. Bifurcation analysis in a diffusive predator-prey model with distributed memory and gestation delay[J]. Electronic Research Archive, 2025, 33(12): 7918-7956. doi: 10.3934/era.2025349

    Related Papers:

  • This paper proposes and studies a predator-prey model incorporating distributed memory and gestation delay to more accurately describe animal movement. First, the stability conditions of the positive equilibrium in the absence of delays are analyzed. Second, the conditions for the occurrence of Turing and Hopf bifurcation without gestation delay are derived. Subsequently, the combined effects of memory delay and gestation delay on the stability of the positive equilibrium are investigated, revealing that their interaction can generate more complex spatiotemporal patterns. Furthermore, normal form theory is employed to determine the direction and stability of the Hopf bifurcation induced solely by memory delay in the absence of gestation delay. Finally, numerical simulations are conducted to validate the theoretical results. In addition, variations in the memory-based diffusion coefficient, memory delay, and gestation delay are shown to trigger transitions among spatially homogeneous/nonhomogeneous steady states and spatially homogeneous/nonhomogeneous periodic patterns.



    加载中


    [1] Q. Zhu, F. Chen, Impact of fear on searching efficiency of first species: A two species Lotka-Volterra competition model with weak Allee effect, Qual. Theory Dyn. Syst., 23 (2024), 143. https://doi.org/10.1007/s12346-024-01000-4 doi: 10.1007/s12346-024-01000-4
    [2] H. Zhang, H. Qi, Hopf bifurcation analysis of a predator-prey model with prey refuge and fear effect under non-diffusion and diffusion, Qual. Theory Dyn. Syst., 22 (2023), 135. https://doi.org/10.1007/s12346-023-00837-5 doi: 10.1007/s12346-023-00837-5
    [3] S. K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors-A mathematical study on prey-predator interactions, Appl. Math. Model., 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.021 doi: 10.1016/j.apm.2018.07.021
    [4] Y. Li, M. He, Z. Li, Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect, Math. Comput. Simul., 201 (2022), 417–439. https://doi.org/10.1016/j.matcom.2022.05.017 doi: 10.1016/j.matcom.2022.05.017
    [5] H. Mo, Y. Shao, Stability and bifurcation analysis of a delayed stage-structured predator-prey model with fear, additional food, and cooperative behavior in both species, Adv. Cont. Discr. Mod., 2025 (2025), 27. https://doi.org/10.1186/s13662-025-03879-y doi: 10.1186/s13662-025-03879-y
    [6] W. Kong, Y. Shao, Bifurcations of a Leslie-Gower predator-prey model with fear, strong Allee effect and hunting cooperation, AIMS Math., 7 (2024), 31607–31635. https://doi.org/10.3934/math.20241520 doi: 10.3934/math.20241520
    [7] W. Li, L. Zhang, J. Cao, A note on Turing-Hopf bifurcation in a diffusive Leslie-Gower model with weak Allee effect on prey and fear effect on predator, Appl. Math. Lett., 172 (2026), 109741. https://doi.org/10.1016/j.aml.2025.109741 doi: 10.1016/j.aml.2025.109741
    [8] P. A. Stephens, W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401–405. https://doi.org/10.1016/S0169-5347(99)01684-5 doi: 10.1016/S0169-5347(99)01684-5
    [9] F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 doi: 10.1016/S0169-5347(99)01683-3
    [10] W. C. Allee, Animal aggregations, Q. Rev. Biol., 2 (1927), 367–398. https://doi.org/10.1086/394281 doi: 10.1086/394281
    [11] P. Shri Harine, A. Kumar, K. P. Reshma, Local and global dynamics of a prey-predator system with fear, Allee effect, and variable attack rate, Chaos Interdiscip. J. Nonlinear Sci., 34 (2024), 93126. https://doi.org/10.1063/5.0227458 doi: 10.1063/5.0227458
    [12] Q. An, C. Wang, H. Wang, Analysis of a spatial memory model with nonlocal maturation delay and hostile boundary condition, Discrete Contin. Dyn. Syst. A, 40 (2020), 5845–5868. https://doi.org/10.3934/dcds.2020249 doi: 10.3934/dcds.2020249
    [13] S. Li, Z. Li, B. Dai, Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion, Discrete Contin. Dyn. Syst. B, 27 (2022), 6885-6906. https://doi.org/10.3934/dcdsb.2022025 doi: 10.3934/dcdsb.2022025
    [14] M. Liu, H. Wang, W. Jiang, Bifurcations and pattern formation in a predator-prey model with memory-based diffusion, J. Differ. Equations, 350 (2023), 1–40. https://doi.org/10.1016/j.jde.2022.12.010 doi: 10.1016/j.jde.2022.12.010
    [15] W. Zhang, D. Jin, R. Yang, Hopf bifurcation in a predator-prey model with memory effect in predator and anti-predator behaviour in prey, Mathematics, 11 (2023), 556. https://doi.org/10.3390/math11030556 doi: 10.3390/math11030556
    [16] X. Zhang, H. Zhu, Q. An, Dynamics analysis of a diffusive predator-prey model with spatial memory and nonlocal fear effect, J. Math. Anal. Appl., 525 (2023), 127123. https://doi.org/10.1016/j.jmaa.2023.127123 doi: 10.1016/j.jmaa.2023.127123
    [17] M. Wu, H. Yao, Bifurcation analysis of a delayed diffusive predator-prey model with spatial memory and toxins, Z. Angew. Math. Phys., 75 (2024), 25. https://doi.org/10.1007/s00033-023-02157-9 doi: 10.1007/s00033-023-02157-9
    [18] W. F. Fagan, M. A. Lewis, M. Auger-Méthé, T. Avgar, S. Benhamou, G. Breed, et al., Spatial memory and animal movement, Ecol. Lett., 16 (2013), 1316–1329. https://doi.org/10.1111/ele.12165 doi: 10.1111/ele.12165
    [19] J. Shi, C. Wang, H. Wang, X. Yan, Diffusive spatial movement with memory, J. Dyn. Differ. Equations, 32 (2020), 979–1002. https://doi.org/10.1007/s10884-019-09757-y doi: 10.1007/s10884-019-09757-y
    [20] Y. Song, J. Shi, H. Wang, Spatiotemporal dynamics of a diffusive consumer-resource model with explicit spatial memory, Stud. Appl. Math., 148 (2022), 373–395. https://doi.org/10.1111/sapm.12443 doi: 10.1111/sapm.12443
    [21] H. Shen, Y. Song, H. Wang, Bifurcations in a diffusive resource-consumer model with distributed memory, J. Differ. Equations, 347 (2023), 170–211. https://doi.org/10.1016/j.jde.2022.11.044 doi: 10.1016/j.jde.2022.11.044
    [22] U. E. Schlägel, M. A. Lewis, Detecting effects of spatial memory and dynamic information on animal movement decisions, Methods Ecol. Evol., 5 (2014), 1236–1246. https://doi.org/10.1111/2041-210X.12284 doi: 10.1111/2041-210X.12284
    [23] S. Li, S. Yuan, Z. Jin, H. Wang, Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator, J. Differ. Equations, 357 (2023), 32–63. https://doi.org/10.1016/j.jde.2023.02.009 doi: 10.1016/j.jde.2023.02.009
    [24] C. Wang, S. Yuan, H. Wang, Spatiotemporal patterns of a diffusive prey-predator model with spatial memory and pregnancy period in an intimidatory environment, J. Math. Biol., 84 (2022), 12. https://doi.org/10.1007/s00285-022-01716-4 doi: 10.1007/s00285-022-01716-4
    [25] H. Shen, Y. Song, Spatiotemporal patterns in a diffusive resource-consumer model with distributed memory and maturation delay, Math. Comput. Simul., 221 (2024), 622–644. https://doi.org/10.1016/j.matcom.2024.03.026 doi: 10.1016/j.matcom.2024.03.026
    [26] T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Am. Math. Soc., 352 (2000), 2217–2238. https://doi.org/10.1090/S0002-9947-00-02280-7 doi: 10.1090/S0002-9947-00-02280-7
    [27] S. Wu, Y. Song, Spatiotemporal dynamics of a diffusive predator-prey model with nonlocal effect and delay, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105310. https://doi.org/10.1016/j.cnsns.2020.105310 doi: 10.1016/j.cnsns.2020.105310
    [28] S. Ruan, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18 (2001), 41–52. https://doi.org/10.1093/imammb/18.1.41 doi: 10.1093/imammb/18.1.41
    [29] Q. Shi, J. Shi, H. Wang, Spatial movement with distributed memory, J. Math. Biol., 82 (2021), 33. https://doi.org/10.1007/s00285-021-01588-0 doi: 10.1007/s00285-021-01588-0
    [30] T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differ. Equ., 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144
    [31] Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differ. Equations, 300 (2021), 597–624. https://doi.org/10.1016/j.jde.2021.08.010 doi: 10.1016/j.jde.2021.08.010
    [32] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003. https://doi.org/10.1007/b97481
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(313) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog