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Abstract: This paper proposes and studies a predator-prey model incorporating distributed memory
and gestation delay to more accurately describe animal movement. First, the stability conditions
of the positive equilibrium in the absence of delays are analyzed. Second, the conditions for the
occurrence of Turing and Hopf bifurcation without gestation delay are derived. Subsequently, the
combined effects of memory delay and gestation delay on the stability of the positive equilibrium
are investigated, revealing that their interaction can generate more complex spatiotemporal patterns.
Furthermore, normal form theory is employed to determine the direction and stability of the Hopf
bifurcation induced solely by memory delay in the absence of gestation delay. Finally, numerical
simulations are conducted to validate the theoretical results. In addition, variations in the memory-
based diffusion coeflicient, memory delay, and gestation delay are shown to trigger transitions among
spatially homogeneous/nonhomogeneous steady states and spatially homogeneous/nonhomogeneous
periodic patterns.
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1. Introduction

The study of predator-prey dynamics occupies a central role in mathematical ecology. While
predators depend on prey for survival, excessive predation can drive prey populations to extinction,
ultimately leading to the collapse of the predator population, as well. Unlike direct predation, which
reduces prey numbers through mortality, fear effects as evidenced by numerous studies [1-5] can
exert broader and longer-lasting influences on prey populations by altering their behavior, life-history
traits, and spatial distribution within ecosystems. Biologists have observed that lots of biological
phenomena can induce the Allee effect, such as antipredator defence among the prey, mating
difficulty, and environmental conditions. A population needs to maintain a minimum density in order
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to avoid extinction, and this minimum density is referred to as an Allee threshold [6—10]. Considering
these biological elements, Harine et al. [11] put forward a predator-prey model with (i) a fear effect in
a prey population, (ii) an Allee effect in a predator population, and (iii) a variable attack rate which
adjusts the functional response:

% = lfliy —ToXx — 7‘1)62 - bng)cy-kc’
dy nax’y y (1.1)
AU = bxltxtc (W) —my,
where x, y are the density of prey and predator; r, ry, and r; denote the birth rate, the death rate, and
the intraspecific competition; %ky is the fear level function, where k denotes the cost of fear in prey;
2
bx‘;i xy — is the variable attack rate functional response, where a denotes the maximally achievable attack

rate and ¢ denotes the half saturation constant, and the prey population at which the attack rate is a/2, b
denotes the product of a maximally achievable attack rate and handling time; 1 denotes the conversion
coeflicient of prey biomass to predator biomass; # is the Allee function, where 6 denotes the strength
of the Allee effect; and m denotes the death rate of predator. The authors ensured the non-negativity
and boundedness of the solutions and examined the local and global stability of each equilibrium.

Animals possess memory and cognitive abilities that significantly shape their movement
behavior [12-15]. To avoid predation, prey species often use past experience to relocate to areas
historically associated with lower predator density; predators likewise rely on memory of prey
distribution over time to improve hunting efficiency [16, 17]. By incorporating spatial memory into
models, numerous scholars have investigated its impact on animal movement patterns and the
underlying mechanisms [18-22]. Shi et al. [19] proposed a single-species model with discrete
memory delay to describe the influence of memory on the animal movement. Song et al. [20]
developed a consumer-resource model incorporating a discrete delay to investigate the effect of
consumers’ memory on the spatial distribution of resources. The authors focused on discrete memory
delays in their research [19, 20]. Because memory fades over time, information regarding past
locations becomes increasingly difficult to retrieve later. Biologically, gradient-tracking movement
based on distributed memory (i.e., memory spanning past time periods) is more realistic than that
relying on memory at a specific past time point. Building on this insight, Shen et al. [21] incorporated
a distributed memory delay into the memory-driven diffusion term to examine the impact of such a
distributed delay on the dynamics of the diffusive resource-consumer model.

In recent years, a number of models incorporating dual delays have been proposed. For instance,
Li [23] developed a spatial model with memory delay in prey, Allee effect, and maturation delay with
delay-dependent coefficients for predators, aiming to understand species’ spatial distribution.
Wang [24] focused on analyzing the spatiotemporal dynamics of the model to reveal how spatial
memory and reproductive cycles influence the spatiotemporal distribution of prey. Nevertheless, to
the best of our knowledge, very few studies to date have examined systems with two delays in which
one of them is a distributed delay. Thus, on the basis of the model proposed in [11], we further
establish a diffusion model with the spatial memory through spatiotemporal distributed delay and the
gestation delay o, where the population density u(x, t), v(x, t) satisfies

Ou(x, 1) ru(x, r) 5 au?(x, Hv(x, 1)
= dyAu(x, - 1) = ) s, 0 Im, 1> 0,
ot nAulxn) + 1+ kv(x,1) rou(x, ) = rw (1) bu(x,1) + u(x,0) + ¢ <xsint>
av(x, 1) r]auz(x,t —ow(x,t—0o) v(x, 1)
= dyAv(x,t) — (x, )W _
5 = A0 D) = day [0 D, O = mv(x,0) + Ty b ww] | 0<x<lnt>0, (1.2)
up(x,1) = vx(x,1) = 0, x=0,Im,1>0,
u(x, 1) = ug(x, 1), v(x, 1) = vo(x, 1), O<x<lim,-1<t<0,
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where dy1,d,, > 0 denotes the self-diffusion coefficient of populations u(x, t), v(x, t). d,; denotes the
memory-based diffusion coefficient. For d,; > 0, predators move from low prey density to high prey
density. On the contrary, when d,; < 0, predators tend to migrate to low prey density areas, and it
indicates that there is no memory-driven diffusion when d,; = 0.

In this work, we utilize the memory-based distribution function presented in [25], which takes the
following form:

t I
W(r,t) = G % hwu = f f G5,y 1 = EVh(t = Ouly, E)dyde.
—o0 JO

Here, the spatiotemporal kernel function G(x, y, t): (0, Ir) X (0, Ir) X [0, +c0) — R* denotes

+00

G(x,y,0) = ) e, () (),

n=0

satisfying the normalization condition

n
f Gx,y,dx=1, ye(0,lIr), >0,
0
where p, are the eigenvalues of the negative Laplacian eigenvalue problem, satisfying

O=po Sy Spp <o Spj<eee

and lim;_,, p¢t; = +o0 and ¢,(x) are the corresponding normalized eigenfunctions of ,,.
We adopt a weak delay kernel, given by

1
h(t) = -7, 7> 0,
T

satisfying the normalization conditions f()+°° h(t)dt = 1 and f()+°° th(t)dt = 7. This kernel function
exhibits a strictly decreasing trend with respect to the variable #, which reflects that the memory of
animals can become ambiguous over time.

Nonlinear systems can exhibit rich dynamical behaviors, including Hopf bifurcation, Turing
bifurcation, and Turing—Hopf bifurcation, among others. The normal form plays an important role in
bifurcation analysis, as it allows one to determine the direction and stability of bifurcating solutions.
For reaction-diffusion systems with delay confined to the reaction term, Faria [26] introduced an
algorithm for computing the normal form of Hopf bifurcation. More recently, Wu et al. [27]
developed computational methods for reaction-diffusion systems incorporating both delay and
nonlocal spatial averaging. In [21], Shen et al. first proposed a consumer-resource model with
distributed memory and applied normal form theory to determine the direction and stability of the
Hopf bifurcation induced by the mean delay. In the present work, we employ the approach established
in [21] to derive the normal form of Hopf bifurcation for model (1.2), thereby characterizing its
direction and stability.

This paper is structured as follows. In Section 2, we investigate the stability conditions of the
positive equilibrium without delays and the conditions for the occurrence of Turing bifurcation and
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Hopf bifurcation without the gestation delay. In addition, the joint impact of distributed memory delay
and gestation delay on the stability of the positive equilibrium of system (1.2) is investigated along with
the induced bifurcation patterns. In Section 3, the normal form theory is used to determine the direction
and stability of Hopf bifurcation caused by the distributed memory delay without the gestation delay.
The numerical simulations are used to illustrate the theoretical results in Section 4. Finally, Section 5
presents the conclusions and discussion of this work.

2. Stability and Hopf bifurcation of system (1.2)

In this section, we first investigate the stability conditions of the positive equilibrium E, without
delays. Then, we provide the conditions for the occurrence of Turing bifurcation and Hopf bifurcation
when the gestation delay o = 0 and the memory delay 7 > 0. Finally, we discuss the stability conditions
of the positive equilibrium E, when oo > 0 and 7 > 0.

Let E, = (u.,v.) be the positive equilibrium, which satisfies the following equation

ru, au®v,

2
= o, — iy — ————— =0,
1+kv*2 buz +u, +c 2.1)
nauzv. Ve 0
—my, = 0.
bu§+u*+c(v*+6) Y
Then, the linearized system of system (1.2) at E. is
AN Au Aw u Uy
(o ]2 o)
where
d11 0) ( 0 0) (aU 0,’12) (0 0)
D, = ’D = ,A = ,B = . 23
! ( 0 d22 2 —dglv* 0 0 (0] ﬁ21 (0%) ( )
and
r ) au, v, (u, + 2¢) rku., au’? -0
) = —ry=2r iy — ———————= @y = — - ,
" ke, ! (bu? + u, + c)? 12 (1 +kv,)*> bu+u,+c
s nlau’v, P nau,v(u, + 2c) -0 nau®v,
a; =-m ,Bor = ,p = :
! O +v.2(bu2 +u, + )" T @+ v)(bud + u, + c)? 2T O+ v +u. + o)
We assume .
u(x, 0y Xn\ 1
(V(x, t)) = Z(; ( ) e (x) 2.4)

is the solution of linearized system (2.2). Substituting (2.4) into system (2.2), through some simple
calculations, we obtain

—+00 1 .
Aw(x, 1) = —u,u(x, t)f ;e‘s()”?”"”“")ds. (2.5)
0

In the following, we denote the set of positive integers by N and Ny = NU{0O}. Now, the characteristic
equation of system (2.2) at E, is

+00

_ _ 1 ,
2 =T, () A+ T, (e7) - duviaiop, f —em s irdum) g — 0 5 e N, (2.6)
0 T
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where
T;z(e_/llT):(CYl] + aq) — (dy +d22)'un+aze—/kr’ .
2 (6_/1‘7) B dndzz,ui — (dn@1 + dypay) py + @) + e (@ — apBa — ardyy) . '

In what follows, we denote a,; = a; + a, to simplify the equations.
When dy, = dy, = dry = 0 =0, Eq (2.6) becomes

B — (@) + an)d +a1ax — apfy = 0.
When the following condition
(H)) an+an<0,anan—apfy >0

holds, the corresponding ordinary differential equations (ODEs) of system (1.2) at E, are locally
asymptotically stable.
When dy, #0,dy #0,dy; # 0, and o = 0, Eq (2.6) becomes
| i
A =T, A+ J, — doyviiopty, f ;e‘f(“#dﬂ“”)ds =0,
0

where

T, A T;l(l) =ay + axp — (d + dp) i, (2.8)

A S~
Jp = J,(1) = dlldzz,ui —(dnan + dZZQ'll),un +aa — 0112,321-

Through calculation, it can be concluded that when

(Hy) dnaxp +dpap < 2\/d11d22 (anan — a/lzﬁzl)

holds, J, > O for any n € Nj. It immediately follows from (2.8) that 7, < 0 and J, > O for any
n € Ny with the conditions (H;) and (H,). The condition (H,) further confirms that the equilibrium
E. without memory-driven diffusion (d,; = 0) is asymptotically stable. That is to say, there is no
random-diffusion-driven Turing instability without the gestation delay.

2.1. Stability analysis of system (1.2) for dy; # 0, c =0and v =0
Ford,; # 0,0 =0, and 7 = 0, Eq (2.6) becomes
/12 —TyA+J, - dZIV*allll-ln =0,

where

: i =s(An+L+dnpn) g o ST 4 e —16(Apt+daapin) — o

lim —e \VinTrrantn)de =" lim e VTRt oS ¢ = e *dg =1.

-0 0 T -0+ 0 0
Thus, there exists

J
dy, =———<0,neN (2.9)
’ A2Vl

such that J, — dyv.@iop, > 0 for dyy > d5,, and J, — dyyv.appp, < 0 for dyy < d5, . We therefore
present the following theorem. ’ ’

Theorem 2.1. Conditions (H;) and (H;) are satisfied, when oo = 0 and 7 = 0, then the positive
equilibrium E, of system (1.2) is asymptotically stable for d,; > d§1,n-
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2.2. Stability analysis of system (1.2) for dy # 0, c = 0and v > 0

For d»; # 0, 0 > 0, and T > 0, we obtain

+00 1 1
f 1 s(/ln+%+d22#n)ds — { L+ At+doop,7° Red + T + dZZIJn > 07
0

_e_
T 400, Red+ 1 +dypp, <0,

which means that Eq (2.6) has no roots if Red + % + dyu, < 0. For Red + % + dpu, > 0, Eq (2.6) is
equivalent to the following equation:

E(r,0,1) =1 +P, (r, e—ﬂ”) 2+0, (r, e—ﬂ”) 1+R, (T, e—ﬂ") =0,n €Ny, (2.10)

where
P,(r.e) = % + doopty = T, (¢7),

N

Qu(r.e) = T, (e"7) = T, (e77) (% + dzzun), 2.11)
Ri(r.e™) =T, () (% + dzzlln) - —dﬂv*flzﬂ",

and T, (e‘”"), 7, (e‘*") are defined by (2.7).
Ford,; # 0,0 =0, and 7 > 0, Eq (2.10) becomes

2+ Py(r, DA%+ Q,(1, DA+ R,(1,1) =0,n € N, (2.12)

where P,(t, 1) = L + doppty, — T, > 0, Q7. 1) = J, = T (£ + dops)) > 0, and R, (1, 1) = L=
J.dxnu,. By the Routh-Hurwitz criterion, we obtain the following lemma.

Lemma 2.2. Under conditions (H,) and (H,), for fixed n,

() when 0 < R,(7,1) < P,(7,1)Q,(1, 1), all roots of Eq (2.12) have negative real part;

(II) when R, (7,1) = 0, Eq (2.12) has a zero root of multiplicity one and two roots with negative
real part;

(ITI) when R, (7, 1) < 0, Eq (2.12) has at least one positive real root;

(IV) when R,(1,1) = P,(1,1)Q,(t, 1), Eq (2.12) has a pair of purely imaginary +i vQ,(t, 1) and a
negative real root;

(V) when R,(t1,1) > P,(1,1)Q,(t,1), Eq (2.12) has a negative real root and a pair of conjugate
complex roots with positive real part.

2.2.1. Stability and Turing bifurcation when o = 0,7 > 0

For any n € Ny, 4 = 0 is a root of the characteristic equation (2.12) when R,(7,1) = 0, which
implies 7 = 75, where
s _ davianpp, —J,
" d22ﬂr1] n
provided dy, < d3, . In this case, Eq (2.12) reduces to A* + P,(t, 1)A* + Q,(7, 1)A = 0 for n € N. Thus,
Eq (2.12) has a zero root of multiplicity one and two roots with negative real part because P,(7,1) > 0
and Q,(t,1) > 0.

,n €N, (2.13)
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The following transversality condition is provided at 7 = 75.

Lemma 2.3. Let A(7) be a root of the Eq (2.12) around 7 = 75 and satisfy A (T;f) = 0, where 75 is
defined by (2.13). Hence
da (TS )

n

< 0.
dr

=13

Proof. Taking A as the function of 7 and differentiating of Eq (2.12) with respect to 7, we get

dA(r)  Pyn, DAZ+ Qy(r, DA+ R, (7, 1)
dr 32+ 2P, (1, DA+ Q,(1, 1)

(2.14)

where dﬁ(:) s = ZE:SSB = —TSdQ”’(‘Tfl) < 0 because J, > 0,75 > 0, and Q, (Tﬁ , 1) > 0. This
compeltes the proof.
Next, we analyze how the root distribution of the characteristic equation (2.12) varies with d»;.
Lemma 2.4. Suppose that conditions (H;) and (H,) are satisfied, and dg - 75 are defined as in (2.9)

and (2.13), respectively. Additionally, define

sk __ S _ S
dy = max{d3,,}. 75 = max {r]] (2.15)
with
Sr(dy) = {neN|d3,, > dn}, for fixed dy < d. (2.16)

Thus, we establish the following results.

(I) When dg < dy; < 0, for any 7 > 0 and any n € N, all roots of Eq (2.12) possess negative
real parts.

(I) When d;; < d;, the following subcases hold:

(i) for T > 75 and any n € N, all roots of Eq (2.12) possess negative real parts;

(i1) for 0 < 7 < 75 and some n € S7 (d>1), Eq (2.12) has at least one root with a positive real part;

(iii)) A = 0 is a root of Eq (2.12) if and only if 7 = Tﬁ for some n € S7(d»), and all other roots of
Eq (2.12) have negative real parts.

Proof. First, we investigate the existence conditions for d§ and 75. From (2.9), we get

Q1@ — @
1122 12821 —(dnan +dpayy)],

1
dgl,,, = (d 11dayopt, +

V@12 n

where u,, is an increasing function of n, and lim,_,,. i, = +oo0. Consequently, dgl , decreases for
Uy > A /%}‘gzﬁ” but increases for u, < ,/% and lim,_,, d5, , = —co, which implies that
d; = max,ay {d3, | exists. Then, for fixed dy, the set S (dy) defined by (2.16) is finite, which in turn

implies the existence of g = maX,es, () {Tﬁ }
Subsequently, we establish the distribution of the roots of Eq (2.12). For fixed n, we have

<0, dy <d5 ,0<7<7),
Ri(t,1){ =0, dy <dj . T=1,, (2.17)
> 0, d21 > dgl’n,VT >0or d21 < dgl,n’T > Tﬁ.
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If dy; < 0from (2.11), together with 7, < 0, J, > 0 and a1, < 0, we obtain P,(7, 1)Q,(1, 1) - R, (7, 1) >
0. Thus, together with (2.17), for fixed n, we get

R.(1,1) <0, d21<d21 ,OST<T;§,

Ry(t,1) =0, dy <dS . T=15, (2.18)

0 <Ry (1,1) < P(r, DQu(T, 1), S, <dy <O¥T>00rdy <dS

S T > T
Together with Lemma 2.2, we complete the proof.

Theorem 2.5. Given that conditions (H;) and (H») are satisfied, Tn ,dg, Ts, and S 7 (d»;) are defined
by (2.13), (2.15), and (2.16), respectively. Then, the following statements can be obtained.

(D If di < dy < 0, then the positive equilibrium E, of system (1.2) is locally asymptotically stable
for any 7 > 0 and any n € N;

(ID If d»; < dg, then the positive equilibrium E, of system (1.2) is locally asymptotically stable for

T > 75 and unstable for 0 < 7 < 7, and the Turing bifurcations occur at 7 = Tﬁ forn € St (dy).

2.2.2. Stability and Hopf bifurcation when oo = 0,7 > 0

From Lemma 2.2, it can be seen that when P, (7, 1)Q,(t, 1)—R, (7, 1) = 0, the characteristic equation
(2.12) has a purely imaginary roots for any n € Ny. From (2.11), we have

Py(7, 1)Qy(7, 1) = Ry(7, 1)

( T,J,+ dzz,unT d2 Tn) 72 + (T,% - 2dpu, T, + dglv*aqz,un)‘r -7, (2.19)
72 .

Here, -T,J,, + dop, T2 — d3 2T, > 0, and =T, > 0.

Proposition 2.6. Assume the conditions (H,) and (H;) hold, for fixed n, 7 and 7, are defined by
(2.21) and (2.24), and d%; , is defined by (2.23). Thus, we get

P,(,1)0,(1,1) > Ry(7,1) >0, 0<dy < dfl VT >0

ordy > df wTE0, ) U (1, +0)
ordy = dg] L €[0,7,) U (1,,0),
Pn(T’ 1)Qn(Ta 1) = Rn(Ta 1)9 d2 d21 T =Ta or d21 > d21 p = Tﬁ,
P.(t,1)0,(1,1) < R,(1, 1), dr) > d21 STE(T,T,).
Proof. From Eq (2.19), if T,f — 2dpu, T, + dyv.apu, =0, then we have
. ~T? + 2dpou, T,
gy = —n T2 (2.20)

VX 12Up

D If dyy < czl, we obtain T,% - 2dpu, T, + dyviapu, > 0 for any 7 > 0, thus P,(1,1)Q,(t,1) —
Ry(7,1)>0.
(II) If d»; > dy;, then T,f = 2doou, Ty + doyv.aqpu, < 0. Thus, we can get

P, DO, (1, 1) = R,(1,1) >0 &= A, >0,7€[0,7,)U(7,,+) or A, < 0,7 >0,

where ,
T> — 2dyu,T, + dr v, nt VA, _
S e o 21V-@12H 0<Th<T, 2.21)
2T,J, — 2d22/,lnT2 + 2d22/.ln
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with
2
Ay = (T7 = 2dpopty Ty + dorvaarioptn) = 4T (1 = doopay Ty + dais})

(1) When A, < 0 is equivalent to d21 <dy < d2

1,n°

T2 +2dyy,T, - 2T, \/ o~ doata s + gt
dyy = ’
Vi12My

(2.22)

and

—T,f + 2d22/~ln T, + 2Tn \/Jn - d22/~lnTn + d%z:u%
dih = >0
’ V12,

It follows from (2.20), (2.22), and (2.23) that c?zl < 6721 < dﬁ’] because T, < 0, a1, < 0. Thus, when
d21 <dy <d 2] » BT, 1)Q,(t,1) = R,(7, 1) > 0 for any 7 > 0.

Combining the results of (I) and case (i) in (II), we deduce when d,; < dg’l 2 Pa(m, DOy(7, 1) —
R,(1,1) > O for any 7 > 0.

(i1)) When A, > 0 is equivalent to dp; > dg’l o then Pyt D0, (7, 1) = Ry(r, 1) = 0if 7 = 75, and
P, (1, )0, (1, 1)=R,(1,1) < 0if T € (7}, 7,), and P, (1, 1)Q,(7, ) =R, (7, 1) > 0if T € [0, 7} )U(T,, +0).

(iii) When A, = 0, then d; = d?} > denote

(2.23)

_ Ty% - 2d22,unTn + dZIV*a’llﬂn
2T, J, — 2dpu, T? + 2d2 42T,

(2.24)

Tn
Thus, we get P, (1, 1)Q,(r,1) = R,(7,1) =0if 7 = 7,, and P, (7, 1)0,(7, 1) — R, (7, 1) > 0if 7 # 7,.

If d»; > 0, together with J, > 0 and @1, < 0, then R,(t, 1) = 2202 4 )1, > 0. Further,
we obtain

P,(t,)Qu(1,1) > Ry(1,1) >0, 0<dy <df NVt>0

1,n°

ordy > d¥ wTE [0,7}) U (1}, +00)

ordy = d21 wTE [0,7,) U (1,,0),
P,(t,1)0,(r,1) = R, (1, 1), dy = a’21 T =Ty0rdy > a’21 2T =Ty,
P.(t,1)0,(1,1) < R,(1, 1), dy) > d21 STE(T,T,)).

We have completed the proof.
Next, together with Lemma 2.2, we get the distribution of the roots of Eq (2.12) for d»; > 0.
Lemma 2.7. Suppose that conditions (H,) and (H,) are satisfied. T, dﬁ w and 7, are defined
according to (2.21), (2.23), and (2.24), respectively. For a given fixed n, we get the results as follows.
(I) When 0 < d,; < d12q1 , all roots of Eq (2.12) have negative real parts for any 7 > 0.
(II) When dy; = df’l , all roots of Eq (2.12) have negative real parts for 7 # 7,, and Eq (2.12) has
one negative root and a pair of purely imaginary roots +iw, at 7 = 1,, where

= VOu(ts, D) = \/J,, - T(Tl + dzzy,,). (2.25)
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(Il) When d,; > d; . all roots of Eq (2.12) have negative real parts for 7 € [0, ;) U (7}, +00); at
least one root of all roots of Eq (2.12) has positive real part for 7 € (7}, 7,); Eq (2.12) has one negative

root and a pair of purely imaginary roots +iw! (tiw;,) at T = 7, (t = 7,,), where

V Qn(Tna 1) = \/ — + dgzlun) (226)

The following transversality conditions are provided for the purely imaginary roots of Eq (2.12) at
T="TyT,.

Lemma 2.8. Suppose A(1) = a(7) + i3(7) are a pair of conjugate complex roots of Eq (2.12) around
T = 7,,7; which satisfy a (7,,75) = 0,8(1,) = w,, and B(7}) = w;, where 75,7, and w,, w; are
defined by (2.21), (2.24), (2.25), and (2.26), respectively. Then we have

dRe(A(1)) dRe(A(1)) >0 dRe(A(1))
dr =1, - dr =1t ’ dr

<0.

T=T,

Proof. From (2.14), we get that
dAa _ .l.iz(/i2 - Tn/l + Jn - leV*a'lZIUn)
dr 3/12 +2 (% + d22ﬂn — Tn) A+ Jn - Tn (% + d22/~1n)'

From (2.11), we have

1 . 1 . 1
T, = ,T, < ,T, >

\/Jn - d22,un Tn + d%z,u,% \/-]n - dZZﬂnTn + d%z,u% \/Jn - d22,unTn + d%z,u%

by the Vieta’s formulas. Therefore,

()

By combining with the fact

R I R

2
T=T,.7T5 273 (wZ * (% - Tn) ) <0, 7=7,,0w=uw,.

dRe(A(7)) _Re ( daA(r) )
dr dr )’
we have completed the proof.
Now, we will study the monotonicity of the function d5} 51, In the following two steps.

Step 1. From (2.20) and (2.23), we rewrite d3| , as dJ}, | = = dy + H (u,) , where

2Tn \/Jn - dZZﬂn Tn + d%zﬂrzl

H(u,) = (2.27)
Vil 12My
Then, we rewrite 6721 as cAl;] = ;’211) + 6“11221)’ where J’le) = v;—zy and cAlm 2”?2T" Clearly, the function
(a + @ )
o ( a = + (dyy +d22)2,un_2(d11 +dy) (a1 + ax)
W12
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is decreasing when u, < ——‘;“:;22 and increasing when u, > ‘;‘:Z” Meanwhile, the function 5’(2) =
zvdij increases for any y,, > 0, which implies that
dd a)) +
2150, for py > ———2 (2.28)
d,un dy +dx»

Step 2. Next, we have the following result, which is similar to Proposition 2.6 in [25]. Assume that
the conditions (H;) and (H,) are satisfied, there exists a number u, > 0 such that dH(”) > 0, for w, > u.,
where p, is the maximum positive real root of 4 (u,,), and

h (1) = antt, + bty + capty + di, (2.29)
with

ap = 4dy (d) + dzz)z > 0,b, = —(di +dyp) (dnaxn +dpay +dyn (@) + axn)),

cn = — (a1 + @) (diaxn + dpan + dp (@) + @), dy = 2 (@ + @) (@122 — @pf) < 0.
Then, we obtain that 43| , is monotonically increasing with respect to u, when , > max { %, u*}
Therefore, we denote

. aq t+ axp
n=min{n € N|u, >max{——— i, ¢ ¢, (2.30)
{ g { dyy +dn " }}
and
— i H
dy = miNn {d21n} = mm {dZI,n}' (2.31)
For fixed d»; > d;,, let
Su(dn)={neN|djj, <dy}, (2.32)
which is a finite set in terms of the property of dflﬂ and also
T,= min 7,, T = max T,. (2.33)

nes H(dZI ) nes H(d21 )

Theorem 2.9. Suppose that conditions (H;) and (H,) are satisfied. d},, Sy (d»), 7., and 7* are
defined by (2.31), (2.32), and (2.33), respectively. Then, we can derive the following results.

(I) When O < d»; < dj,;, for Y7 > 0 and any n € N, all roots of Eq (2.12) have negative real parts,
then the positive equilibrium E. of system (1.2) is locally asymptotically stable;

(IT) When d,; > d;,, the following subcases hold:

(1) for T € [0, 7,) U (7", +00) and any n € N, all roots of Eq (2.12) have negative real parts. Thus, the
positive equilibrium E, of system (1.2) is locally asymptotically stable;

(i1) for 7. < 7 < 7" and some n € Sy (d>), at least one root of Eq (2.12) has positive real part. Then
the positive equilibrium E, of system (1.2) is unstable;

(iii) for 7 = 7; and some n € Sy (da1), Eq (2.12) has a pair of purely imaginary roots, and all other
roots of Eq (2.12) have negative real parts. Thus, system (1.2) undergoes Hopf bifurcation at E.,.

Electronic Research Archive Volume 33, Issue 12, 7918-7956.



7929

2.3. Stability and bifurcation analysis when d,y # 0, 1 > 0, and o > 0

By Eq (2.10), it can be seen that regardless of whether o = 0 or o > 0, if 4 = 0 is the root of Eq
(2.10), then R(r, 1) = 0. That is to say, the gestation delay o~ does not influence the presence of the
zero root in the characteristic equation (2.10). Therefore, in this subsection, we concentrate our efforts
on exploring whether there exist purely imaginary roots for Eq (2.10) when o > 0. First, we have the
following lemma.

Lemma 2.10. Fix d,; < dg, the positive equilibrium E, of system (1.2) is unstable for all 0 < 7 < 75
and o > 0. When d» > d; , Eq (2.10) has no zero roots for all 7 > 0 and o > 0.

Proof. For fixed n € N, define ¥ : R — R as the function of A,,:

F () =23+ Py (r.e™) 0+ O (.677) Ay + Ry (T.77) 4, € R.

Eq (2.10) is equivalent to F (4,) = 0.

(i) From (2.17),if 0 < 7 < 7} and dy; < d3,,,, then F(0) = R,(7,1) < 0 and lim,, 4o F (1) =
+00, and Eq (2.10) has at least one positive real root. Therefore, for fixed d»; < d5, in terms of
Ts = MaX,es,(dy) {Tﬁ} where S7 (da)) = {n eN|d,, > dzl}, Eq (2.10) has infinitely many positive
real roots for dy; < d;,0 <7 <7g,and o > 0.

(ii) From (2.17), R,(z,1) = 0 if and only if 7 = 73 (dyy < d5,,). Thus, if 2, = 0 is a root of
F (1,) = 0, then ¥ (0) = R,(7,1) = 0 if and only if 7 = 75 (d>; < d5, ). This implies that Eq (2.10)
has no zero roots for all d; > dg and 7 > 0,0 > 0. This completes the i)roof.

Now, we investigate the existence of purely imaginary roots of Eq (2.10) by considering the
following two cases:

T> 15,0 > 0(dy < dy)

and
7> 0,0 > 0(dy > dy),

which correspond to the occurrence of Hopf bifurcation in system (1.2).
For convenience, denote

P, (T, e_m) = pn— e, 0, (T, e"l‘r) =q, + g.¢",R, (T, e‘“) =r,+b,e Y, (2.34)

where

1 1
Pn = (dy1 + 2dy) py, + ; —(a+an),. 8= (@11 —dyipy — dppt, — ;) — a12Bo1,

dy +d +
qn = (2d11d22 +d§2),ui - (d”a/] +dy Qayy + @) — u) an + @

MHn + @111 — - )

dyay +dpa; + dzlv*alz) + a1
n

di
ry = dndizui —dp (d220111 +dya; — T)ﬂi + (d22a’110l1 - -

1
by = (an@y — apfa — ardiiftn) (; + d221un) :
(2.35)
Let +iv(v > 0) be a pair of roots of Eq (2.10). Separating real and imaginary parts, we obtain

gnvsin(vo) + (a2v2 + bn) cos(vo) = p”v2 — 7, 5 36
(2.36)
gnvcos(vo) — (a/zv2 + bn) sin(vo) = Vv - qnVv-
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By the Cramer’s rule,

(pnvz—r,,)(ozzv2+b,,)+g,,v(v3—qnv)
(<12v2+bn)2+(gnv)2

—(v3—qnv)(azv2+bn)+g,,v(p,,v2—r,,)
(21245, 2+(gnv)2 )

cos(vo) =

b

(2.37)

sin(vo) =

Square both sides of (2.36) and add them together, and we obtain the following sixth-degree equation
in terms of v:

Vo o+ s,,,lv4 + s,,,zv2 + 5,3 =0, (2.38)
where
Sp1 = PYZ, - 2% - (Z%, Sn2 = q%l - grzl - 2a2bn - 2Pn”n, Sn3 = ryzl - bi (239)
Let v? = z, which yields
2+ $p12° + Spoz+ Sp3 = 0. (2.40)

Thus, +iv(v > 0) are a pair of purely imaginary roots of Eq (2.10) if and only if v? is a positive root
of Eq (2.40). We analyze when the cubic polynomial (2.40) has positive real roots using the method
in [28]. Define:

3 2
L(z) = 27 + 8,,12° + SppZ + Sn3,

and
L'(z) = 32 + 25,12 + Sua. (2.41)
For fixed n, define:
—Sp1 + [0 = 38u2
Z, = 3 Af sp ) = 38,0 > 0. (2.42)

In what follows, we have the distribution of the positive roots of Eq (2.40).

Lemma 2.11. Consider Eq (2.40), where s, x(k = 1,2, 3) and z, are defined as in (2.39) and (2.42).
Thus, for fixed n, if (R})s,3 > 0, sil — 35,2 < 0 holds, then Eq (2.40) has no positive roots; if
(Ry) sp3 < 0or (R3) 5,3 = 0, sil —3s,0 > 0and z; > 0,L(z}) < 0 holds, then Eq (2.40) has at least
one positive root.

Lemma 2.12. For fixed 7, there exists N. > 0 such that Eq (2.40) has no positive roots for n > N,.

Proof. From (2.35) and (2.39), lim,,_, ;. t, = +00, and treating u, as a continuous variable,

lim s, = lim (df, +2d3,) i} = +o0, lim 5,3 = lim df,dy,u$ = +oo,
n—+oo n—+oo n—+oo

n—+oo
nl_lglw (1802 = $n3) = nEer ((d%l + 2d§2) (deldgz + d§2) - d%ldgz)#g = +oo.
By the Routh-Hurwitz stability criterion, Eq (2.40) has no positive roots for n > N,. This completes
the proof.

For fixed n € [0, N.], assume that Eq (2.40) has three positive roots z, 1, 2,2, and z, 3. Then, for the
same n, Eq (2.38) has three positive roots v,; = /Zu1, Va2 = \Zn2, and v,3 = 4/z,3. By (2.37), for
k=1,2,3,n€[0,N.], we denote

Cop = — (Vik - qnvn,k) (azvi’k + bn) + &nVnik (pnvik - rn) , (2.43)
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and its sign is the same as sin (vn,kafl{,)c) (ne[0,N.],jeNyk=1,2,3). Here, 0';{,)( is defined as

(2.44)

0 { L {arccos (D) + 2jm} , if Cope 2 0,
g = ”‘

kT s {=arccos (Dyg) + (2 + D, if Coux <0,

where

D, (Pavis = r) (@272, + 5a) + gavus (v - q”v"”‘), (2.45)

2
(O‘ZVi,k + bn) + g,%vi’k
Proposition 2.13. When the positive roots v, (n € [0, N*] ,k=1,2,3) of Eq (2.40) exist, then
Eq (2.10) has a pair of purely imaginary roots +iv,; at o = 0';{,)(, where 0'(] ) is defined as in (2.44).
Because

lim o) = +00,k = 1,2,3,n € [0, N,],
Jj—o+oo >
for fixed 7, we define

(0)
n ks

. )
= min o Ve = Vo ko-
T 0<n<N, kell,2,3),jeN, K s (2.46)

(o

If Eq (2.40) has a positive root v*(v > 0), then when o = o), (n € [0,N.], j € N,k = 1,2,3),

Eq (2.10) has a pair of purely imaginary roots +iv. Next, we calculate the transversality condition for
the occurrence of Hopf bifurcation in system (1.2).

Lemma 2.14. Suppose z,,x = vi . and L' (z,x) # 0, where L'(7) is defined by (2.41). Then iv, is a

simple root of Eq (2.10) for o = 0'(])

for o € (O'(J])( €, 0'(’) + 6) and some small enough € > 0 such that p( (J)) = 0 and v( (J)) = Vi

and there exists the unique root A(o) = p(o) + iv(o) of Eq (2.10)

Moreover, 51gn(M ) = sign (L' (z.4)) # 0.

do 0'—0'

Proof. From (2.34), we rewrlte Eq (2.10) as
M, 0) := X)) + Y(De™ =0, (2.47)

where
X)) =2 +p 2 +qd+r, YQA) =-A*+g,A+b,,
and p,, g, &n, I'n, b, are defined as in (2.35). Then, we obtain

M M
a—u, o) = e T(A,0) and a—u, o) = - Y(Q),
o oo

where
T(A,0) = (30 + 2p,d + q,) €' = 2m3d + g, + 0 (@2 ® = g, = by). (2.48)

Substituting A = iv, 4, 0 = o'(],)c into 7'(4, 0), Y(A4), and using (2.36) and (2.39), we get that
Im {T (lvn O (’)) Y (iv,, k)}
=ZuVnk {—(—3vnk + q,) cos(vy, kO'(J)) + 2P Vi sin(v,, kO'(]) } Vi + O'(J,)(afzgn Vok 2a/2vnk(a/2vﬁk +b,)
D) = T @aviy + by) + 0 bagavis
=Vnk {3vn’,c + (an —4q, — 2&2) Vit (qn - gn - 2ayb,, — 2p,,r,,)}

2
=Vnk {3Zn,k + 2Sn,lzn,k + Sn,Z} = Vn,kL, (Zn,k) .

+ (a/gvnk +b ){( 3vnk + q,) sin(v,, kO'(J)) + 2Dy Vpi cOS(Vy kO

(2.49)
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Then, differentiating Eq (2.47) with respect to o, we obtain

T(2, 0)% = AY().

Thus,
di(o)  AY(D)
do  T,0)
It is easy to verify that
Sign(—dReéi(U)) — ) = sign| Re (d(ﬁg)))’ (./))
n, U-zo-mk

= sign (Im {T (iv,,,k, O';J])() Y (ivn,k)}) = sign (L' (2n4)) -

Therefore, sign ( WL U(j)) # 0 when L’(z,4) # 0. This completes the proof.
nk

When o = 0, we see that’Eq (2.10) becomes Eq (2.12). From Theorem 2.5 and Theorem 2.9, we
conclude that all roots of Eq (2.12) have negative real parts if and only if

(dr, 7)€ E;UE. UE,,

where
E,={(d2, 1) | d < d5, 7> 75},
E.=|(do1,7) | d < doy < djy,7 20}, (2.50)
Ey={(dy.7) | dyy > d}y,0 < T <707 > 7).

By employing the result derived from Lemmas 2.10-2.12, 2.14 and Proposition 2.13, we obtain the
following findings regarding the root distribution of the equation (2.10).

Theorem 2.15. Let conditions (H;) and (H>) hold, and conditions (R;), (R,) and (R3) are defined as
in Lemma 2.11. d%, 75, and L'(z); o) (n € [0, N.], j € No, k = 1,2,3); 0., and E,, E., Ej, are defined

n,

by (2.15), (2.41), (2.44), (2.46), and (2.50), respectively. Define
Ef ={(d21,7) | dyy < d5,0 <7 <75, (2.51)

Then, we have following results.

(I) When (dy;,7) € E;UE. U E),

(1) if condition (R;) holds for all 0 < n < N,, all roots of Eq (2.10) have negative parts for all o > 0,
then the positive equilibrium E, of system (1.2) is asymptotically stable;

(i1) if condition (R,) or (R3) holds for some 0 < n < N,, all roots of Eq (2.10) have negative parts
for o € [0, 0.), then the positive equilibrium E, of system (1.2) is asymptotically stable for o € [0, 0.)
and unstable for o € (0., +00). Further, if L’ (z,4) # 0, then the positive equilibrium E, of system (1.2)
undergoes Hopf bifurcation at o = 0',(1’),{

(I) When (d»;,7) € E}, Eq (2.10) has infinitely many positive real roots for all o > 0, then the
positive equilibrium E, of system (1.2) is always unstable.

(IIT) When d»; < dF,

(1) if condition (R;) holds for all 0 < n < N,, Eq (2.10) only has one zero root at 7 = 7 for all
o > 0, and all other roots of Eq (2.10) have negative parts, then the positive equilibrium E, of system
(1.2) undergoes Turing bifurcation at 7 = 75 for all o > 0;
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(i1) if condition (R,) or (R3) holds for some 0 < n < N,, Eq (2.10) has a zero root and a pair of purely
imaginary roots at (7,0) = (TS, (/)) forO0 <n < N,,k =1,2,3,j € Ny, then the positive equilibrium

E, of system (1.2) undergoes Turing—Hopf bifurcation at (7, 0") = (TS , 0'51],){)

3. Direction and stability of Hopf bifurcation

From Theorem 2.9, we know that system (1.2) undergoes Hopf bifurcation at 7 = 7, for d; > dj,
and n € Sy (dy) when o = 0. From [29], system (1.2) with o = 0 is equivalent to the following
system:

Ou(x, t) ru(x, 1) au®(x, Hv(x, 1)

or o Tk rou(, ) = () - bu(x,t) + u(x,f) + ¢’ 0<x<lint>0,
6v(6);, 1) = dpAv(x, 1) — doy [V(x, HWw(x, )], — mv(x, 1)
bug(axuzi sz(cjc;)tl c (v(:();) tJ)r 9)’ O0<x<limt>0, (3.1
(9w(g)tc, 1) = dpAw(x, 1) + %(u(x, 1) — w(x, 1)), 0<x<lint>0,
wu(x, 1) = vi(x, 1) = wy(x, 1) = 0, a0

In this section, we analyze the direction and stability of Hopf bifurcations through the application
of normal form theory at 7 = 7, for d»; > dj, and n € Sy (da1). Let Ty (Where 7y = T orTy =7,.)
denote the critical delay parameter value correspondmg to the mode-ny Hopf blfurcatlon with some
n = ny € N. According to Theorem 2.9, when 7 = 7y, the characteristic equation (2.12) possesses a
pair of purely imaginary eigenvalues +iw,, (@,, > 0). Define the real-valued Sobolev space
)3 Ou dv _ ow

— :O,x:(),fn},

3&”:{ —(uvw)e(W“(w) =22 = 5

with the inner product

{n
(U, V] = f U'Vdx, for U,V € Z .
0

It is well known that the eigenvalue problem (2.4) has eigenvalues (’71)2, n € Ny with the corresponding
normalized eigenfunctions

1
cos (%‘) — when n =0,

b(x) = ———={ "
* Hcos (%)

Take the vector ,85,1) = (b,,0,0)7, ﬁf,z) = (0,b,,0), (3) = (0,0,b,)". Then we take a small
perturbation of 74 by setting 7 = 75 + y, |u| << 1 such that u = 0 corresponds to the Hopf bifurcation
value for system (3.1). Also, let

\/icos(l), when n #0.

In

12

. .r3
a’a)l (,L)zll

r2, ro.,r3
a’(x)l (1)2/.1

Baw' wyu"™) = ( ),a/ e C.

Now, transfer E., to the origin by setting

(@i(x, 1), ¥(x, 1), w(x, ) = (u(x, 1), v(x, 1), w(x, ) — (e, ve, )" .
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Let U = (u,v,w)!. Then model (3.1) can be rewritten as the following form:

(il_lt] = 0AU + L(u)(U) + F(U), (3.2)

where 6AU = 6,AU + F4(U), L(u)(U) = Ly(U) + I:(U,,u), and

fu+u.,v+v,) dy O 0

FU)=| gu+u,v+v.) |=Lo(U),0oo=| 0 dyp —dyv. |, (3.3)

i(u - W) 0 0 dzz

l’l2 d“ 0 0 u 0
00AU = —l—2 0 dn -—-dnv. v 1, Fd(U) =—dy| vow, +vw |, (34)

0 0 dzz w 0

and
. ap 0 0

Ly=| pu ar+ay 0 |,L(U,p = 0 . (3.5)

w0 (vt = 27) (= w)

We denote 75(u) = —— in (3.5), and it can be written as a Taylor expansion as follows:

THHH

T(u) =

1 = 1.
=) (=D —p
Ty + U JZ:‘ T,

In the subsequent analysis, we assume that the functional F (U) possesses C* smoothness with
respect to the delay variable U, where k > 3. Given that the perturbation parameter y is treated as
an independent variable in the normal form computation, we reformulate Eq (3.2) into the following
extended system:

C;—lt] = §oAU + Lo(U) + F(U, ), (3.6)
where
F(U,p) = F(U) + L(U, ) + F4(U). (3.7)

Denoting by Z(U) = 6oAU + Ly(U), the linear system of Eq (3.6) can be written as

du
7 Z(U). (3.8)
Let A = {iw,,, —iw,,}, and denote the generalized eigenspace of Eq (3.8) associated with A by @
and the corresponding adjoint space by ®@*. Then, according to the standard adjoint theory for ODE:s,
C3 can be decomposed by A as C* = ® @ P, where ¥ = {c// eC: (g, ) =0,Yp € (D*} and (-,-) is
defined by (¢, ¥) = Ty, for ¢,y € C*.
Let? = (p, D), Q = (47, g")", where p = (py, p, p3)" and g = (¢1, ¢, ¢3)". Choose the dual bases
P and Q of ® and ®* such that
(Q,P) = E,.
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Through algebraic reduction, we get

1 1
D= iwnH—m1+d11(nTH)2 and qg=n %
= g UL = N
Qiz tadyan(“i v,
ki kiky
Here,
k%kg

k% (Ziwn,, +(dy + dzz)(”TH)Z —(an +a; + az)) + THdZIG’]zV*(nTH)Z’

. 2 . 2 .
with k| = dyy1y (ﬂTH) +1+ 10, Ty and k, = d» (HTH) — ] — @ + 1@y,

Furthermore, from C3 = ® & ¥, we see that .2 can be decomposed as
X = Imn® Kern,
where dim Imn = 2, for §y € 2, the projection 7 : 2~ — Imn is defined by
ZON:

n(§) = P<Q @(-),ﬁ,?,}]> By (X). (3.9)
[¥(), B

Hence, we can decompose U as
U =Pwb,,(x) +z, z=©",22,29)" € Kernr,

where w = (w (1), w1 (1)) € R%. Consequently, we decompose system (3.6) as the following equations:

[F(Pwb,,(x) + 2, 1), 8]

@ = Dw + Q| [F(Pwh,,(x) + z, 1), B |+
8 o (3.10)

[F(Pwb,, (x) + 2, 1), B5)]

=L@ + I~ n)F(Pwb,,(x) + z, 1),

where © = diagliw,,,, —iw,,}.
Now, we consider the following Taylor expansion:

— 1 = 1
o = ), FiW i F) = ) < Fiw)

j=2 7 Jj=2
— 1~ . 1
L p) = Y =L, F'w) = > =Fiw),
j=1 J: j=2 J:
we have N s
Fi, ) = F(p) + ju ' Lin@) + FIGp),  j=2,3---. (3.11)

The system (3.10) can be rewritten as

{(i) =Dw + ij2 %fjl((x), 2, 1), (3.12)

b= L@+ D L0, p0),
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where ~ |
[F j(Pwh,, (x) + 2, 1), 8]

fHw.z.p) = Q| [F {(Pwhb,, (x) + z,1). 1| -

- 3.13
[Fj(?wb"H(x) +2, /-1)9ﬁ£l3f3] ( )
f,z(wv Z,/l) = (I - ﬂ)Fj(Pa)an(X) + Z,,U)-
By implementing the subsequent change of variables [26],
1
(@.2) = (@9 + = (Uj@.p). Uj@. ). j 2 2. (3.14)
we thereby derive the normal form of system (3.12) as follows:

: 1,

o= Dw+zﬁgj(a),0,y). (3.15)

Jjz2

Define the operators (M 11 p)w, 1) = D,p(w, 1) Dw — Dp(w, 1) and (MJz.h)(w, 1) = D,h(w, ) Dw —
Z(h(w, n)). Applying the method from [26,30], we compute

g%(w’ Oa l‘l) = Projker(M%)fZI (CL), O’ l‘t),

and
83(,0, 1) =Pr0ji eyt f3 (@, 0, 10) = Projg f3 (@, 0,0) + O’|w). (3.16)

Here, the cubic polynomial is interpreted in the coordinate system induced by transformation (3.14).
Furthermore, it can be determined by (3.16) that

0
ker(le) = Span {( 'ug)l )( 102 )} )

3 W w, 1w, 0 0
ker(Mé)—Span{( 10 ),( 0 ), ( w102 ),(quwz )},
2
S = Span{( “’10‘”2 )( wl()wg )} (3.17)

and

3.1. Calculation ofgé(a), 0,¢)
From (3.11), we get N N
F>(0, 1) = F>() + 2uLi () + FW).

From (3.4), we have
FS(U) = =24y (0, v,wx + vy, 0)', FI(U) = (0,0,0)", j = 3,4,-- -, (3.18)

and from (3.5) and (3.11), we obtain

T
! wu-wy ,j>1 (3.19)

j+1
Th

L;j(U)=10,0,(=1)
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Clearly, because for n € N, folﬂ b,zl(x)dx = 1, we can calculate that

2uLy (Pwb,,(x)),B.) 5 0
2uLy (Pwb,, ()82 | = = 0 : (3.20)
2uL; (Pwby,(x)) .5 T\ (p1 - py)wi + (P, — Ps) w2

From (3.3) and (3.4), we obtain that F,() and F 5’(1//) do not contain the variable u. It follows from the
first mathematical expression in (3.13) that

[F2(Pwby, (x), 1), By ]
le(w’ 0,p) = Q [F2(Pa)an(x) ), ﬁ(z)
[F2(Pwby, (x), 1), B

This, together with (3.11), (3.18), and (3.19), leads to

g;(wa O’#) = Projker(M;)le (LL), O’/l) = 23(Bll'ta)l)’ (321)

where 5
By = ——q3(p1 — p3). (3.22)

Th

3.2. Calculation of gy(w,0,&)

Similar to [31], denote

[Fy(Pwb,,(x) + 2), Bi]
(W, 2,0) = Q| [Fa(Pwb,, (x) + 2), 4]
[Fa(Pwb,, (x) + 2), B]

(3.23)

-

and
[F4(Pwby, (x) + 2), Bup]
£7(@,2,0) = Q|[Fy(Pwb,, (x) +2), 1 | (3:24)
[F4(Pwb,,(x) + 2), Bo)]

(3.21) implies that gi(w, 0,0) = (0,0)". Then f3 (w, 0,0) is determined by

~ 3
F@,0,0) =fl(@,0,0)+ 5 [(Dwle (,0, 0))05 (@,0)
+ (DZ £, 0, 0))U§(w, 0)+
(Do 2,0, 0) U (@, 0],

where £} (w,0,0) = £"(®,0,0) + £ (w,0,0),

D...efs P(@,0,0) = (D3 (@,0,0), ., f;?(@,0,0), D.,, £y (@, 0,0)), 525)
Us(@,0) = (My)™'Proj ) f2 (@, 0,0), Uz (@, 0) = (M3)™ f(,0,0), '
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and
U2(0,0) = (U3(w,0), U, (@, 0), U3, (@,0)) . (3.26)
We next finish the calculation of Projg f31 (w,0,0) in four steps.
Step 1. The calculation of Projg £ (w,0,0)
Wring F53(Pwb,,(x)) as follows:
F3(Pwby,(0) = . App W2}, (x), 11,72 € Ny, (3.27)

ri+rn=3

where A,,,, = ﬁml with r,r, € Ny. From (3.7), (3.18), and (3.19), we have Fg(wanH(x),O) =
F3(Pwb,, (x)). From (3.13) and (3.27), we deduce

I
f;(w,o,()):Q( > A fo bﬁH(x)dx],

r1+r2:3
: . I 5 4 3 .
which, together with fo b, (x)dx = 5-, yields
Projs £ (w,0,0) = B(Bywjw,),

where 3
By = =—q ' Ay,
21 2l7rq A

Step 2. The calculation of Proj((D,,f, (w,0,0)U,(w, 0))
From (3.7), (3.18), and (3.19), we have that

Fy(Pwb,, (x),0) = F2(Pwb,, (x)) + F3(Pwb,,(x)). (3.28)
(3.27) implies
Fr(Pwb,, (x) + 2) :biH(x){ Z Ay w?] + S5(Pwb,, (x),2) + O(|z]*), (3.29)
ri+r=2

where S,(Pwb,, (x), z) refers to the product of Pwb,,,(x) and z. In conjunction with (3.18), we write

n 2 r I
F{(Pwb,,(x)) = (7”) (gﬁH(x)—bﬁH(x))( > ﬂ;’l,zw;w;), (3.30)
ri+ry=2
where
2 . (ngx
tuto = \[Z s (22).
and
0 L 0
ﬂ‘éo = =2dy | pap3 | = ﬂ‘éz,ﬂi’l = —4d,, |Re{p2p3}|. (3.31)
0 0
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It then follows from [ &2, (x)b,,(Vdx = [ b3, (x)dx = O that

[F>(Pwby,(x),0), 841
f(w,0,0) = Q| [Fy(Pwb,,(x),0), 1| = (0,0,0)". (3.32)
[F2(Pwh,, (x),0), B
Hence, together with (3.27), (3.29), and (3.30), we have
Projs ((Duf3 (@,0,0) U, 0)) = B(Bywiw,),

where
322 = (07 0)T7 ny € N.

Step 3. The calculation of Projs((Dz FI(w,0,0)U2(w, 0))

Denote
U3(@,0) = h(w) = )" hy(@)b,(x) € Kerr,

neNy

where h,(w) = X, 4,2 hn,,lrzw w2 We can derive from [31] that

[S 2(Pwby, (), Zcrty ha(@)bu()). By ]
(S 2(Pwbyy (9, Tty ha(@)ba(0)), Big] | = D Ha (Sa(pen, ha(@)) + S 2(pen, ha(w)),
[S2(Pwbyy, (x), Teriy ha(@)ba(2)), S]] 7€t

where
1 _
n 71" n= O’
_ 2 _J 1 _
H, = f(; b, (X)b,(x)dx = S "= 2ny,
0, otherwise.

Hence, we have

(szg"‘><w,o,0>)U§<w,0>=a( Do Hy(S2(pwr, b)) +Sz(pw2,hn<w>)>],

n=0,n=2ngy

and
Projs (D.£a""(w, 0,0)U3(w, 0)) = B(Bywiw,),

where

1
By =——q" (S2(p. ho11) + S2(P, ho2o)) + q" (S2(p, hany 1) + S 2(Ps hany 20)) -

1
Vir \2irx

Step 4. The calculation of Projs((DZ,Zx o FI2(0,0,0) U (w, 0))
Let U = (UD, U, UD) = Pwb,, (x) and

FY(Pwh,, (X), 2, 2 22x) = F3(Pwbh,, (x) + 2,0)

= —2d,,

0
U + 29U + z@))] ~ 2dy,
0

0
(U(Z) + Z(z))(USC) + 2(3))]
0
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0
SYD(WU, 2) = —2dy | UDZ? |,
0
0 0
S\ (U, z,) = =2do | UPZD | - 20y | UPZP |,
0 0
0
S5 (U, 20) = =240 [ UPZS) |
0
Because
U3(@,0) = hw) = ) hy(@)by(),
neNy
n
U3,(@.0) = (@) = = ) (5) (@t
neNy
n 2
U3(@,0) = @) = = Y (3] hu@n(,
I
neNy
then we get
D, . F ;’ (Pwb,,,(X), 2, 22, 20x) U éz’d)(w, 0)
=SV Pwb,, (x), H(w)) + S (Pwhy, (x), h(w)) + S (Pwh,, (x), ha(w)) ,
and

S5 (Pwbyy (x), h(@)) , B, (%)]

ng

S (Pab, 0.1 Sy | == () 3 A, (S (o) + 55 (o ),
S5V (Pwb,, (x). h(w)) . B (x)] et

S (Pwb,, (x), hi()) Ao )]

S o o) A (x): _ (”TH ) Z (?) C, (§ @2 (par, hy(w)) + 85 (pas, hn(w))) ,
S5 (Pwby, (x), hy(w)) , B(x)| -

S5 (Pwby, (x), her()) . Bop) ()

n\2 ~ -
S5 (P, (0, he@) B [ = = D (5] Ha (54 (por, (@) + 35 (e, @),
S (P by (x), he(w)) , B (X) ety
where
I 1 , n= an,
Cn = gny(-x)é:n(-x)bny(x)dx = 2in .
0 0, otherwise,
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as well as
N 0 N 0 N 0
S;"’”(p, z) = —2dy1 | 22p3 ,S(zd’z)(P, 7) = =2dy |z3p2 + 22P3 ,S(zd’3)(P, 2) = =2dy |z3p2 |-
0 0 0

From (3.23)—(3.26), we have

Dz, F3(Pwhy, (2). 2. 200 20 US (., 0). )|
(Deen s (@, 0,00) USV(w,0) = Q| [ D= o\ FE(Pwby, (%), 2, 20 2 U (@, 0, 80| |
[DZ,ZX,Zxng(pwan (X), Z’ Zxa Zxx) Uéz,d)(wa 0)’[3(2)]

ny

and
Projs (Do /3 2 (@,0,0)US (w,0)) = B(Brwiw,),
where
_ NH» TG d.1)
By, ——T( ] )°q (S (P,hon)‘i'S (P,hozo))
1 ) . )) sdj), =
+ q hs (S5 (s howy 1) + S (B, hon 20))
‘/217_[ ];2:’3 2ny ( 2 H 2 H )
with ) )
ON h<2) _ o ) _ Any
2ny lz > 2ny lz > 2ny 12 :

According to the above computations, we can obtain the normal form of Hopf bifurcation as follows:

o 1 Biwu 1 ( Bywiw,
w=Dw+ E( Byt + 3 By ? + O(lwlp® + |w]*), (3.33)
where
2 3
B, = ——2613(1?1 - PS), By = By + (B + Bas + Boa).
Ty 2

Let wy = 71 — izp, Wy = 71 + 22, and z; = pcosy, 7, = psiny, where vy is the azimuthal angle, then
Eq (3.33) can be rewritten in the following polar coordinate form:

0 = Kiuo + K20 + 0o + (1, o)1),

where | |
K, = ERe(Bl)a K; = §Re(B2).

We further have the following theorem [32]:

Theorem 3.1. The Hopf bifurcation is supercritical (subcritical) provided that K;K, < 0(> 0), and
the bifurcating periodic solutions are stable (unstable) if K, < 0(> 0).

In order to obtain B,, we need to calculate A;;, S>(Pwb,, (x), 2), ho2o, ho,11, hany, 20, and hyy, 11. The
detailed calculation procedures are provided in the Appendix.
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4. Numerical simulation

In this section, we conduct a series of numerical simulations to validate the preceding theoretical
findings. We set the parameters as follows:

r=0.14,r =0.01,k=3.5,r, =0.01,a = 0.5,6 = 0.5,c = 0.01,

n=04,0=0.03,m=0.251=4,d; =0.06,dy, =0.2.
It can be verified that (H;) and (H;) hold, and there is a positive equilibrium E, = (0.9268, 0.3312).

4.1. The Spatiotemporal distribution when o = 0

From (2.9), we have
d5, 4 ~ =0.1791 > d5, 5 ~ —0.1820 > d3, ¢ & —0.2035 > d3, 5 ~ —0.2135 > ...

Thus, it follows from (2.15) that dg = d§1’4 ~ —0.1791. From (2.13), we can calculate that the Turing
bifurcation curves are T = Tﬁ for fixed dy; < d5.
Similar to Proposition 2.6 in [25], we can calculate that . ~ 0.2293. Together with (2.30) and

(2.31), we obtain 2 = 2 and d}, = miny <<, [}, where, from (2.23),
s, ~ 0.8006 < dij | ~0.9263 < -+,

which implies that d}, = dﬁ,z ~ 0.8006. From (2.21), we can calculate that the Hopf bifurcation curves
are 7 = 7, for fixed d»; > df,.

Further, according to Theorems 2.5 and 2.9, we get that for o = 0, when —-0.1791 ~ dg < dy; <
dy, ~ 0.8006, E, is locally asymptotically stable for all 7 > 0; when d; < dg ~ -0.1791, E, is
locally asymptotically stable for 7 > 7¢ and unstable for 0 < 7 < 7g, and Turing bifurcations occur
at v = Tﬁ for fixed dr; < dgl’n; when d,; > dj, = 0.8006, E. is locally asymptotically stable for
7 € [0,7.) U (1%, +00), and unstable for 7 € (r,,7"), and Hopf bifurcations occur at 7 = 7; for fixed

dy > dj}, (see Figure 1).

4.1.1. d21 =-0.55< d;

For fixed dy; = —0.55 < dg, it follows from (2.15) that 75 = 7*39 ~ 14.0143 and E. is asymptotically
stable for (75, 00). For 7 = 14.1 > 1y, E, is spatially homogeneous steady state (see Figure 2(a),(c)).
For 7 = 13.75 < 7y, E. is the mode-3 spatially nonhomogeneous steady state (see Figure 2(b),(d)).

4.12. dyy = 1.5 > dj,
For fixed d>; = 1.5 > d,, it follows from (2.33) that
7. =75 ~ 1.3313,7" = 75 ~ 27.1474.

System (1.2) undergoes Hopf bifurcations at 7 = 7, and 7 = 7%, and E, is asymptotically stable for
7 € [0,7,) U (7%, 00). Using the procedure developed in Section 3, we have, for 75 = 7. = 1.3313,

k1 = 0.0418 > 0,k =~ —0.0079 < 0,
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Figure 1. (a) Stability regions and bifurcation curves for system (1.2) with o = 0. The
areas with blue dots are E; and Ej, and the area with green dots is E.. In the remaining
colorless areas, the left side is E7, and the right side is E;. The Hopf bifurcation curves
are T = 7,,n = 2,3,4, and the Turing bifurcation curves are 7 = Tﬁ,n = 2,3,4. When
(dr,7) € E;UE U E,, E, is stable for o = 0; when (d»;,7) € E{, E, is unstable for o > 0;
when (d»1,7) € E}, E. is unstable for o = 0. (b) is the enlargement of (a) restricted to the
region —1 < dy; < -0.2,0 < 7 < 32.

Prey Prey
5000 0.94 5000 1
- 4800 0.93 . 4800 0.95
0.9
4600 092 4600
0 5 10 0 5 10
X X
(a) 01(=0.55,14.1) (b) 0,(-0.55,13.75)
Predator Predator
5000 034 5000
: 0.34
0.33!
4800 4800
. 033 0.33
4600 0.32¢ 4600
0.32
0 5 10 0 5 10
X X
(©) 01(-0.55,14.1) (d) 0,(-0.55,13.75)

Figure 2. Numerical simulations of system (1.2) with o = 0 for (d,, 7) chosen as Q,;(i =
1,2) in Figure 1, showing spatially homogeneous and nonhomogeneous steady states. The
initial conditions are chosen as (a)—(b): u(x,0) = 0.9268 + 0.01 cos(3x/4); (¢)—(d): v(x,0) =
0.3312 + 0.01 cos(3x/4).
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4600 4600

0.91
0 5 10 0 5 10 0 5 10 0 5 10

(a) Q3(X1.5, 1) (b) Q4(1).(5,1.45) (c) Qs()l(.S, 24) (d) Qs()l(.5,30)

Predator Predator Predator Predator
5000 5000 5000

5000

.. 4800 4800 . 4800 .. 4800

4600 4600 4600 4600

0 5 10 0 5 10 0 5 10 0 5 10

© 0s(15.1) () 0s(1.5,1.45) (2) 05(1.5,24) (h) Qs(1.5.30)

Figure 3. Numerical simulations of system (1.2) with o = 0 for (d,;, 7) chosen as Q;(i =
3,4,5,6) in Figure 1, showing spatially homogeneous steady states and nonhomogeneous
periodic patterns. The initial conditions are chosen as (a)—-(d): u(x,0) = 0.9268 +
0.01 cos(3x/4); (e)—(h): v(x,0) = 0.3312 + 0.01 cos(3x/4).

which implies that the spatially nonhomogeneous Hopf bifurcation at 7 = 7, is supercritical and stable.
For ty = 7" = 27.1474,

k1 ~ —0.0027 < 0,k ~ —0.0066 < 0O,

which implies that the spatially nonhomogeneous Hopf bifurcation at T = 7* is subcritical and stable.
When 7 = 1 < 71,, E, is spatially homogeneous steady state (see Figure 3(a),(e)). Letting 7, <
7 = 1.45 < 7" (but close to 7.), E. is the mode-2 spatially nonhomogeneous periodic solution (see
Figure 3(b),(f)), the point (d»;, 7) = (1,5, 1.45) may correspond to a subcritical Hopf bifurcation. For
7. < T =24 < 7" (but close to 7¥), E., is the mode-2 spatially Hopf bifurcation (see Figure 3(c),(g)).
When 7 = 30 > 77, E, is spatially homogeneous steady state (see Figure 3(d),(h)).

Through numerical simulation, the green and blue areas are the stability region of the positive
equilibrium E, in Figure 1. When points Q;, Qs, and Q¢ are selected in the stability region, the
positive equilibrium is locally asymptotically stable, as shown in Figure 2(a),(c), Figure 3(a),(e), and
Figure 3(d),(h). When (d,;, 7) crosses the boundary of the stability region, points Q,, Q4, and Qs are
selected. The system (1.2) exhibits Turing bifurcation and Hopf bifurcation at the positive equilibrium
E., as illustrated in Figure 2(b),(d), Figure 3(b),(f), and Figure 3(c),(g).

4.2. The Spatiotemporal distribution when o > 0

In terms of Theorems 2.5 and 2.9, for (d,,7) € E;UE. UE), and o = 0, E, is stable. Now, we study
whether E, becomes unstable again when the gestation delay oo > 0. In what follows, we always fix
d,1, dividing it into three cases:

(I)d21 < d;, (II)d; <dy < d; ,(HI)dz[ > d;
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O
0
12 14 16 18 20 22
T

Figure 4. Bifurcation diagram in the plane of 7 — o for fixed d>; = —0.55, in which the
Hopf bifurcation curves are o = 0';(2, n =0, 1,2, and the Turing bifurcation curve is 7 = Tg.

The Hopf bifurcation curve o = ag,)i and the Turing bifurcation curve 7 = 73 intersect at the
point P,(14.0143,1.9719). The points P(14.1,1.9), P,(14.1, 2.3), P5(13.85, 1.73) are chosen

for the numerical simulations.

5000 5000
0.94 1.2
~ 4500 093 L 4500 1
0.92
0.8
4000 0.91 4000
0 10 0 5 10
X X
(a) P,(14.1,1.9) (b) Py(14.1,2.3)
Predator Predator
5000 0.34 5000 mm—
: ——— | 038
0.33¢ 0.36
0.34
+ 4500 + 4500
0.33 0.32
0.32¢ 0.3
4000 4000 0.28
0 10 0 5 10
X X
(c) Pi(14.1,1.9) (d) P»(14.1,2.3)

Figure 5. Numerical simulations of system (1.2) for (d,;, 7) chosen as P;(i = 1,2) in Figure 2,
showing spatially homogeneous steady state and homogeneous periodic pattern. The initial
conditions are chosen as (a)—(b): u(x,0) = 0.9268 + 0.01 cos(3x/4); (c)—(d): v(x,0) =
0.3312 + 0.01 cos(3x/4).
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Prey Predator U, 200 v x

5000 5000 034 .
0.94 g

0.93 0.33¢

“— 4500 -+ 4500 033 0 2713 4ni3 V(X‘S';%éijsx 8/3 107/3 api

0.92

0328 _om

4000 0.91 4000 £ o
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(a) P3(13.85,1.73) (b) P5(13.85,1.73) (©)

Figure 6. Numerical simulations of system (1.2) with o > 0 for (d,;,7) chosen as P; in
Figure 4, showing spatially homogeneous Hopf bifurcation. The initial conditions are chosen
as (a): u(x,0) = 0.9268 + 0.01 cos(3x/4); (b): v(x,0) = 0.3312 + 0.01 cos(3x/4). (c): The
truncated curves of (a) and (b) for fixed ¢ = 800.

42.1. dyy = -0.55 < dy

According to Theorem 2.5, for o = 0, when d;; < dg ~ —0.1791, E. is locally asymptotically
stable for 7 > 75 and unstable for 0 < 7 < 75. From Theorem 2.15, for dy; = —0.55 < d§, E, always
is unstable when 0 < 7 < 75 and o > 0. Thus, we concentrate on observing the cases of 7 > 75 and
o > 0. In terms of mathematical analysis, for 7 > 74 = 14.0143, we will show the occurrence of Hopf
bifurcation for o as larger than some value o,; meanwhile, for 7 = 74 = 14.0143, we shall declare the
occurrence of Turing—Hopf bifurcation for some value of o..

From Lemma 2.12, for fixed 7 € (12,22) and d>; = —0.55, Eq (2.38) with coefficient (2.39) has
no positive real roots when o > 0 and n > N, = 3, and we plot a series of Hopf bifurcation curves
o = 0';(2 n = 0,1,2) and the Turing bifurcation curve 7 = 75 =~ 14.0143 in Figure 4. Therefore,
P.(14.0143,1.9719) is the intersection of curve o = O'f)oi and 7 ~ 14.0143, that is called Turing—
Hopf bifurcation point. Together with (2.46), we obtain,O'* = 1.9719. Near P., P;(i = 1,2,3) are
chosen for the numerical simulations. For fixed 7 = 14.1 > 7g, E. is homogeneous steady state when
o = 1.9 < o, (see Figure 5(a),(c)); E. is spatially homogeneous periodic solution when o = 2.3 > o,
(see Figure 5(b),(d)). For fixed 7 = 13.85 < 7y, E. is spatially homogeneous Hopf bifurcation (see

Figure 6(a),(b)).

422. df <dy =0.75<d;,

Let memory diffusion coefficient dg ~ —0.1791 < dy; = 0.75 < d;; ~ 0.8006, then from
Theorems 2.5 and 2.9, E, is stable for any 7 > 0 and o = 0. Similarly, fixed 7 € (0,40) and
dy; = 0.75, when o > 0 and n > N, = 3, Eq (2.38) with coefficient (2.39) has no positive real roots.
Then, following from (2.44), we plot a series of Hopf bifurcation curves o = 0',(1(’); (n=0,1,2) (see
Figure 7).

When 7 = 12, we calculate that from (2.41) that

Vi, =210 ~ 0.0194, L (z1,) ~ 0.0009 > 0,
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® o= crg:? Hopf

o= aiﬂf Hopf

L o'—crgf Hopft

Figure 7. Bifurcation diagram in the plane of 7 — o for fixed d,;

= 0.75, in which the Hopf

bifurcation curves are o = ¢, n = 0,1,2. The points N;(12,0.5), N»(12,0.7), N5(6,0.5),

n1°

N4(39,2), N5(10,0.9) are chosen for the numerical simulations.

4000 5000 m 5000 s
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4800 ;
~ 3500 + 4500 -
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3000 4000 09
10 0 5 10
X X
(a) N1(12,0.5) (b) N»(12,0.7) (c) N3(6,0.5)
Predator Predator Predator
4000 5000 5000
0.34 0.4
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- - - 0.35
3500 4500 0.33
4600 03
3000 4000 0.32 0.25
10 0 5 10
X X
(d) N1(12, 0.5) (e) N5(12,0.7) (f) N3(6,0.5)
Figure 8. Numerical simulations of system (1.2) for (7,0) chosen as N;(i = 1,2,3)

in Figure 7, showing spatially homogeneous steady state and nonhomogeneous periodic

patterns.
(©): u(x,0) = 0.9268 + 0.01 cos(x/4); (d)—(e): v(x,0) =
v(x,0) = 0.3312 + 0.01 cos(x/4).

Electronic Research Archive

The initial conditions are chosen as (a)-(b): u(x,0) = 0.9268 + 0.01 cos(3x/4),

0.3312 + 0.01 cos(3x/4), (f):

Volume 33, Issue 12, 7918-7956.



7948

which implies from Lemma 2.14 that

. [ dRe(A(0)) . ,
mgn(T o = sign (L’ (z11)) > 0.
In addition, it follows by (2.46) that
o.= min " =" ~0.666850,
0<n<2k=12,3 ™ ;

hence for oo = 0.5 < o, E. is spatially homogeneous steady state (see Figure 8(a),(d)); for o = 0.7 >
0., E. is the mode-1 spatially nonhomogeneous periodic solution (see Figure 8(b),(e)).

Prey Prey
5000 4000
0.98
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0.96
- 4800 004 0
0.92 350
0.9
4600 0.88
3000 0.5
0 5 10 0 5 10

=3

X X
() N4(39,2) (b) Ns5(10,0.9)
Predator Predator
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4800 i
- 033 ™ 3500 0.35
4600 o
0.25
0.32 3000
0 5 10 0 5 10
X X
(c) N4(39,2) (d) N5(10,0.9)
Figure 9. Numerical simulations of system (1.2) for (7,0) chosen as N;(i = 4,5) in

Figure 7, showing nonhomogeneous periodic patterns. The initial conditions are chosen
as (a): u(x,0) = 0.9268 + 0.01 cos(x/4), (b): u(x,0) = 0.9268 + 0.01 cos(3x/4); (¢):
v(x,0) = 0.3312 4+ 0.01 cos(x/4), (d): v(x,0) = 0.3312 + 0.01 cos(3x/4).

When 7 = 6, we can get from (2.46) that

o.= min " =) ~ 0320966,
0<n<2k=123 ™ .
and
dRe(4
sign(M ) = sign (L’ (z2,1)) = 0.0029 > 0,
dor o=t |

hence for o = 0.5 > 0., E. is the mode-2 spatially nonhomogeneous periodic solution (see
Figure 8(c),(f)).
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When 7 = 39, similarly, we calculate from (2.46) that

o.=_ min_ o =0 ~ 1971880,
0<n<2k=123 ' ’

hence for o = 2 > o, E. is spatially nonhomogeneous periodic solution (see Figure 9(a),(c)).
Similarly, E, is spatially nonhomogeneous periodic solution (see Figure 9(b),(d)).

3 e 25 e 2.5
® 0o =o0, Hopi ® o =0, Hopf
° o op! o o =0 Hopf
25 o =0 Ho o = ofY) Hopt
21 2 51 Hop 2

1 Stable Region

0 0.5 1 15 2 20 30 40 50 60 70 80
(a) (b) ©

Figure 10. Bifurcation diagram in the plane of 7 — o for fixed d>; = 1.5 in which the
Hopf bifurcation curves are o = ¢*),n = 0,1,2. The points M(1.2,0.45), Mx(1.2,0.75),
M5(32.5,0.55), and M,4(32.5,0.4) are chosen for the numerical simulations. Figure 10(b) and
(c) are the enlargement of Figure 10(a) restricted to the region 0 < d»; < 2.5,0 < 7 < 2.5 and

20 < dy; < 85,0 < 7 < 2.5, respectively.

4.2.3. d21 =15> d;—]

According to Theorem 2.9, when d»; = 1.5 > d;, ~ 0.8006 for o = 0, E, is stable for any
O0<7t<7.,~13313and 7 > v =~ 27.1474, and unstable 7 € (7,,7") ~ (1.3313,27.1474). Fixed
7€ (0,85)and dy; = 1.5, when o > 0 and n > N, = 3, Eq (2.38) with coefficient (2.39) has no positive
real roots. Then from (2.44), we plot a series of Hopf bifurcation curves oo = o{fi (n=0,1,2) (see
Figure 10).

For fixed T = 1.2 < 1., we calculate from (2.46) that

o.= min_ o =0 ~0.614854,
0<n<2k=123 ™ .
hence for o = 0.45 < o, E, is spatially homogeneous steady state (see Figure 11(a),(e)); for o =
0.75 > 0., E. is the mode-2 spatially nonhomogeneous periodic solution (see Figure 11(b),(f)).
For fixed T = 32.5 > 7%, we calculate from (2.46) that

o.= min_ o =0\ ~0.524696,
0<n<2k=123 ™ :
so for o = 0.55 > o, E. is the mode-1 spatially nonhomogeneous periodic solution (see

Figure 11(c),(g)); E. is spatially homogeneous steady state when o = 0.4 < o, (see Figure 11(d),(h)).
Through numerical simulation, we take d,; as the bifurcation parameter and analyze the following
three cases: dy; = —=0.55 < d, d; < dy =0.75 < dj;, and dy; = 1.5 > dj; (see Figures 4, 7 and 10). In
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Figure 11. Numerical simulations of system (1.2) with o > 0 for (7, 0) chosen as M;(i =
1,2,3,4) in Figure 10, showing spatially homogeneous steady states and nonhomogeneous
periodic patterns. The initial conditions are chosen as (a)-(b): u(x,0) = 0.9268 +
0.01cos(x/4); (c)—(d): u(x,0) = 0.9268 + 0.01cos(3x/4); (e)—(f): v(x,0) = 0.3312 +
0.01 cos(x/4); (g)—(h): v(x,0) = 0.3312 + 0.01 cos(3x/4).

each case, there exist stable regions. Within the stable regions of each case, the positive equilibrium
E. is locally asymptotically stable, as illustrated in Figure 5(a),(c), Figure 8(a),(d), and
Figure 11(a),(e). In contrast, when (7, o) crosses the boundary of the stable region, the stability of E.
changes, and the positive equilibrium E, manifests as either spatially homogeneous or
nonhomogeneous periodic solutions.

5. Conclusions

In this paper, we propose a diffusive predator-prey model with the distributed delay 7 and the
gestation delay o. Firstly, we present the conditions for the occurrence of Hopf bifurcation and Turing
bifurcation at the positive equilibrium E, of system (1.2). When o = 0, for d»; < d§, the positive
equilibrium E, of system (1.2) undergoes Turing bifurcation at T = 7g; for d»; > d;,, the positive
equilibrium of system (1.2) undergoes Hopf bifurcation at 7 = 7.(r =7"). When o > 0, for
di < dy < dj, there exists a critical value o, of o such that the positive equilibrium E, of system
(1.2) undergoes Hopf bifurcation at o = o.; for dy; < d, the positive equilibrium E, of system (1.2)
undergoes Turing—Hopf bifurcation at (1,0) = (TS,O'%C), where n € Ny, j € N, and k = 1,2,3; for
dy > dj,, there also exists a critical value o, of o such that the positive equilibrium E, of system (1.2)
undergoes Hopf bifurcation at oo = o.. Secondly, when o = 0, we calculate the normal form of Hopf
bifurcation induced by the memory delay, and study the direction and stability of Hopf bifurcation.
Finally, the numerical simulation results validate theoretical findings. Variations in the memory-based
diffusion coefficient, memory delay, and gestation delay may induce transitions between spatially
homogeneous or nonhomogeneous steady states and spatially homogeneous or nonhomogeneous
periodic solutions.
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In order to maintain ecological balance and protect biological diversity, we hope that prey and
predator can coexist and their numbers remain relatively stable. The density of prey and predator
populations approaches a relatively stable state when (7, o) is in the stable region, while it fluctuates
when (7, 0) 1s outside the stable region. Therefore, by adjusting the gestation delay of predator and
the memory of predator on distribution of prey, the population densities can be made to tend towards a
stable state. Besides, the size of the stable region is affected by other parameters of the system, such
as the memory-based diffusion coefficient d»;. According to memory, the prey moves to a relatively
safe area with fewer predators in order to avoid predation. Predators also remember the historical
distribution of the prey in space to improve their capture rate. Thus, we can take appropriate measures
to control the memory diffusion coefficient of species to expand the stable region of the
positive equilibrium.

In this paper, we calculated the normal form of Hopf bifurcation induced by the distributed memory
delay 7 when the gestation delay o = 0. In future work, we hope to calculate the normal forms of
Turing and Turing—Hopf bifurcations when the memory delay 7 # 0 and the gestation delay o # O.
Moreover, the kernel function used in this paper is a weak kernel function. Exploring the impact
of strong or other kernel functions on the spatial patterns of the system is an worthwhile topic for
future research.
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Appendix

We can deduce from (3.3) that

2 2
Fr(¥) =faoo + Joool1 + 2 fr10¥192, (A.1)
and
3 3 2 2
F3(¥) =fro0¢71 + fosods + 3 frood1¥; + 32108192 (A.2)
Here,
ik __au.(us+2c) rk2u.
A+kv,)?  (bu2+u.+c)? (1+kv,)3
firo = 10UV (1 +2c) 10 v, (i.+2c) foro = | - Onau?v, nfau?
0 O v b2 tuto? " Orv)Rultutc? |2/020 (+kv, )3 (D1 +u+c)  (0+v,)2(bu+u.+c)
0 0
— sk i
(1+kv, )4 (1+kv,)3
ﬁ)30 — Onau?v. _ Onau? f120 — nau,0(u.+2c) ___nbau,v,(u.+2c)
O+ i +untc)  Gv)3(bul+usto) | O+v)2 (i +u+c)>  (0+v.)3 (buZ+u,+c)?
0 0
a(bud+3bcu?—c?) av, (b +3bcu?—c?)
T e 23 —r + 2 3
(buz+u,+c)’ (buz+u,+c)’
f210 — _Snav*(buf+3bcu§—cz) _ nav.(bul+3bcu?—c?) fZOO — _qavf(bu;:’+3bcuf—cz)
(O+v)2 (b2 +u,+c)3 O+v.)(bu+u, +c)3 ’ (O+v,)(buz+u.+c)3
0 0
_ av.(PPut+4ud b2 c—4u, bcr—c?)
(bu+u,+c)*
f:”sOO — nav2(b*ut +4ul b* c—4u, be*—c%)
(0+v.)(buZ+u,+c)*
0
Letting
P1w1by,, (X) + prwsby, (x) ¥
U = Pwb,, (x) = | p2w1bn, (x) + prwaby, (x) | = (Y2 |, (A.3)
p30~)1bn11(-x) + p3w2bnﬂ(-x) '7[/3
we have
r, 7.2
Fy(Pwby, () = > R} W3], (), (A.4)
ri+mn=2

then in conjunction with (A.1), (A.3), and (A.4), we obtain

Az =fro0Pt + 2f110P1P2 + foroP3» Aoz = frood: + foroDs + 2fi10D1 P25
A =2fr00P1P1 + 2f020P2P2 + 2f110(P1p2 + p1D2)-

Furthermore, from (3.27), (A.2), and (A.3), we have

A1 =3 froopi D1 + 3fosops P2 + 3fi0(P3p1 + 2p1P2p2) + 3 fa10(PapT + 2p1p2D1),s
Ain 23]63001_7%191 + 3f030P§P2 + 3f120(1_?§l71 +2p1pap2) + 3f210(le_7% +2pap1 1),
Azo =fr000; + 3fi20P1P5 + 3100102 + fosoPas Aos = fro0D; + 3fi0P1P5 + 31001 D2 + 3foz005

Electronic Research Archive Volume 33, Issue 12, 7918-7956.



7955

Similarly, we have

Fy(Pwby, (x) +2) = Z Ap ) 03B}, (X) + S 2(Pwb,, (x), 2) + Oz),

2 Yny
ri+r=2

where
S2(Pwby,,(x),2) =2| froop121 + foroP2z2 + fio(p2z1 + piz2)|wiby, (x)

+2[ froop121 + foroD222 + fiio(P2z1 + Prz2)]waby, (x).

Next, we will compute A 20, 10,11, h2n, 20, and hyy,, 1. It follows from [26]

M3 (hy(@)by (%)) = Dey(h(@)bn(x)Dw = L (hy(@)bi(x))

that
| M3 (w)b(x)). B
| M3 (h(@)bu(x)). B2 | = 2iw, n20w] = hu2w3] = Zo(hn(w)),
| M3 (w)b(x)). )|

where

Zo(hy(w)) = - (;)zéohn(w) + Lo(hy(w)).
By combining with (3.9) and (3.13), we obtain

|F2 (Pwb,, (x),0), 8]

f(@,0,0) =F, (Pwb,,(x),0) - P <a | P2 (Pwb,, (x),0). 82| |) bu(x).
| P2 (Pwb,, (x),0). 8]

Furthermore, by (3.28)—(3.31), we have

| £2(@.0,0).80)]

| /3(.0,0).52] | =

| £2(@.0,0).82]

where A is given by

{ ‘/LT (ﬂZOw% + ﬂozw% + ﬂlla)lwz) n= O,

\/ﬂ (ﬂzowl + ﬂozwz + ﬂnw]wz) n=2ng,

i1in?

ﬂiliz :ﬂim —2( ) ﬂd
i1,i2 = 0, 1,2,i1 +12 = 2,

where ﬂfl 4, 18 given by (3.31), and by matching the coeflicients of w? and ww,, we get

n=0 w% 2 2w, ho 0 — Lo (ho 20) = %Tﬂzo,
|wiws : =Lo (ho11) = »7(11,

and

2. n;
5 wy 1 21wy, hon, 20 — Lo (hany, 20) = 21ﬂ~7(20,
n=.,ngy, ~
) _ 1
wiwy . —D% (]’lan,“) = \/T%ﬂ“'

(A.5)

(A.6)

(A.7)
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Solving (A.6), we get
. 1
(i@, E3 — Lo) hozo = —=Fao,
bis

Vin

therefore,

1
ho,zo = (2llD'nHE3 — Lo)_l—ﬂzo.
Vix

Similarly, we obtain

1
hoa1 = (=Lo)™! ﬁﬂn-

Solving (A.7), we have

Zo(hy(w)) = - (%)zéohn(w) + Lo(hy(w)).

We have
. 4nj, 1 .
(2anHE3 + 1—250 - LO)thH,ZO = mﬂzo,
therefore, )
_ 4n |
I’lan,zo :(2l1ﬂ'nHE3 + l—2H50 - L()) \/%a
where A, is determined by (A.5). Similarly, we have
h —(4n2 8 — L )_1 ! A
2np11 =\ T 00 0 N 1.
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