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Abstract: This paper proposes and studies a predator-prey model incorporating distributed memory
and gestation delay to more accurately describe animal movement. First, the stability conditions
of the positive equilibrium in the absence of delays are analyzed. Second, the conditions for the
occurrence of Turing and Hopf bifurcation without gestation delay are derived. Subsequently, the
combined effects of memory delay and gestation delay on the stability of the positive equilibrium
are investigated, revealing that their interaction can generate more complex spatiotemporal patterns.
Furthermore, normal form theory is employed to determine the direction and stability of the Hopf
bifurcation induced solely by memory delay in the absence of gestation delay. Finally, numerical
simulations are conducted to validate the theoretical results. In addition, variations in the memory-
based diffusion coefficient, memory delay, and gestation delay are shown to trigger transitions among
spatially homogeneous/nonhomogeneous steady states and spatially homogeneous/nonhomogeneous
periodic patterns.

Keywords: spatial memory; distributed delay; gestation delay; Hopf bifurcation; normal form

1. Introduction

The study of predator-prey dynamics occupies a central role in mathematical ecology. While
predators depend on prey for survival, excessive predation can drive prey populations to extinction,
ultimately leading to the collapse of the predator population, as well. Unlike direct predation, which
reduces prey numbers through mortality, fear effects as evidenced by numerous studies [1–5] can
exert broader and longer-lasting influences on prey populations by altering their behavior, life-history
traits, and spatial distribution within ecosystems. Biologists have observed that lots of biological
phenomena can induce the Allee effect, such as antipredator defence among the prey, mating
difficulty, and environmental conditions. A population needs to maintain a minimum density in order
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to avoid extinction, and this minimum density is referred to as an Allee threshold [6–10]. Considering
these biological elements, Harine et al. [11] put forward a predator-prey model with (i) a fear effect in
a prey population, (ii) an Allee effect in a predator population, and (iii) a variable attack rate which
adjusts the functional response: 

dx
dt =

rx
1+ky − r0x − r1x2 −

ax2y
bx2+x+c ,

dy
dt =

ηax2y
bx2+x+c

(
y

y+θ

)
− my,

(1.1)

where x, y are the density of prey and predator; r, r0, and r1 denote the birth rate, the death rate, and
the intraspecific competition; 1

1+ky is the fear level function, where k denotes the cost of fear in prey;
ax2y

bx2+x+c is the variable attack rate functional response, where a denotes the maximally achievable attack
rate and c denotes the half saturation constant, and the prey population at which the attack rate is a/2, b
denotes the product of a maximally achievable attack rate and handling time; η denotes the conversion
coefficient of prey biomass to predator biomass; y

y+θ is the Allee function, where θ denotes the strength
of the Allee effect; and m denotes the death rate of predator. The authors ensured the non-negativity
and boundedness of the solutions and examined the local and global stability of each equilibrium.

Animals possess memory and cognitive abilities that significantly shape their movement
behavior [12–15]. To avoid predation, prey species often use past experience to relocate to areas
historically associated with lower predator density; predators likewise rely on memory of prey
distribution over time to improve hunting efficiency [16, 17]. By incorporating spatial memory into
models, numerous scholars have investigated its impact on animal movement patterns and the
underlying mechanisms [18–22]. Shi et al. [19] proposed a single-species model with discrete
memory delay to describe the influence of memory on the animal movement. Song et al. [20]
developed a consumer-resource model incorporating a discrete delay to investigate the effect of
consumers’ memory on the spatial distribution of resources. The authors focused on discrete memory
delays in their research [19, 20]. Because memory fades over time, information regarding past
locations becomes increasingly difficult to retrieve later. Biologically, gradient-tracking movement
based on distributed memory (i.e., memory spanning past time periods) is more realistic than that
relying on memory at a specific past time point. Building on this insight, Shen et al. [21] incorporated
a distributed memory delay into the memory-driven diffusion term to examine the impact of such a
distributed delay on the dynamics of the diffusive resource-consumer model.

In recent years, a number of models incorporating dual delays have been proposed. For instance,
Li [23] developed a spatial model with memory delay in prey, Allee effect, and maturation delay with
delay-dependent coefficients for predators, aiming to understand species’ spatial distribution.
Wang [24] focused on analyzing the spatiotemporal dynamics of the model to reveal how spatial
memory and reproductive cycles influence the spatiotemporal distribution of prey. Nevertheless, to
the best of our knowledge, very few studies to date have examined systems with two delays in which
one of them is a distributed delay. Thus, on the basis of the model proposed in [11], we further
establish a diffusion model with the spatial memory through spatiotemporal distributed delay and the
gestation delay σ, where the population density u(x, t), v(x, t) satisfies

∂u(x, t)
∂t

= d11∆u(x, t) +
ru(x, t)

1 + kv(x, t)
− r0u(x, t) − r1u2(x, t) −

au2(x, t)v(x, t)
bu2(x, t) + u(x, t) + c

, 0 < x < lπ, t > 0,

∂v(x, t)
∂t

= d22∆v(x, t) − d21 [v(x, t)wx(x, t)]x − mv(x, t) +
ηau2(x, t − σ)v(x, t − σ)

bu2(x, t − σ) + u(x, t − σ) + c

(
v(x, t)

v(x, t) + θ

)
, 0 < x < lπ, t > 0,

ux(x, t) = vx(x, t) = 0, x = 0, lπ, t ≥ 0,

u(x, t) = u0(x, t), v(x, t) = v0(x, t), 0 < x < lπ,−τ ≤ t ≤ 0,

(1.2)
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where d11, d22 > 0 denotes the self-diffusion coefficient of populations u(x, t), v(x, t). d21 denotes the
memory-based diffusion coefficient. For d21 > 0, predators move from low prey density to high prey
density. On the contrary, when d21 < 0, predators tend to migrate to low prey density areas, and it
indicates that there is no memory-driven diffusion when d21 = 0.

In this work, we utilize the memory-based distribution function presented in [25], which takes the
following form:

w(x, t) = G ∗ h ∗ u =
∫ t

−∞

∫ lπ

0
G(x, y, t − ξ)h(t − ξ)u(y, ξ)dydξ.

Here, the spatiotemporal kernel function G(x, y, t): (0, lπ) × (0, lπ) × [0,+∞)→ R+ denotes

G(x, y, t) =
+∞∑
n=0

e−d22µntϕn(x)ϕn(y),

satisfying the normalization condition∫ lπ

0
G(x, y, t)dx = 1, y ∈ (0, lπ), t > 0,

where µn are the eigenvalues of the negative Laplacian eigenvalue problem, satisfying

0 = µ0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µ j ≤ · · · ,

and lim j→+∞ µ j = +∞ and ϕn(x) are the corresponding normalized eigenfunctions of µn.
We adopt a weak delay kernel, given by

h(t) =
1
τ

e−t/τ, τ > 0,

satisfying the normalization conditions
∫ +∞

0
h(t)dt = 1 and

∫ +∞
0

th(t)dt = τ. This kernel function
exhibits a strictly decreasing trend with respect to the variable t, which reflects that the memory of
animals can become ambiguous over time.

Nonlinear systems can exhibit rich dynamical behaviors, including Hopf bifurcation, Turing
bifurcation, and Turing–Hopf bifurcation, among others. The normal form plays an important role in
bifurcation analysis, as it allows one to determine the direction and stability of bifurcating solutions.
For reaction-diffusion systems with delay confined to the reaction term, Faria [26] introduced an
algorithm for computing the normal form of Hopf bifurcation. More recently, Wu et al. [27]
developed computational methods for reaction-diffusion systems incorporating both delay and
nonlocal spatial averaging. In [21], Shen et al. first proposed a consumer-resource model with
distributed memory and applied normal form theory to determine the direction and stability of the
Hopf bifurcation induced by the mean delay. In the present work, we employ the approach established
in [21] to derive the normal form of Hopf bifurcation for model (1.2), thereby characterizing its
direction and stability.

This paper is structured as follows. In Section 2, we investigate the stability conditions of the
positive equilibrium without delays and the conditions for the occurrence of Turing bifurcation and
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Hopf bifurcation without the gestation delay. In addition, the joint impact of distributed memory delay
and gestation delay on the stability of the positive equilibrium of system (1.2) is investigated along with
the induced bifurcation patterns. In Section 3, the normal form theory is used to determine the direction
and stability of Hopf bifurcation caused by the distributed memory delay without the gestation delay.
The numerical simulations are used to illustrate the theoretical results in Section 4. Finally, Section 5
presents the conclusions and discussion of this work.

2. Stability and Hopf bifurcation of system (1.2)

In this section, we first investigate the stability conditions of the positive equilibrium E∗ without
delays. Then, we provide the conditions for the occurrence of Turing bifurcation and Hopf bifurcation
when the gestation delayσ = 0 and the memory delay τ > 0. Finally, we discuss the stability conditions
of the positive equilibrium E∗ when σ ≥ 0 and τ ≥ 0.

Let E∗ = (u∗, v∗) be the positive equilibrium, which satisfies the following equation
ru∗

1 + kv∗
− r0u∗ − r1u2

∗ −
au2
∗v∗

bu2
∗ + u∗ + c

= 0,

ηau2
∗v∗

bu2
∗ + u∗ + c

(
v∗

v∗ + θ

)
− mv∗ = 0.

(2.1)

Then, the linearized system of system (1.2) at E∗ is(
ut

vt

)
= D1

(
∆u
∆v

)
+ D2

(
∆w
∆v

)
+ A

(
u
v

)
+ B

(
uσ
vσ

)
, (2.2)

where

D1 =

(
d11 0
0 d22

)
,D2 =

(
0 0

−d21v∗ 0

)
, A =

(
α11 α12

0 α1

)
, B =

(
0 0
β21 α2

)
, (2.3)

and

α11 =
r

1 + kv∗
− r0 − 2r1u∗ −

au∗v∗(u∗ + 2c)
(bu2
∗ + u∗ + c)2 , α12 = −

rku∗
(1 + kv∗)2 −

au2
∗

bu2
∗ + u∗ + c

< 0,

α1 = −m +
ηθau2

∗v∗
(θ + v∗)2(bu2

∗ + u∗ + c)
, β21 =

ηau∗v2
∗(u∗ + 2c)

(θ + v∗)(bu2
∗ + u∗ + c)2 > 0, α2 =

ηau2
∗v∗

(θ + v∗)(bu2
∗ + u∗ + c)

.

We assume (
u(x, t)
v(x, t)

)
=

∞∑
n=0

(
αn

βn

)
eλntϕn(x) (2.4)

is the solution of linearized system (2.2). Substituting (2.4) into system (2.2), through some simple
calculations, we obtain

∆w(x, t) = −µnu(x, t)
∫ +∞

0

1
τ

e−s(λn+
1
τ+d22µn)ds. (2.5)

In the following, we denote the set of positive integers byN andN0 = N∪{0}. Now, the characteristic
equation of system (2.2) at E∗ is

λ2 − T̃n

(
e−λσ

)
λ + J̃n

(
e−λσ

)
− d21v∗α12µn

∫ +∞

0

1
τ

e−s(λ+ 1
τ+d22µn)ds = 0, n ∈ N0, (2.6)
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where

T̃n

(
e−λσ

)
= (α11 + α1) − (d11 + d22) µn + α2e−λσ,

J̃n

(
e−λσ

)
= d11d22µ

2
n − (d11α1 + d22α11) µn + α11α1 + e−λσ (α2α11 − α12β21 − α2d11µn) .

(2.7)

In what follows, we denote α22 = α1 + α2 to simplify the equations.
When d11 = d22 = d21 = σ = 0, Eq (2.6) becomes

λ2 − (α11 + α22)λ + α11α22 − α12β21 = 0.

When the following condition

(H1) α11 + α22 < 0, α11α22 − α12β21 > 0

holds, the corresponding ordinary differential equations (ODEs) of system (1.2) at E∗ are locally
asymptotically stable.

When d11 , 0, d22 , 0, d21 , 0, and σ = 0, Eq (2.6) becomes

λ2 − Tnλ + Jn − d21v∗α12µn

∫ +∞

0

1
τ

e−s(λ+ 1
τ+d22µn)ds = 0,

where
Tn

∆
= T̃n(1) = α11 + α22 − (d11 + d22) µn,

Jn
∆
= J̃n(1) = d11d22µ

2
n − (d11α22 + d22α11) µn + α11α22 − α12β21.

(2.8)

Through calculation, it can be concluded that when

(H2) d11α22 + d22α11 < 2
√

d11d22 (α11α22 − α12β21)

holds, Jn > 0 for any n ∈ N0. It immediately follows from (2.8) that Tn < 0 and Jn > 0 for any
n ∈ N0 with the conditions (H1) and (H2). The condition (H2) further confirms that the equilibrium
E∗ without memory-driven diffusion (d21 = 0) is asymptotically stable. That is to say, there is no
random-diffusion-driven Turing instability without the gestation delay.

2.1. Stability analysis of system (1.2) for d21 , 0, σ = 0 and τ = 0

For d21 , 0, σ = 0, and τ = 0, Eq (2.6) becomes

λ2 − Tnλ + Jn − d21v∗α12µn = 0,

where

lim
τ→0+

∫ +∞

0

1
τ

e−s(λn+
1
τ+d22µn)ds

ς=s/τ
= lim

τ→0+

∫ +∞

0
e−τς(λn+d22µn)e−ςdς =

∫ +∞

0
e−ςdς = 1.

Thus, there exists

dS
21,n =

Jn

α12v∗µn
< 0, n ∈ N (2.9)

such that Jn − d21v∗α12µn > 0 for d21 > dS
21,n and Jn − d21v∗α12µn ≤ 0 for d21 ≤ dS

21,n. We therefore
present the following theorem.

Theorem 2.1. Conditions (H1) and (H2) are satisfied, when σ = 0 and τ = 0, then the positive
equilibrium E∗ of system (1.2) is asymptotically stable for d21 > dS

21,n.
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2.2. Stability analysis of system (1.2) for d21 , 0, σ = 0 and τ > 0

For d21 , 0, σ ≥ 0, and τ > 0, we obtain∫ +∞

0

1
τ

e−s(λn+
1
τ+d22µn)ds =

{ 1
1+λτ+d22µnτ

, Reλ + 1
τ
+ d22µn > 0,

+∞, Reλ + 1
τ
+ d22µn ≤ 0,

which means that Eq (2.6) has no roots if Reλ + 1
τ
+ d22µn ≤ 0. For Reλ + 1

τ
+ d22µn > 0, Eq (2.6) is

equivalent to the following equation:

En(τ, σ, λ) := λ3 + Pn

(
τ, e−λσ

)
λ2 + Qn

(
τ, e−λσ

)
λ + Rn

(
τ, e−λσ

)
= 0, n ∈ N0, (2.10)

where
Pn

(
τ, e−λσ

)
=

1
τ
+ d22µn − T̃n

(
e−λσ

)
,

Qn

(
τ, e−λσ

)
= J̃n

(
e−λσ

)
− T̃n

(
e−λσ

) (1
τ
+ d22µn

)
,

Rn

(
τ, e−λσ

)
= J̃n

(
e−λσ

) (1
τ
+ d22µn

)
−

d21v∗α12µn

τ
,

(2.11)

and T̃n

(
e−λσ

)
, J̃n

(
e−λσ

)
are defined by (2.7).

For d21 , 0, σ = 0, and τ > 0, Eq (2.10) becomes

λ3 + Pn(τ, 1)λ2 + Qn(τ, 1)λ + Rn(τ, 1) = 0, n ∈ N, (2.12)

where Pn(τ, 1) = 1
τ
+ d22µn − Tn > 0, Qn(τ, 1) = Jn − Tn

(
1
τ
+ d22µn

)
> 0, and Rn(τ, 1) = Jn−d21v∗α12µn

τ
+

Jnd22µn. By the Routh-Hurwitz criterion, we obtain the following lemma.
Lemma 2.2. Under conditions (H1) and (H2), for fixed n,
(I) when 0 < Rn(τ, 1) < Pn(τ, 1)Qn(τ, 1), all roots of Eq (2.12) have negative real part;
(II) when Rn(τ, 1) = 0, Eq (2.12) has a zero root of multiplicity one and two roots with negative

real part;
(III) when Rn(τ, 1) < 0, Eq (2.12) has at least one positive real root;
(IV) when Rn(τ, 1) = Pn(τ, 1)Qn(τ, 1), Eq (2.12) has a pair of purely imaginary ±i

√
Qn(τ, 1) and a

negative real root;
(V) when Rn(τ, 1) > Pn(τ, 1)Qn(τ, 1), Eq (2.12) has a negative real root and a pair of conjugate

complex roots with positive real part.

2.2.1. Stability and Turing bifurcation when σ = 0, τ > 0

For any n ∈ N0, λ = 0 is a root of the characteristic equation (2.12) when Rn(τ, 1) = 0, which
implies τ = τS

n , where

τS
n =

d21v∗α12µn − Jn

d22µnJn
, n ∈ N, (2.13)

provided d21 < dS
21,n. In this case, Eq (2.12) reduces to λ3 + Pn(τ, 1)λ2 + Qn(τ, 1)λ = 0 for n ∈ N. Thus,

Eq (2.12) has a zero root of multiplicity one and two roots with negative real part because Pn(τ, 1) > 0
and Qn(τ, 1) > 0.
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The following transversality condition is provided at τ = τS
n .

Lemma 2.3. Let λ(τ) be a root of the Eq (2.12) around τ = τS
n and satisfy λ

(
τS

n

)
= 0, where τS

n is
defined by (2.13). Hence

dλ
(
τS

n

)
dτ

∣∣∣∣∣∣∣∣
τ=τS

n

< 0.

Proof. Taking λ as the function of τ and differentiating of Eq (2.12) with respect to τ, we get

dλ(τ)
dτ
= −

P′n(τ, 1)λ2 + Q′n(τ, 1)λ + R′n(τ, 1)
3λ2 + 2Pn(τ, 1)λ + Qn(τ, 1)

, (2.14)

where dλ(τ)
dτ

∣∣∣
τ=τS

n
= −

R′n(τS
n ,1)

Qn(τS
n ,1) = −

d22µn Jn

τS
n Qn(τS

n ,1) < 0 because Jn > 0, τS
n > 0, and Qn

(
τS

n , 1
)
> 0. This

compeltes the proof.
Next, we analyze how the root distribution of the characteristic equation (2.12) varies with d21.
Lemma 2.4. Suppose that conditions (H1) and (H2) are satisfied, and dS

21,n, τS
n are defined as in (2.9)

and (2.13), respectively. Additionally, define

d∗S = max
n∈N

{
dS

21,n

}
, τS = max

n∈S T (d21)

{
τS

n

}
(2.15)

with
S T (d21) =

{
n ∈ N | dS

21,n > d21

}
, f or fixed d21 < d∗S . (2.16)

Thus, we establish the following results.
(I) When d∗S < d21 ≤ 0, for any τ > 0 and any n ∈ N, all roots of Eq (2.12) possess negative

real parts.
(II) When d21 < d∗S , the following subcases hold:
(i) for τ > τS and any n ∈ N, all roots of Eq (2.12) possess negative real parts;
(ii) for 0 ≤ τ < τS and some n ∈ S T (d21), Eq (2.12) has at least one root with a positive real part;
(iii) λ = 0 is a root of Eq (2.12) if and only if τ = τS

n for some n ∈ S T (d21), and all other roots of
Eq (2.12) have negative real parts.

Proof. First, we investigate the existence conditions for d∗S and τS . From (2.9), we get

dS
21,n =

1
v∗α12

(
d11d22µn +

α11α22 − α12β21

µn
− (d11α22 + d22α11)

)
,

where µn is an increasing function of n, and limn→+∞ µn = +∞. Consequently, dS
21,n decreases for

µn >
√

α11α22−α12β21
d11d22

but increases for µn <
√

α11α22−α12β21
d11d22

and limn→+∞ dS
21,n = −∞, which implies that

d∗S = maxn∈N

{
dS

21,n

}
exists. Then, for fixed d21, the set S T (d21) defined by (2.16) is finite, which in turn

implies the existence of τS = maxn∈S T (d21)

{
τS

n

}
.

Subsequently, we establish the distribution of the roots of Eq (2.12). For fixed n, we have

Rn(τ, 1)


< 0, d21 < dS

21,n, 0 ≤ τ < τ
S
n ,

= 0, d21 < dS
21,n, τ = τ

S
n ,

> 0, d21 > dS
21,n,∀τ ≥ 0 or d21 < dS

21,n, τ > τ
S
n .

(2.17)
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If d21 ≤ 0 from (2.11), together with Tn < 0, Jn > 0 and α12 < 0, we obtain Pn(τ, 1)Qn(τ, 1)−Rn(τ, 1) >
0. Thus, together with (2.17), for fixed n, we get

Rn(τ, 1) < 0, d21 < dS
21,n, 0 ≤ τ < τ

S
n ,

Rn(τ, 1) = 0, d21 < dS
21,n, τ = τ

S
n ,

0 < Rn(τ, 1) < Pn(τ, 1)Qn(τ, 1), dS
21,n < d21 ≤ 0,∀τ ≥ 0 or d21 < dS

21,n, τ > τ
S
n .

(2.18)

Together with Lemma 2.2, we complete the proof.
Theorem 2.5. Given that conditions (H1) and (H2) are satisfied, τS

n , d∗S , τS , and S T (d21) are defined
by (2.13), (2.15), and (2.16), respectively. Then, the following statements can be obtained.

(I) If d∗S < d21 ≤ 0, then the positive equilibrium E∗ of system (1.2) is locally asymptotically stable
for any τ > 0 and any n ∈ N;

(II) If d21 < d∗S , then the positive equilibrium E∗ of system (1.2) is locally asymptotically stable for
τ > τS and unstable for 0 ≤ τ < τS , and the Turing bifurcations occur at τ = τS

n for n ∈ S T (d21).

2.2.2. Stability and Hopf bifurcation when σ = 0, τ > 0

From Lemma 2.2, it can be seen that when Pn(τ, 1)Qn(τ, 1)−Rn(τ, 1) = 0, the characteristic equation
(2.12) has a purely imaginary roots for any n ∈ N0. From (2.11), we have

Pn(τ, 1)Qn(τ, 1) − Rn(τ, 1)

=

(
−TnJn + d22µnT 2

n − d2
22µ

2
nTn

)
τ2 +

(
T 2

n − 2d22µnTn + d21v∗α12µn

)
τ − Tn

τ2 .
(2.19)

Here, −TnJn + d22µnT 2
n − d2

22µ
2
nTn > 0, and −Tn > 0.

Proposition 2.6. Assume the conditions (H1) and (H2) hold, for fixed n, τ±n and τn are defined by
(2.21) and (2.24), and dH

21,n is defined by (2.23). Thus, we get

Pn(τ, 1)Qn(τ, 1) > Rn(τ, 1) > 0, 0 ≤ d21 < dH
21,n,∀τ ≥ 0

or d21 > dH
21,n, τ ∈

[
0, τ+n

)
∪

(
τ−n ,+∞

)
or d21 = dH

21,n, τ ∈ [0, τn) ∪ (τn,∞) ,
Pn(τ, 1)Qn(τ, 1) = Rn(τ, 1), d21 = dH

21,n, τ = τn or d21 > dH
21,n, τ = τ

±
n ,

Pn(τ, 1)Qn(τ, 1) < Rn(τ, 1), d21 > dH
21,n, τ ∈

(
τ+n , τ

−
n
)
.

Proof. From Eq (2.19), if T 2
n − 2d22µnTn + d21v∗α12µn = 0, then we have

d̃21 =
−T 2

n + 2d22µnTn

v∗α12µn
> 0. (2.20)

(I) If d21 ≤ d̃21, we obtain T 2
n − 2d22µnTn + d21v∗α12µn > 0 for any τ ≥ 0, thus Pn(τ, 1)Qn(τ, 1) −

Rn(τ, 1) > 0.
(II) If d21 > d̃21, then T 2

n − 2d22µnTn + d21v∗α12µn < 0. Thus, we can get

Pn(τ, 1)Qn(τ, 1) − Rn(τ, 1) > 0⇐⇒ ∆n > 0, τ ∈
[
0, τ+n

)
∪

(
τ−n ,+∞

)
or ∆n < 0, τ ≥ 0,

where

τ±n =
T 2

n − 2d22µnTn + d21v∗α12µn ±
√
∆n

2TnJn − 2d22µnT 2
n + 2d2

22µ
2
nTn

, 0 < τ+n < τ
−
n , (2.21)
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with
∆n =

(
T 2

n − 2d22µnTn + d21v∗α12µn

)2
− 4T 2

n

(
Jn − d22µnTn + d2

22µ
2
n

)
.

(i) When ∆n < 0 is equivalent to d̂21 < d21 < dH
21,n,

d̂21 =
−T 2

n + 2d22µnTn − 2Tn

√
Jn − d22µnTn + d2

22µ
2
n

v∗α12µn
, (2.22)

and

dH
21,n =

−T 2
n + 2d22µnTn + 2Tn

√
Jn − d22µnTn + d2

22µ
2
n

v∗α12µn
> 0. (2.23)

It follows from (2.20), (2.22), and (2.23) that d̂21 < d̃21 < dH
21,n because Tn < 0, α12 < 0. Thus, when

d̃21 < d21 < dH
21,n, Pn(τ, 1)Qn(τ, 1) − Rn(τ, 1) > 0 for any τ ≥ 0.

Combining the results of (I) and case (i) in (II), we deduce when d21 < dH
21,n, Pn(τ, 1)Qn(τ, 1) −

Rn(τ, 1) > 0 for any τ ≥ 0.
(ii) When ∆n > 0 is equivalent to d21 > dH

21,n, then Pn(τ, 1)Qn(τ, 1) − Rn(τ, 1) = 0 if τ = τ±n , and
Pn(τ, 1)Qn(τ, 1)−Rn(τ, 1) < 0 if τ ∈

(
τ+n , τ

−
n
)
, and Pn(τ, 1)Qn(τ, 1)−Rn(τ, 1) > 0 if τ ∈

[
0, τ+n

)
∪
(
τ−n ,+∞

)
.

(iii) When ∆n = 0, then d21 = dH
21,n, denote

τn =
T 2

n − 2d22µnTn + d21v∗α12µn

2TnJn − 2d22µnT 2
n + 2d2

22µ
2
nTn

. (2.24)

Thus, we get Pn(τ, 1)Qn(τ, 1) − Rn(τ, 1) = 0 if τ = τn, and Pn(τ, 1)Qn(τ, 1) − Rn(τ, 1) > 0 if τ , τn.
If d21 ≥ 0, together with Jn > 0 and α12 < 0, then Rn(τ, 1) = Jn−d21v∗α12µn

τ
+ Jnd22µn > 0. Further,

we obtain 

Pn(τ, 1)Qn(τ, 1) > Rn(τ, 1) > 0, 0 ≤ d21 < dH
21,n,∀τ ≥ 0

or d21 > dH
21,n, τ ∈

[
0, τ+n

)
∪

(
τ−n ,+∞

)
or d21 = dH

21,n, τ ∈ [0, τn) ∪ (τn,∞) ,
Pn(τ, 1)Qn(τ, 1) = Rn(τ, 1), d21 = dH

21,n, τ = τn or d21 > dH
21,n, τ = τ

±
n ,

Pn(τ, 1)Qn(τ, 1) < Rn(τ, 1), d21 > dH
21,n, τ ∈

(
τ+n , τ

−
n
)
.

We have completed the proof.
Next, together with Lemma 2.2, we get the distribution of the roots of Eq (2.12) for d21 ≥ 0.
Lemma 2.7. Suppose that conditions (H1) and (H2) are satisfied. τ±n , dH

21,n, and τn are defined
according to (2.21), (2.23), and (2.24), respectively. For a given fixed n, we get the results as follows.

(I) When 0 ≤ d21 < dH
21,n, all roots of Eq (2.12) have negative real parts for any τ > 0.

(II) When d21 = dH
21,n, all roots of Eq (2.12) have negative real parts for τ , τn, and Eq (2.12) has

one negative root and a pair of purely imaginary roots ±iωn at τ = τn, where

ωn =
√

Qn(τn, 1) =

√
Jn − Tn

(
1
τn
+ d22µn

)
. (2.25)
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(III) When d21 > dH
21,n, all roots of Eq (2.12) have negative real parts for τ ∈

[
0, τ+n

)
∪

(
τ−n ,+∞

)
; at

least one root of all roots of Eq (2.12) has positive real part for τ ∈
(
τ+n , τ

−
n
)
; Eq (2.12) has one negative

root and a pair of purely imaginary roots ±iω+n
(
±iω−n

)
at τ = τ+n

(
τ = τ−n

)
, where

ω±n =
√

Qn(τ±n , 1) =

√
Jn − Tn

(
1
τ±n
+ d22µn

)
. (2.26)

The following transversality conditions are provided for the purely imaginary roots of Eq (2.12) at
τ = τn, τ

±
n .

Lemma 2.8. Suppose λ(τ) = α(τ)± iβ(τ) are a pair of conjugate complex roots of Eq (2.12) around
τ = τn, τ

±
n which satisfy α

(
τn, τ

±
n
)
= 0, β (τn) = ωn, and β

(
τ±n

)
= ω±n , where τ±n , τn and ωn, ω

±
n are

defined by (2.21), (2.24), (2.25), and (2.26), respectively. Then we have

d Re(λ(τ))
dτ

∣∣∣∣∣
τ=τn

= 0,
d Re(λ(τ))

dτ

∣∣∣∣∣
τ=τ+n

> 0,
d Re(λ(τ))

dτ

∣∣∣∣∣
τ=τ−n

< 0.

Proof. From (2.14), we get that

dλ
dτ
=

1
τ2 (λ2 − Tnλ + Jn − d21v∗α12µn)

3λ2 + 2
(

1
τ
+ d22µn − Tn

)
λ + Jn − Tn

(
1
τ
+ d22µn

) .
From (2.11), we have

τn =
1√

Jn − d22µnTn + d2
22µ

2
n

, τ+n <
1√

Jn − d22µnTn + d2
22µ

2
n

, τ−n >
1√

Jn − d22µnTn + d2
22µ

2
n

by the Vieta’s formulas. Therefore,

(
Re

(
dλ
dτ

))∣∣∣∣∣∣
τ=τn,τ

±
n

=
Tn

(
τ2

(
Jn − d22µnTn + d2

22µ
2
n

)
− 1

)
2τ3

(
ω2 +

(
1
τ
− Tn

)2
)


= 0, τ = τn, ω = ωn,

> 0, τ = τ+n , ω = ω
+
n ,

< 0, τ = τ−n , ω = ω
−
n .

By combining with the fact
d Re(λ(τ))

dτ
= Re

(
dλ(τ)

dτ

)
,

we have completed the proof.
Now, we will study the monotonicity of the function dH

21,n in the following two steps.
Step 1. From (2.20) and (2.23), we rewrite dH

21,n as dH
21,n = d̃21 + H (µn) , where

H (µn) =
2Tn

√
Jn − d22µnTn + d2

22µ
2
n

v∗α12µn
. (2.27)

Then, we rewrite d̃21 as d̃21 = d̃(1)
21 + d̃(2)

21 , where d̃(1)
21 =

−T 2
n

v∗α12µn
and d̃(2)

21 =
2d22Tn
v∗α12

. Clearly, the function

d̃(1)
21 = −

1
v∗α12

(
(α11 + α22)2

µn
+ (d11 + d22)2 µn − 2 (d11 + d22) (α11 + α22)

)
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is decreasing when µn < −
α11+α22
d11+d22

and increasing when µn > −
α11+α22
d11+d22

. Meanwhile, the function d̃(2)
21 =

2d22Tn
v∗α12

increases for any µn ≥ 0, which implies that

dd̃21

dµn
> 0, f or µn > −

α11 + α22

d11 + d22
. (2.28)

Step 2. Next, we have the following result, which is similar to Proposition 2.6 in [25]. Assume that
the conditions (H1) and (H2) are satisfied, there exists a number µ∗ > 0 such that dH(µ)

dµn
> 0, for µn > µ∗,

where µ∗ is the maximum positive real root of h (µn), and

h (µn) = ahµ
3
n + bhµ

2
n + chµn + dh, (2.29)

with

ah = 4d22 (d11 + d22)2 > 0, bh = − (d11 + d22) (d11α22 + d22α11 + d22 (α11 + α22)) ,
ch = − (α11 + α22) (d11α22 + d22α11 + d22 (α11 + α22)) , dh = 2 (α11 + α22) (α11α22 − α12β21) < 0.

Then, we obtain that dH
21,n is monotonically increasing with respect to µn when µn > max

{
−
α11+α22
d11+d22

, µ∗
}
.

Therefore, we denote

n̂ = min
{

n ∈ N

∣∣∣∣∣∣ µn > max
{
−
α11 + α22

d11 + d22
, µ∗

}}
, (2.30)

and
d∗H = min

n∈N

{
dH

21,n

}
= min

1≤n≤n̂

{
dH

21,n

}
. (2.31)

For fixed d21 > d∗H, let

S H (d21) =
{
n ∈ N | dH

21,n < d21

}
, (2.32)

which is a finite set in terms of the property of dH
21,n and also

τ∗ = min
n∈S H(d21)

τ+n , τ∗ = max
n∈S H(d21)

τ−n . (2.33)

Theorem 2.9. Suppose that conditions (H1) and (H2) are satisfied. d∗H, S H (d21), τ∗, and τ∗ are
defined by (2.31), (2.32), and (2.33), respectively. Then, we can derive the following results.

(I) When 0 ≤ d21 < d∗H, for ∀τ > 0 and any n ∈ N, all roots of Eq (2.12) have negative real parts,
then the positive equilibrium E∗ of system (1.2) is locally asymptotically stable;

(II) When d21 > d∗H, the following subcases hold:
(i) for τ ∈ [0, τ∗)∪ (τ∗,+∞) and any n ∈ N, all roots of Eq (2.12) have negative real parts. Thus, the

positive equilibrium E∗ of system (1.2) is locally asymptotically stable;
(ii) for τ∗ < τ < τ∗ and some n ∈ S H (d21), at least one root of Eq (2.12) has positive real part. Then

the positive equilibrium E∗ of system (1.2) is unstable;
(iii) for τ = τ±n and some n ∈ S H (d21), Eq (2.12) has a pair of purely imaginary roots, and all other

roots of Eq (2.12) have negative real parts. Thus, system (1.2) undergoes Hopf bifurcation at E∗.

Electronic Research Archive Volume 33, Issue 12, 7918–7956.



7929

2.3. Stability and bifurcation analysis when d21 , 0, τ ≥ 0, and σ ≥ 0

By Eq (2.10), it can be seen that regardless of whether σ = 0 or σ > 0, if λ = 0 is the root of Eq
(2.10), then R(τ, 1) = 0. That is to say, the gestation delay σ does not influence the presence of the
zero root in the characteristic equation (2.10). Therefore, in this subsection, we concentrate our efforts
on exploring whether there exist purely imaginary roots for Eq (2.10) when σ > 0. First, we have the
following lemma.

Lemma 2.10. Fix d21 < d∗S , the positive equilibrium E∗ of system (1.2) is unstable for all 0 ≤ τ < τS

and σ ≥ 0. When d21 > d∗S , Eq (2.10) has no zero roots for all τ ≥ 0 and σ ≥ 0.
Proof. For fixed n ∈ N, define F : R→ R as the function of λn:

F (λn) = λ3
n + Pn

(
τ, e−λnσ

)
λ2

n + Qn

(
τ, e−λnσ

)
λn + Rn

(
τ, e−λnσ

)
, λn ∈ R.

Eq (2.10) is equivalent to F (λn) = 0.
(i) From (2.17), if 0 ≤ τ < τS

n and d21 < dS
21,n, then F (0) = Rn(τ, 1) < 0 and limλn→+∞ F (λn) =

+∞, and Eq (2.10) has at least one positive real root. Therefore, for fixed d21 < d∗S , in terms of
τS = maxn∈S T (d21)

{
τS

n

}
, where S T (d21) =

{
n ∈ N | dS

21,n > d21

}
, Eq (2.10) has infinitely many positive

real roots for d21 < d∗S , 0 ≤ τ < τS , and σ ≥ 0.
(ii) From (2.17), Rn(τ, 1) = 0 if and only if τ = τS

n (d21 < dS
21,n). Thus, if λn = 0 is a root of

F (λn) = 0, then F (0) = Rn(τ, 1) = 0 if and only if τ = τS
n ( d21 < dS

21,n). This implies that Eq (2.10)
has no zero roots for all d21 > d∗S and τ ≥ 0, σ ≥ 0. This completes the proof.

Now, we investigate the existence of purely imaginary roots of Eq (2.10) by considering the
following two cases:

τ > τS , σ > 0(d21 < d∗S )

and
τ > 0, σ > 0(d21 > d∗S ),

which correspond to the occurrence of Hopf bifurcation in system (1.2).
For convenience, denote

Pn

(
τ, e−λσ

)
= pn − α2e−λσ,Qn

(
τ, e−λσ

)
= qn + gne−λσ,Rn

(
τ, e−λσ

)
= rn + bne−λσ, (2.34)

where

pn = (d11 + 2d22) µn +
1
τ
− (α1 + α11) , gn = α2

(
α11 − d11µn − d22µn −

1
τ

)
− α12β21,

qn =
(
2d11d22 + d2

22

)
µ2

n −

(
d11α1 + d22 (2α11 + α1) −

d11 + d22

τ

)
µn + α11α1 −

α11 + α1

τ
,

rn = d11d2
22µ

3
n − d22

(
d22α11 + d11α1 −

d11

τ

)
µ2

n +

(
d22α11α1 −

d22α11 + d11α1 + d21v∗α12

τ

)
µn +

α11α1

τ
,

bn = (α11α2 − α12β21 − α2d11µn)
(
1
τ
+ d22µn

)
.

(2.35)
Let ±iv(v > 0) be a pair of roots of Eq (2.10). Separating real and imaginary parts, we obtain

gnv sin(vσ) +
(
α2v2 + bn

)
cos(vσ) = pnv2 − rn,

gnv cos(vσ) −
(
α2v2 + bn

)
sin(vσ) = v3 − qnv.

(2.36)
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By the Cramer’s rule, 
cos(vσ) = (pnv2−rn)(α2v2+bn)+gnv(v3−qnv)

(α2v2+bn)2
+(gnv)2

,

sin(vσ) = −(v3−qnv)(α2v2+bn)+gnv(pnv2−rn)
(α2v2+bn)2

+(gnv)2
.

(2.37)

Square both sides of (2.36) and add them together, and we obtain the following sixth-degree equation
in terms of v:

v6 + sn,1v4 + sn,2v2 + sn,3 = 0, (2.38)

where
sn,1 = p2

n − 2qn − α
2
2, sn,2 = q2

n − g2
n − 2α2bn − 2pnrn, sn,3 = r2

n − b2
n. (2.39)

Let v2 = z, which yields
z3 + sn,1z2 + sn,2z + sn,3 = 0. (2.40)

Thus, ±iv(v > 0) are a pair of purely imaginary roots of Eq (2.10) if and only if v2 is a positive root
of Eq (2.40). We analyze when the cubic polynomial (2.40) has positive real roots using the method
in [28]. Define:

L(z) = z3 + sn,1z2 + sn,2z + sn,3,

and
L′(z) = 3z2 + 2sn,1z + sn,2. (2.41)

For fixed n, define:

z∗n =
−sn,1 +

√
s2

n,1 − 3sn,2

3
, if s2

n,1 − 3sn,2 > 0. (2.42)

In what follows, we have the distribution of the positive roots of Eq (2.40).
Lemma 2.11. Consider Eq (2.40), where sn,k(k = 1, 2, 3) and z∗n are defined as in (2.39) and (2.42).

Thus, for fixed n, if (R1) sn,3 ≥ 0, s2
n,1 − 3sn,2 ≤ 0 holds, then Eq (2.40) has no positive roots; if

(R2) sn,3 < 0 or (R3) sn,3 ≥ 0, s2
n,1 − 3sn,2 > 0 and z∗n > 0, L

(
z∗n
)
≤ 0 holds, then Eq (2.40) has at least

one positive root.
Lemma 2.12. For fixed τ, there exists N∗ ≥ 0 such that Eq (2.40) has no positive roots for n > N∗.
Proof. From (2.35) and (2.39), limn→+∞ µn = +∞, and treating µn as a continuous variable,

lim
n→+∞

sn,1 = lim
n→+∞

(
d2

11 + 2d2
22

)
µ2

n = +∞, lim
n→+∞

sn,3 = lim
n→+∞

d2
11d4

22µ
6
n = +∞,

lim
n→+∞

(
sn,1sn,2 − sn,3

)
= lim

n→+∞

((
d2

11 + 2d2
22

) (
2d2

11d2
22 + d4

22

)
− d2

11d4
22

)
µ6

n = +∞.

By the Routh-Hurwitz stability criterion, Eq (2.40) has no positive roots for n > N∗. This completes
the proof.

For fixed n ∈ [0,N∗], assume that Eq (2.40) has three positive roots zn,1, zn,2, and zn,3. Then, for the
same n, Eq (2.38) has three positive roots vn,1 =

√
zn,1, vn,2 =

√
zn,2, and vn,3 =

√
zn,3. By (2.37), for

k = 1, 2, 3, n ∈ [0,N∗], we denote

Cn,k := −
(
v3

n,k − qnvn,k

) (
α2v2

n,k + bn

)
+ gnvn,k

(
pnv2

n,k − rn

)
, (2.43)
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and its sign is the same as sin
(
vn,kσ

( j)
n,k

)
(n ∈ [0,N∗] , j ∈ N0, k = 1, 2, 3). Here, σ( j)

n,k is defined as

σ
( j)
n,k =

 1
vn,k

{
arccos

(
Dn,k

)
+ 2 jπ

}
, if Cn,k ≥ 0,

1
vn,k

{
− arccos

(
Dn,k

)
+ (2 j + 1)π

}
, if Cn,k < 0,

(2.44)

where

Dn,k :=

(
pnv2

n,k − rn

) (
α2v2

n,k + bn

)
+ gnvn,k

(
v3

n,k − qnvn,k

)
(
α2v2

n,k + bn

)2
+ g2

nv2
n,k

. (2.45)

Proposition 2.13. When the positive roots vn,k (n ∈ [0,N∗] , k = 1, 2, 3) of Eq (2.40) exist, then
Eq (2.10) has a pair of purely imaginary roots ±ivn,k at σ = σ( j)

n,k, where σ( j)
n,k is defined as in (2.44).

Because
lim

j→+∞
σ

( j)
n,k = +∞, k = 1, 2, 3, n ∈ [0,N∗] ,

for fixed τ, we define
σ∗ = σ

(0)
n∗,k∗
= min

0≤n≤N∗,k∈{1,2,3}, j∈N0
σ

( j)
n,k, v∗ = vn∗,k∗ . (2.46)

If Eq (2.40) has a positive root v2(v > 0), then when σ = σ
( j)
n,k, (n ∈ [0,N∗] , j ∈ N0, k = 1, 2, 3),

Eq (2.10) has a pair of purely imaginary roots ±iv. Next, we calculate the transversality condition for
the occurrence of Hopf bifurcation in system (1.2).

Lemma 2.14. Suppose zn,k = v2
n,k and L′

(
zn,k

)
, 0, where L′(z) is defined by (2.41). Then ivn,k is a

simple root of Eq (2.10) for σ = σ( j)
n,k, and there exists the unique root λ(σ) = ρ(σ)+ iv(σ) of Eq (2.10)

for σ ∈
(
σ

( j)
n,k − ϵ, σ

( j)
n,k + ϵ

)
and some small enough ϵ > 0 such that ρ

(
σ

( j)
n,k

)
= 0 and v

(
σ

( j)
n,k

)
= vn,k.

Moreover, sign
(

d Re(λ(σ))
dσ

∣∣∣
σ=σ

( j)
n,k

)
= sign

(
L′

(
zn,k

))
, 0.

Proof. From (2.34), we rewrite Eq (2.10) as

M(λ, σ) := X(λ) + Y(λ)e−λσ = 0, (2.47)

where
X(λ) = λ3 + pnλ

2 + qnλ + rn, Y(λ) = −α2λ
2 + gnλ + bn,

and pn, qn, gn, rn, bn are defined as in (2.35). Then, we obtain

∂M
∂λ

(λ, σ) = e−λσT (λ, σ) and
∂M
∂σ

(λ, σ) = −λe−λσY(λ),

where
T (λ, σ) =

(
3λ2 + 2pnλ + qn

)
eλσ − 2α2λ + gn + σ

(
α2λ

2 − gnλ − bn

)
. (2.48)

Substituting λ = ivn,k, σ = σ
( j)
n,k into T (λ, σ),Y(λ), and using (2.36) and (2.39), we get that

Im
{
T

(
ivn,k, σ

( j)
n,k

)
Y

(
ivn,k

)}
=gnvn,k

{
−(−3v2

n,k + qn) cos(vn,kσ
( j)
n,k) + 2pnvn,k sin(vn,kσ

( j)
n,k)

}
− g2

nvn,k + σ
( j)
n,kα2gnv3

n,k − 2α2vn,k(α2v2
n,k + bn)

+ (α2v2
n,k + bn)

{
(−3v2

n,k + qn) sin(vn,kσ
( j)
n,k) + 2pnvn,k cos(vn,kσ

( j)
n,k)

}
− σ

( j)
n,kgnvn,k(α2v2

n,k + bn) + σ( j)
n,kbngnvn,k

=vn,k

{
3v4

n,k +
(
2p2

n − 4qn − 2α2
2

)
v2

n,k +
(
q2

n − g2
n − 2α2bn − 2pnrn

)}
=vn,k

{
3z2

n,k + 2sn,1zn,k + sn,2

}
= vn,kL′

(
zn,k

)
.

(2.49)
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Then, differentiating Eq (2.47) with respect to σ, we obtain

T (λ, σ)
dλ(σ)

dσ
= λY(λ).

Thus,
dλ(σ)

dσ
=

λY(λ)
T (λ, σ)

.

It is easy to verify that

sign
(

d Re(λ(σ))
dσ

∣∣∣
σ=σ

( j)
n,k

)
= sign

(
Re

(
d(λ(σ))

dσ

)∣∣∣∣
σ=σ

( j)
n,k

)
= sign

(
Im

{
T

(
ivn,k, σ

( j)
n,k

)
Y

(
ivn,k

)})
= sign

(
L′

(
zn,k

))
.

Therefore, sign
(

d Re(λ(σ))
dσ

∣∣∣
σ=σ

( j)
n,k

)
, 0 when L′(zn,k) , 0. This completes the proof.

When σ = 0, we see that Eq (2.10) becomes Eq (2.12). From Theorem 2.5 and Theorem 2.9, we
conclude that all roots of Eq (2.12) have negative real parts if and only if

(d21, τ) ∈ Es ∪ Ec ∪ Eh,

where
Es =

{
(d21, τ) | d21 < d∗S , τ > τS

}
,

Ec =
{
(d21, τ) | d∗S < d21 < d∗H, τ ≥ 0

}
,

Eh =
{
(d21, τ) | d21 > d∗H, 0 ≤ τ < τ∗, τ > τ

∗
}
.

(2.50)

By employing the result derived from Lemmas 2.10–2.12, 2.14 and Proposition 2.13, we obtain the
following findings regarding the root distribution of the equation (2.10).

Theorem 2.15. Let conditions (H1) and (H2) hold, and conditions (R1), (R2) and (R3) are defined as
in Lemma 2.11. d∗S , τS , and L′(z); σ( j)

n,k (n ∈ [0,N∗] , j ∈ N0, k = 1, 2, 3); σ∗, and Es, Ec, Eh are defined
by (2.15), (2.41), (2.44), (2.46), and (2.50), respectively. Define

E+s =
{
(d21, τ) | d21 < d∗S , 0 ≤ τ < τS

}
. (2.51)

Then, we have following results.
(I) When (d21, τ) ∈ Es ∪ Ec ∪ Eh,
(i) if condition (R1) holds for all 0 ≤ n ≤ N∗, all roots of Eq (2.10) have negative parts for all σ ≥ 0,

then the positive equilibrium E∗ of system (1.2) is asymptotically stable;
(ii) if condition (R2) or (R3) holds for some 0 ≤ n ≤ N∗, all roots of Eq (2.10) have negative parts

for σ ∈ [0, σ∗), then the positive equilibrium E∗ of system (1.2) is asymptotically stable for σ ∈ [0, σ∗)
and unstable for σ ∈ (σ∗,+∞). Further, if L′

(
zn,k

)
, 0, then the positive equilibrium E∗ of system (1.2)

undergoes Hopf bifurcation at σ = σ( j)
n,k.

(II) When (d21, τ) ∈ E+s , Eq (2.10) has infinitely many positive real roots for all σ ≥ 0, then the
positive equilibrium E∗ of system (1.2) is always unstable.

(III) When d21 < d∗S ,
(i) if condition (R1) holds for all 0 ≤ n ≤ N∗, Eq (2.10) only has one zero root at τ = τS for all

σ ≥ 0, and all other roots of Eq (2.10) have negative parts, then the positive equilibrium E∗ of system
(1.2) undergoes Turing bifurcation at τ = τS for all σ ≥ 0;
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(ii) if condition (R2) or (R3) holds for some 0 ≤ n ≤ N∗, Eq (2.10) has a zero root and a pair of purely
imaginary roots at (τ, σ) =

(
τS , σ

( j)
n,k

)
for 0 ≤ n ≤ N∗, k = 1, 2, 3, j ∈ N0, then the positive equilibrium

E∗ of system (1.2) undergoes Turing–Hopf bifurcation at (τ, σ) =
(
τS , σ

( j)
n,k

)
.

3. Direction and stability of Hopf bifurcation

From Theorem 2.9, we know that system (1.2) undergoes Hopf bifurcation at τ = τ±n for d21 > d∗H
and n ∈ S H (d21) when σ = 0. From [29], system (1.2) with σ = 0 is equivalent to the following
system:

∂u(x, t)
∂t

= d11∆u(x, t) +
ru(x, t)

1 + kv(x, t)
− r0u(x, t) − r1u2(x, t) −

au2(x, t)v(x, t)
bu2(x, t) + u(x, t) + c

, 0 < x < lπ, t > 0,

∂v(x, t)
∂t

= d22∆v(x, t) − d21 [v(x, t)wx(x, t)]x − mv(x, t)

+
ηau2(x, t)v(x, t)

bu2(x, t) + u(x, t) + c

(
v(x, t)

v(x, t) + θ

)
, 0 < x < lπ, t > 0,

∂w(x, t)
∂t

= d22∆w(x, t) +
1
τ

(u(x, t) − w(x, t)), 0 < x < lπ, t > 0,

ux(x, t) = vx(x, t) = wx(x, t) = 0, x = 0, lπ, t > 0.

(3.1)

In this section, we analyze the direction and stability of Hopf bifurcations through the application
of normal form theory at τ = τ±n for d21 > d∗H and n ∈ S H (d21). Let τH (where τH = τ

+
nH

or τH = τ
−
nH

)
denote the critical delay parameter value corresponding to the mode-nH Hopf bifurcation, with some
n = nH ∈ N. According to Theorem 2.9, when τ = τH, the characteristic equation (2.12) possesses a
pair of purely imaginary eigenvalues ±iϖnH

(
ϖnH > 0

)
. Define the real-valued Sobolev space

X =

{
U = (u, v,w)T ∈

(
W2,2(0, ℓπ)

)3
,
∂u
∂x
=
∂v
∂x
=
∂w
∂x
= 0, x = 0, ℓπ

}
,

with the inner product

[U,V] =
∫ ℓπ

0
UT Vdx, for U,V ∈X .

It is well known that the eigenvalue problem (2.4) has eigenvalues (n
l )2, n ∈ N0 with the corresponding

normalized eigenfunctions

bn(x) =
cos

(
nx
l

)∥∥∥∥cos
(

nx
l

)∥∥∥∥
L2

=


1
√

lπ
, when n = 0,√
2
lπ cos

(
nx
l

)
, when n , 0.

Take the vector β(1)
n = (bn, 0, 0)T , β(2)

n = (0, bn, 0)T , β(3)
n = (0, 0, bn)T . Then we take a small

perturbation of τH by setting τ = τH + µ, |µ| ≪ 1 such that µ = 0 corresponds to the Hopf bifurcation
value for system (3.1). Also, let

B(αωr1
1 ω

r2
2 µ

r3) =
(
αωr1

1 ω
r2
2 µ

r3

αωr2
1 ω

r1
2 µ

r3

)
, α ∈ C.

Now, transfer E∗ to the origin by setting

(ũ(x, t), ṽ(x, t), w̃(x, t))T = (u(x, t), v(x, t),w(x, t))T − (u∗, v∗, u∗)T .
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Let U = (u, v,w)T . Then model (3.1) can be rewritten as the following form:

dU
dt
= δ∆U + L(µ)(U) + F(U), (3.2)

where δ∆U = δ0∆U + Fd(U), L(µ)(U) = L0(U) + L̃(U, µ), and

F(U) =


f (u + u∗, v + v∗)
g (u + u∗, v + v∗)

1
τH

(u − w)

 − L0(U), δ0 =


d11 0 0
0 d22 −d21v∗
0 0 d22

 , (3.3)

δ0∆U = −
n2

l2


d11 0 0
0 d22 −d21v∗
0 0 d22




u
v
w

 , Fd(U) = −d21


0

vxwx + vwxx

0

 , (3.4)

and

L0 =


α11 α12 0
β21 α1 + α2 0

1
τH

0 − 1
τH

 , L̃(U, µ) =


0
0(

τH(µ) − 1
τH

)
(u − w)

 . (3.5)

We denote τH(µ) = 1
τH+µ

in (3.5), and it can be written as a Taylor expansion as follows:

τH(µ) =
1

τH + µ
=

∞∑
j=1

(−1) j−1 1

τ
j
H

µ j−1.

In the subsequent analysis, we assume that the functional F (U) possesses Ck smoothness with
respect to the delay variable U, where k ≥ 3. Given that the perturbation parameter µ is treated as
an independent variable in the normal form computation, we reformulate Eq (3.2) into the following
extended system:

dU
dt
= δ0∆U + L0(U) + F̃(U, µ), (3.6)

where
F̃(U, µ) = F(U) + L̃(U, µ) + Fd(U). (3.7)

Denoting by L (U) = δ0∆U + L0(U), the linear system of Eq (3.6) can be written as

dU
dt
= L (U). (3.8)

Let Λ =
{
iϖnH ,−iϖnH

}
, and denote the generalized eigenspace of Eq (3.8) associated with Λ by Φ

and the corresponding adjoint space by Φ∗. Then, according to the standard adjoint theory for ODEs,
C3 can be decomposed by Λ as C3 = Φ ⊕ Ψ, where Ψ =

{
ψ ∈ C3 : ⟨φ, ψ⟩ = 0,∀φ ∈ Φ∗

}
and ⟨·, ·⟩ is

defined by ⟨φ, ψ⟩ = φTψ, for φ, ψ ∈ C3.
Let P = (p, p),Q = (qT, qT)T, where p = (p1, p2, p3)T and q = (q1, q2, q3)T. Choose the dual bases

P and Q of Φ and Φ∗ such that
⟨Q,P⟩ = E2.
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Through algebraic reduction, we get

p =


1

iϖnH−α11+d11( nH
l )2

α12
1
k1

 and q = η


1
α12
k2

τHd21α12( nH
l )2v∗

k1k2

 .
Here,

η =
k2

1k2

k2
1

(
2iϖnH + (d11 + d22)( nH

l )2 − (α11 + α1 + α2)
)
+ τHd21α12v∗( nH

l )2
,

with k1 = d22τH

(
nH
l

)2
+ 1 + iϖnHτH and k2 = d22

(
nH
l

)2
− α1 − α2 + iϖnH .

Furthermore, from C3 = Φ ⊕ Ψ, we see that X can be decomposed as

X = Imπ ⊕ Kerπ,

where dim Imπ = 2, for ψ̃ ∈X , the projection π : X → Imπ is defined by

π(ψ̃) =

P
〈
Q,


[ψ̃(·), β(1)

nH ]
[ψ̃(·), β(2)

nH ]
[ψ̃(·), β(3)

nH ]


〉

T

bnH (x). (3.9)

Hence, we can decompose U as

U = PωbnH (x) + z, z = (z(1), z(2), z(3))T ∈ Kerπ,

where ω = (ω1(t), ω2(t)) ∈ R2. Consequently, we decompose system (3.6) as the following equations:
ω̇ = Dω + Q


[F̃(PωbnH (x) + z, µ), β(1)

nH ]
[F̃(PωbnH (x) + z, µ), β(2)

nH ]
[F̃(PωbnH (x) + z, µ), β(3)

nH ]

 ,
ż = L (z) + (I − π)F̃(PωbnH (x) + z, µ),

(3.10)

where D = diag{iϖnH ,−iϖnH }.
Now, we consider the following Taylor expansion:

F̃(ψ, µ) =
∑
j≥2

1
j!

F̃ j(ψ, µ), F(ψ) =
∑
j≥2

1
j!

F j(ψ),

L̃(ψ, µ) =
∑
j≥1

1
j!

L̃ j(ψ)µ j, Fd(ψ) =
∑
j≥2

1
j!

Fd
j (ψ),

we have
F̃ j(ψ, µ) = F j(ψ) + jµ j−1L̃ j−1(ψ) + Fd

j (ψ), j = 2, 3 · · · . (3.11)

The system (3.10) can be rewritten asω̇ = Dω +
∑

j≥2
1
j! f 1

j (ω, z, µ),

ż = L (z) +
∑

j≥2
1
j! f 2

j (ω, z, µ),
(3.12)
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where 
f 1

j (ω, z, µ) = Q


[F̃ j(PωbnH (x) + z, µ), β(1)

nH ]
[F̃ j(PωbnH (x) + z, µ), β(2)

nH ]
[F̃ j(PωbnH (x) + z, µ), β(3)

nH ]

 ,
f 2

j (ω, z, µ) = (I − π)F̃ j(PωbnH (x) + z, µ).

(3.13)

By implementing the subsequent change of variables [26],

(ω, z) = (ω̃, z̃) +
1
j!

(
U1

j (ω̃, µ),U2
j (ω̃, µ)

)
, j ≥ 2, (3.14)

we thereby derive the normal form of system (3.12) as follows:

ω̇ = Dω +
∑
j≥2

1
j!

g1
j(ω, 0, µ). (3.15)

Define the operators (M1
j p)(ω, µ) = Dωp(ω, µ)Dω − Dp(ω, µ) and (M2

j h)(ω, µ) = Dωh(ω, µ)Dω −
L (h(ω, µ)). Applying the method from [26, 30], we compute

g1
2(ω, 0, µ) = Projker(M1

2 ) f 1
2 (ω, 0, µ),

and
g1

3(ω, 0, µ) =Projker(M1
3 ) f̃ 1

3 (ω, 0, µ) = ProjS f̃ 1
3 (ω, 0, 0) + O(µ2|ω|). (3.16)

Here, the cubic polynomial is interpreted in the coordinate system induced by transformation (3.14).
Furthermore, it can be determined by (3.16) that

ker(M1
2) = Span

{(
µω1

0

)
,

(
0
µω2

)}
,

ker(M1
3) = Span

{(
ω2

1ω2

0

)
,

(
µ2ω1

0

)
,

(
0

ω1ω
2
2

)
,

(
0

µ2ω2

)}
,

and

S = Span
{(

ω2
1ω2

0

)
,

(
0

ω1ω
2
2

)}
. (3.17)

3.1. Calculation of g1
2(ω, 0, ξ)

From (3.11), we get
F̃2(ψ, µ) = F2(ψ) + 2µL̃1(ψ) + Fd

2(ψ).

From (3.4), we have

Fd
2(U) = −2d21(0, vxwx + vwxx, 0)T , Fd

j (U) = (0, 0, 0)T , j = 3, 4, · · · , (3.18)

and from (3.5) and (3.11), we obtain

L̃ j(U) =

0, 0, (−1) j 1

τ
j+1
H

(u − w)

T

, j ≥ 1. (3.19)
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Clearly, because for n ∈ N,
∫ lπ

0
b2

n(x)dx = 1, we can calculate that
[
2µL̃1

(
PωbnH (x)

)
, β(1)

nH

][
2µL̃1

(
PωbnH (x)

)
, β(2)

nH

][
2µL̃1

(
PωbnH (x)

)
, β(3)

nH

]
 = −2µ

τ2
H


0
0

(p1 − p3)ω1 +
(
p1 − p3

)
ω2

 . (3.20)

From (3.3) and (3.4), we obtain that F2(ψ) and Fd
2(ψ) do not contain the variable µ. It follows from the

first mathematical expression in (3.13) that

f 1
2 (ω, 0, µ) = Q


[F̃2(PωbnH (x), µ), β(1)

nH ]
[F̃2(PωbnH (x), µ), β(2)

nH ]
[F̃2(PωbnH (x), µ), β(3)

nH ]

 .
This, together with (3.11), (3.18), and (3.19), leads to

g1
2(ω, 0, µ) = Projker(M1

2 ) f 1
2 (ω, 0, µ) = B(B1µω1), (3.21)

where
B1 = −

2
τ2

H

q3(p1 − p3). (3.22)

3.2. Calculation of g1
3(ω, 0, ξ)

Similar to [31], denote

f (1,1)
2 (ω, z, 0) = Q


[F2(PωbnH (x) + z), β(1)

nH ]
[F2(PωbnH (x) + z), β(2)

nH ]
[F2(PωbnH (x) + z), β(3)

nH ]

 , (3.23)

and

f (1,2)
2 (ω, z, 0) = Q


[Fd

2(PωbnH (x) + z), β(1)
nH ]

[Fd
2(PωbnH (x) + z), β(2)

nH ]
[Fd

2(PωbnH (x) + z), β(3)
nH ]

 . (3.24)

(3.21) implies that g1
2(ω, 0, 0) = (0, 0)T . Then f̃ 1

3 (ω, 0, 0) is determined by

f̃ 1
3 (ω, 0, 0) = f 1

3 (ω, 0, 0) +
3
2

[(
Dω f 1

2 (ω, 0, 0)
)
U1

2(ω, 0)

+

(
Dz f (1,1)

2 (ω, 0, 0)
)
U2

2(ω, 0)+(
Dz,zx,zxx f (1,2)

2 (ω, 0, 0)
)
U (2,d)

2 (ω, 0)
]
,

where f 1
2 (ω, 0, 0) = f (1,1)

2 (ω, 0, 0) + f (1,2)
2 (ω, 0, 0),

Dz,zx,zxx f (1,2)
2 (ω, 0, 0) =

(
Dz f (1,2)

2 (ω, 0, 0),Dzx f (1,2)
2 (ω, 0, 0),Dzxx f (1,2)

2 (ω, 0, 0)
)
,

U1
2(ω, 0) = (M1

2)−1ProjIm(M1
2 ) f 1

2 (ω, 0, 0),U2
2(ω, 0) = (M2

2)−1 f 2
2 (ω, 0, 0),

(3.25)
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and
U (2,d)

2 (ω, 0) =
(
U2

2(ω, 0),U2
2x(ω, 0),U2

2xx(ω, 0)
)T
. (3.26)

We next finish the calculation of ProjS f̃ 1
3 (ω, 0, 0) in four steps.

Step 1. The calculation of ProjS f 1
3 (ω, 0, 0)

Wring F3(PωbnH (x)) as follows:

F3(PωbnH (x)) =
∑

r1+r2=3

Ar1r2ω
r1
1 ω

r2
2 b3

nH
(x), r1, r2 ∈ N0, (3.27)

where Ar1r2 = Ar2r1 with r1, r2 ∈ N0. From (3.7), (3.18), and (3.19), we have F̃3(PωbnH (x), 0) =
F3(PωbnH (x)). From (3.13) and (3.27), we deduce

f 1
3 (ω, 0, 0) = Q

 ∑
r1+r2=3

Ar1r2ω
r1
1 ω

r2
2

∫ lπ

0
b4

nH
(x)dx

 ,
which, together with

∫ lπ

0
b4

nH
(x)dx = 3

2lπ , yields

ProjS f 1
3 (ω, 0, 0) = B(B21ω

2
1ω2),

where
B21 =

3
2lπ

qTA21.

Step 2. The calculation of ProjS
(
(Dω f 1

2 (ω, 0, 0))U1
2(ω, 0)

)
From (3.7), (3.18), and (3.19), we have that

F̃2(PωbnH (x), 0) = F2(PωbnH (x)) + Fd
2(PωbnH (x)). (3.28)

(3.27) implies

F2(PωbnH (x) + z) =b2
nH

(x)

 ∑
r1+r2=2

Ar1r2ω
r1
1 ω

r2
2

 + S 2(PωbnH (x), z) + O(|z|2), (3.29)

where S 2(PωbnH (x), z) refers to the product of PωbnH (x) and z. In conjunction with (3.18), we write

Fd
2(PωbnH (x)) =

(nH

l

)2 (
ξ2

nH
(x) − b2

nH
(x)

)  ∑
r1+r2=2

Ad
r1r2
ωr1

1 ω
r2
2

 , (3.30)

where

ξnH (x) =

√
2
lπ

sin
(nH x

l

)
,

and

Ad
20 = −2d21


0

p2 p3

0

 = Ad
02,A

d
11 = −4d21


0

Re {p2 p̄3}

0

 . (3.31)
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It then follows from
∫ lπ

0
ξ2

nH
(x)bnH (x)dx =

∫ lπ

0
b3

nH
(x)dx = 0 that

f 1
2 (ω, 0, 0) = Q


[F̃2(PωbnH (x), 0), β(1)

nH ]
[F̃2(PωbnH (x), 0), β(2)

nH ]
[F̃2(PωbnH (x), 0), β(3)

nH ]

 = (0, 0, 0)T. (3.32)

Hence, together with (3.27), (3.29), and (3.30), we have

ProjS

(
(Dω f 1

2 (ω, 0, 0))U1
2(ω, 0)

)
= B(B22ω

2
1ω2),

where
B22 = (0, 0)T, nH ∈ N.

Step 3. The calculation of ProjS

(
(Dz f (1,1)

2 (ω, 0, 0))U2
2(ω, 0)

)
Denote

U2
2(ω, 0) = h(ω) =

∑
n∈N0

hn(ω)bn(x) ∈ Kerπ,

where hn(ω) =
∑

r1+r2=2 hn,r1r2ω
r1
1 ω

r2
2 . We can derive from [31] that

[S 2(PωbnH (x),
∑

n∈N0
hn(ω)bn(x)), β(1)

nH ]
[S 2(PωbnH (x),

∑
n∈N0

hn(ω)bn(x)), β(2)
nH ]

[S 2(PωbnH (x),
∑

n∈N0
hn(ω)bn(x)), β(3)

nH ]

 = ∑
n∈N0

Hn (S 2(pω1, hn(ω)) + S 2( p̄ω2, hn(ω))) ,

where

Hn =

∫ lπ

0
b2

nH
(x)bn(x)dx =


1
√

lπ
, n = 0,

1
√

2lπ
, n = 2nH,

0, otherwise.

Hence, we have

(Dz f (1,1)
2 (ω, 0, 0))U2

2(ω, 0) = Q

 ∑
n=0,n=2nH

Hn (S 2(pω1, hn(ω)) +S 2( p̄ω2, hn(ω)))

 ,
and

ProjS ((Dz f (1,1)
2 (ω, 0, 0))U2

2(ω, 0)) = B(B23ω
2
1ω2),

where

B23 =
1
√

lπ
qT (

S 2(p, h0,11) + S 2(p̄, h0,20)
)
+

1
√

2lπ
qT (

S 2(p, h2nH ,11) + S 2(p̄, h2nH ,20)
)
.

Step 4. The calculation of ProjS

(
(Dz,zx,zxx f (1,2)

2 (ω, 0, 0))U (2,d)
2 (ω, 0)

)
Let U = (U (1),U (2),U (3)) = PωbnH (x) and

Fd
2(PωbnH (x), z, zx, zxx) = Fd

2(PωbnH (x) + z, 0)

= −2d21


0

(U (2)
x + z(2)

x )(U (3)
x + z(3)

x )
0

 − 2d21


0

(U (2) + z(2))(U (3)
xx + z(3)

xx )
0

 ,
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S (d,1)
2 (U, z) = −2d21


0

U (3)
xx z(2)

0

 ,
S (d,2)

2 (U, zx) = −2d21


0

U (2)
x z(3)

x

0

 − 2d21


0

U (3)
x z(2)

x

0

 ,
S (d,3)

2 (U, zxx) = −2d21


0

U (2)z(3)
xx

0

 .
Because

U2
2(ω, 0) = h(ω) =

∑
n∈N0

hn(ω)bn(x),

U2
2x(ω, 0) = hx(ω) = −

∑
n∈N0

(n
l

)
hn(ω)ξn(x),

U2
2xx(ω, 0) = hxx(ω) = −

∑
n∈N0

(n
l

)2
hn(ω)bn(x),

then we get

Dz,zx,zxx F
d
2
(
PωbnH (x), z, zx, zxx

)
U (2,d)

2 (ω, 0)

=S (d,1)
2 (PωbnH (x), h(ω)) + S (d,2)

2
(
PωbnH (x), hx(ω)

)
+ S (d,3)

2
(
PωbnH (x), hxx(ω)

)
,

and
[
S (d,1)

2
(
PωbnH (x), h(ω)

)
, β(1)

nH (x)
][

S (d,1)
2

(
PωbnH (x), h(ω)

)
, β(2)

nH (x)
][

S (d,1)
2

(
PωbnH (x), h(ω)

)
, β(3)

nH (x)
]
 = −

(nH

l

)2 ∑
n∈N0

Hn

(
S̃ (d,1)

2 (pω1, hn(ω)) + S̃ (d,1)
2 ( p̄ω2, hn(ω))

)
,


[
S (d,2)

2
(
PωbnH (x), hx(ω)

)
, β(1)

nH (x)
][

S (d,2)
2

(
PωbnH (x), hx(ω)

)
, β(2)

nH (x)
][

S (d,2)
2

(
PωbnH (x), hx(ω)

)
, β(3)

nH (x)
]
 =

(nH

l

) ∑
n∈N0

(n
l

)
Cn

(
S̃ (d,2)

2 (pω1, hn(ω)) + S̃ (d,2)
2 ( p̄ω2, hn(ω))

)
,


[
S (d,3)

2
(
PωbnH (x), hxx(ω)

)
, β(1)

nH (x)
][

S (d,3)
2

(
PωbnH (x), hxx(ω)

)
, β(2)

nH (x)
][

S (d,3)
2

(
PωbnH (x), hxx(ω)

)
, β(3)

nH (x)
]
 = −

∑
n∈N0

(n
l

)2
Hn

(
S̃ (d,3)

2 (pω1, hn(ω)) + S̃ (d,3)
2 ( p̄ω2, hn(ω))

)
,

where

Cn =

∫ lπ

0
ξnH (x)ξn(x)bnH (x)dx =

{ 1
√

2lπ
, n = 2nH,

0, otherwise,
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as well as

S̃ (d,1)
2 (p, z) = −2d21


0

z2 p3

0

 , S̃ (d,2)
2 (p, z) = −2d21


0

z3 p2 + z2 p3

0

 , S̃ (d,3)
2 (p, z) = −2d21


0

z3 p2

0

 .
From (3.23)–(3.26), we have

(
Dz,zx,zxx f (1,2)

2 (ω, 0, 0)
)

U (2,d)
2 (ω, 0) = Q


[
Dz,zx,zxx F

d
2(PωbnH (x), z, zx, zxx)U

(2,d)
2 (ω, 0), β(1)

nH

][
Dz,zx,zxx F

d
2(PωbnH (x), z, zx, zxx)U

(2,d)
2 (ω, 0), β(2)

nH

][
Dz,zx,zxx F

d
2(PωbnH (x), z, zx, zxx)U

(2,d)
2 (ω, 0), β(3)

nH

]
 ,

and
ProjS ((Dz,zx,zxx f (1,2)

2 (ω, 0, 0))U (2,d)
2 (ω, 0)) = B(B24ω

2
1ω2),

where

B24 = −
1
√

lπ
(
nH

l
)2qT

(
S̃ (d,1)

2 (p, h0,11) + S̃ (d,1)
2 ( p̄, h0,20)

)
+

1
√

2lπ
qT

∑
j=1,2,3

h( j)
2nH

(
S̃ (d, j)

2 (p, h2nH ,11) + S̃ (d, j)
2 ( p̄, h2nH ,20)

)
,

with

h(1)
2nH
= −

n2
H

l2 , h
(2)
2nH
= 2

n2
H

l2 , h
(3)
2nH
= −

4n2
H

l2 .

According to the above computations, we can obtain the normal form of Hopf bifurcation as follows:

ω̇ = Dω +
1
2

(
B1ω1µ

B̄1ω2µ

)
+

1
3!

(
B2ω

2
1ω2

B̄2ω1ω
2
2

)
+ O(|ω|µ2 + |ω|4), (3.33)

where

B1 = −
2
τ2

H

q3

(
p1 − p3

)
, B2 = B21 +

3
2

(B22 + B23 + B24).

Let ω1 = z1 − iz2, ω2 = z1 + iz2, and z1 = ϱcosγ, z2 = ϱsinγ, where γ is the azimuthal angle, then
Eq (3.33) can be rewritten in the following polar coordinate form:

ϱ̇ = K1µϱ + K2ϱ
3 + O(µ2ϱ + |(µ, ϱ)|4),

where

K1 =
1
2

Re(B1), K2 =
1
3!

Re(B2).

We further have the following theorem [32]:
Theorem 3.1. The Hopf bifurcation is supercritical (subcritical) provided that K1K2 < 0(> 0), and

the bifurcating periodic solutions are stable (unstable) if K2 < 0(> 0).
In order to obtain B2, we need to calculateAi j, S 2(PωbnH (x), z), h0,20, h0,11, h2nH ,20, and h2nH ,11. The

detailed calculation procedures are provided in the Appendix.
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4. Numerical simulation

In this section, we conduct a series of numerical simulations to validate the preceding theoretical
findings. We set the parameters as follows:

r = 0.14, r0 = 0.01, k = 3.5, r1 = 0.01, a = 0.5, b = 0.5, c = 0.01,

η = 0.4, θ = 0.03,m = 0.25, l = 4, d11 = 0.06, d22 = 0.2.

It can be verified that (H1) and (H2) hold, and there is a positive equilibrium E∗ = (0.9268, 0.3312).

4.1. The Spatiotemporal distribution when σ = 0

From (2.9), we have

dS
21,4 ≈ −0.1791 > dS

21,5 ≈ −0.1820 > dS
21,6 ≈ −0.2035 > dS

21,3 ≈ −0.2135 > . . . .

Thus, it follows from (2.15) that d∗S = dS
21,4 ≈ −0.1791. From (2.13), we can calculate that the Turing

bifurcation curves are τ = τS
n for fixed d21 < d∗S .

Similar to Proposition 2.6 in [25], we can calculate that µ∗ ≈ 0.2293. Together with (2.30) and
(2.31), we obtain n̂ = 2 and d∗H = min1≤n≤2

{
dH

21,n

}
, where, from (2.23),

dH
21,2 ≈ 0.8006 < dH

21,1 ≈ 0.9263 < · · · ,

which implies that d∗H = dH
21,2 ≈ 0.8006. From (2.21), we can calculate that the Hopf bifurcation curves

are τ = τ±n for fixed d21 > d∗H.
Further, according to Theorems 2.5 and 2.9, we get that for σ = 0, when −0.1791 ≈ d∗S < d21 <

d∗H ≈ 0.8006, E∗ is locally asymptotically stable for all τ ≥ 0; when d21 < d∗S ≈ −0.1791, E∗ is
locally asymptotically stable for τ > τS and unstable for 0 < τ < τS , and Turing bifurcations occur
at τ = τS

n for fixed d21 < dS
21,n; when d21 > d∗H ≈ 0.8006, E∗ is locally asymptotically stable for

τ ∈ [0, τ∗) ∪ (τ∗,+∞), and unstable for τ ∈ (τ∗, τ∗), and Hopf bifurcations occur at τ = τ±n for fixed
d21 > dH

21,n (see Figure 1).

4.1.1. d21 = −0.55 < d∗S
For fixed d21 = −0.55 < d∗S , it follows from (2.15) that τS = τ

S
3 ≈ 14.0143 and E∗ is asymptotically

stable for (τS ,∞). For τ = 14.1 > τS , E∗ is spatially homogeneous steady state (see Figure 2(a),(c)).
For τ = 13.75 < τS , E∗ is the mode-3 spatially nonhomogeneous steady state (see Figure 2(b),(d)).

4.1.2. d21 = 1.5 > d∗H
For fixed d21 = 1.5 > d∗H, it follows from (2.33) that

τ∗ = τ
+
2 ≈ 1.3313, τ∗ = τ−2 ≈ 27.1474.

System (1.2) undergoes Hopf bifurcations at τ = τ∗ and τ = τ∗, and E∗ is asymptotically stable for
τ ∈ [0, τ∗) ∪ (τ∗,∞). Using the procedure developed in Section 3, we have, for τH = τ∗ ≈ 1.3313,

κ1 ≈ 0.0418 > 0, κ2 ≈ −0.0079 < 0,
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(a) (b)

Figure 1. (a) Stability regions and bifurcation curves for system (1.2) with σ = 0. The
areas with blue dots are Es and Eh, and the area with green dots is Ec. In the remaining
colorless areas, the left side is E+s , and the right side is E+h . The Hopf bifurcation curves
are τ = τ±n , n = 2, 3, 4, and the Turing bifurcation curves are τ = τS

n , n = 2, 3, 4. When
(d21, τ) ∈ Es ∪ Ec ∪ Eh, E∗ is stable for σ = 0; when (d21, τ) ∈ E+s , E∗ is unstable for σ ≥ 0;
when (d21, τ) ∈ E+h , E∗ is unstable for σ = 0. (b) is the enlargement of (a) restricted to the
region −1 < d21 < −0.2,0 < τ < 32.

(a) Q1(−0.55, 14.1) (b) Q2(−0.55, 13.75)

(c) Q1(−0.55, 14.1) (d) Q2(−0.55, 13.75)

Figure 2. Numerical simulations of system (1.2) with σ = 0 for (d21, τ) chosen as Qi(i =
1, 2) in Figure 1, showing spatially homogeneous and nonhomogeneous steady states. The
initial conditions are chosen as (a)–(b): u(x, 0) = 0.9268 + 0.01 cos(3x/4); (c)–(d): v(x, 0) =
0.3312 + 0.01 cos(3x/4).
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(a) Q3(1.5, 1) (b) Q4(1.5, 1.45) (c) Q5(1.5, 24) (d) Q6(1.5, 30)

(e) Q3(1.5, 1) (f) Q4(1.5, 1.45) (g) Q5(1.5, 24) (h) Q6(1.5, 30)

Figure 3. Numerical simulations of system (1.2) with σ = 0 for (d21, τ) chosen as Qi(i =
3, 4, 5, 6) in Figure 1, showing spatially homogeneous steady states and nonhomogeneous
periodic patterns. The initial conditions are chosen as (a)–(d): u(x, 0) = 0.9268 +
0.01 cos(3x/4); (e)–(h): v(x, 0) = 0.3312 + 0.01 cos(3x/4).

which implies that the spatially nonhomogeneous Hopf bifurcation at τ = τ∗ is supercritical and stable.
For τH = τ

∗ ≈ 27.1474,

κ1 ≈ −0.0027 < 0, κ2 ≈ −0.0066 < 0,

which implies that the spatially nonhomogeneous Hopf bifurcation at τ = τ∗ is subcritical and stable.
When τ = 1 < τ∗, E∗ is spatially homogeneous steady state (see Figure 3(a),(e)). Letting τ∗ <

τ = 1.45 < τ∗ (but close to τ∗), E∗ is the mode-2 spatially nonhomogeneous periodic solution (see
Figure 3(b),(f)), the point (d21, τ) ≈ (1, 5, 1.45) may correspond to a subcritical Hopf bifurcation. For
τ∗ < τ = 24 < τ∗ (but close to τ∗), E∗ is the mode-2 spatially Hopf bifurcation (see Figure 3(c),(g)).
When τ = 30 > τ∗, E∗ is spatially homogeneous steady state (see Figure 3(d),(h)).

Through numerical simulation, the green and blue areas are the stability region of the positive
equilibrium E∗ in Figure 1. When points Q1, Q3, and Q6 are selected in the stability region, the
positive equilibrium is locally asymptotically stable, as shown in Figure 2(a),(c), Figure 3(a),(e), and
Figure 3(d),(h). When (d21, τ) crosses the boundary of the stability region, points Q2, Q4, and Q5 are
selected. The system (1.2) exhibits Turing bifurcation and Hopf bifurcation at the positive equilibrium
E∗, as illustrated in Figure 2(b),(d), Figure 3(b),(f), and Figure 3(c),(g).

4.2. The Spatiotemporal distribution when σ > 0

In terms of Theorems 2.5 and 2.9, for (d21, τ) ∈ Es∪Ec∪Eh and σ = 0, E∗ is stable. Now, we study
whether E∗ becomes unstable again when the gestation delay σ ≥ 0. In what follows, we always fix
d21, dividing it into three cases:

(I)d21 < d∗S ; (II)d∗S < d21 < d∗H; (III)d21 > d∗H.
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Figure 4. Bifurcation diagram in the plane of τ − σ for fixed d21 = −0.55, in which the
Hopf bifurcation curves are σ = σ(0)

n,1, n = 0, 1, 2, and the Turing bifurcation curve is τ = τS
3 .

The Hopf bifurcation curve σ = σ(0)
0,1 and the Turing bifurcation curve τ = τS

3 intersect at the
point P∗(14.0143, 1.9719). The points P1(14.1, 1.9), P2(14.1, 2.3), P3(13.85, 1.73) are chosen
for the numerical simulations.

(a) P1(14.1, 1.9) (b) P2(14.1, 2.3)

(c) P1(14.1, 1.9) (d) P2(14.1, 2.3)

Figure 5. Numerical simulations of system (1.2) for (d21, τ) chosen as Pi(i = 1, 2) in Figure 2,
showing spatially homogeneous steady state and homogeneous periodic pattern. The initial
conditions are chosen as (a)–(b): u(x, 0) = 0.9268 + 0.01 cos(3x/4); (c)—(d): v(x, 0) =
0.3312 + 0.01 cos(3x/4).
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(a) P3(13.85, 1.73) (b) P3(13.85, 1.73)
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Figure 6. Numerical simulations of system (1.2) with σ > 0 for (d21, τ) chosen as P3 in
Figure 4, showing spatially homogeneous Hopf bifurcation. The initial conditions are chosen
as (a): u(x, 0) = 0.9268 + 0.01 cos(3x/4); (b): v(x, 0) = 0.3312 + 0.01 cos(3x/4). (c): The
truncated curves of (a) and (b) for fixed t = 800.

4.2.1. d21 = −0.55 < d∗S

According to Theorem 2.5, for σ = 0, when d21 < d∗S ≈ −0.1791, E∗ is locally asymptotically
stable for τ > τS and unstable for 0 < τ < τS . From Theorem 2.15, for d21 = −0.55 < d∗S , E∗ always
is unstable when 0 < τ < τS and σ ≥ 0. Thus, we concentrate on observing the cases of τ > τS and
σ ≥ 0. In terms of mathematical analysis, for τ > τS = 14.0143, we will show the occurrence of Hopf
bifurcation for σ as larger than some value σ∗; meanwhile, for τ = τS = 14.0143, we shall declare the
occurrence of Turing–Hopf bifurcation for some value of σ∗.

From Lemma 2.12, for fixed τ ∈ (12, 22) and d21 = −0.55, Eq (2.38) with coefficient (2.39) has
no positive real roots when σ ≥ 0 and n > N∗ = 3, and we plot a series of Hopf bifurcation curves
σ = σ(0)

n,1(n = 0, 1, 2) and the Turing bifurcation curve τ = τS ≈ 14.0143 in Figure 4. Therefore,
P∗(14.0143, 1.9719) is the intersection of curve σ = σ(0)

0,1 and τ ≈ 14.0143, that is called Turing–
Hopf bifurcation point. Together with (2.46), we obtain σ∗ = 1.9719. Near P∗, Pi(i = 1, 2, 3) are
chosen for the numerical simulations. For fixed τ = 14.1 > τS , E∗ is homogeneous steady state when
σ = 1.9 < σ∗ (see Figure 5(a),(c)); E∗ is spatially homogeneous periodic solution when σ = 2.3 > σ∗
(see Figure 5(b),(d)). For fixed τ = 13.85 < τS , E∗ is spatially homogeneous Hopf bifurcation (see
Figure 6(a),(b)).

4.2.2. d∗S < d21 = 0.75 < d∗H

Let memory diffusion coefficient d∗S ≈ −0.1791 < d21 = 0.75 < d∗H ≈ 0.8006, then from
Theorems 2.5 and 2.9, E∗ is stable for any τ ≥ 0 and σ = 0. Similarly, fixed τ ∈ (0, 40) and
d21 = 0.75, when σ ≥ 0 and n > N∗ = 3, Eq (2.38) with coefficient (2.39) has no positive real roots.
Then, following from (2.44), we plot a series of Hopf bifurcation curves σ = σ(0)

n,1(n = 0, 1, 2) (see
Figure 7).

When τ = 12, we calculate that from (2.41) that

v2
1,1 = z1,1 ≈ 0.0194, L′

(
z1,1

)
≈ 0.0009 > 0,
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Figure 7. Bifurcation diagram in the plane of τ − σ for fixed d21 = 0.75, in which the Hopf
bifurcation curves are σ = σ(0)

n,1, n = 0, 1, 2. The points N1(12, 0.5), N2(12, 0.7), N3(6, 0.5),
N4(39, 2), N5(10, 0.9) are chosen for the numerical simulations.

(a) N1(12, 0.5) (b) N2(12, 0.7) (c) N3(6, 0.5)

(d) N1(12, 0.5) (e) N2(12, 0.7) (f) N3(6, 0.5)

Figure 8. Numerical simulations of system (1.2) for (τ, σ) chosen as Ni(i = 1, 2, 3)
in Figure 7, showing spatially homogeneous steady state and nonhomogeneous periodic
patterns. The initial conditions are chosen as (a)–(b): u(x, 0) = 0.9268 + 0.01 cos(3x/4),
(c): u(x, 0) = 0.9268 + 0.01 cos(x/4); (d)–(e): v(x, 0) = 0.3312 + 0.01 cos(3x/4), (f):
v(x, 0) = 0.3312 + 0.01 cos(x/4).
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which implies from Lemma 2.14 that

sign
 d Re(λ(σ))

dσ

∣∣∣∣∣
σ=σ(0)

1,1

 = sign
(
L′

(
z1,1

))
> 0.

In addition, it follows by (2.46) that

σ∗ = min
0≤n≤2,k=1,2,3

σ(0)
n,k = σ

(0)
1,1 ≈ 0.666850,

hence for σ = 0.5 < σ∗, E∗ is spatially homogeneous steady state (see Figure 8(a),(d)); for σ = 0.7 >
σ∗, E∗ is the mode-1 spatially nonhomogeneous periodic solution (see Figure 8(b),(e)).

(a) N4(39, 2) (b) N5(10, 0.9)

(c) N4(39, 2) (d) N5(10, 0.9)

Figure 9. Numerical simulations of system (1.2) for (τ, σ) chosen as Ni(i = 4, 5) in
Figure 7, showing nonhomogeneous periodic patterns. The initial conditions are chosen
as (a): u(x, 0) = 0.9268 + 0.01 cos(x/4), (b): u(x, 0) = 0.9268 + 0.01 cos(3x/4); (c):
v(x, 0) = 0.3312 + 0.01 cos(x/4), (d): v(x, 0) = 0.3312 + 0.01 cos(3x/4).

When τ = 6, we can get from (2.46) that

σ∗ = min
0≤n≤2,k=1,2,3

σ(0)
n,k = σ

(0)
2,1 ≈ 0.320966,

and

sign
 d Re(λ(σ))

dσ

∣∣∣∣∣
σ=σ(0)

2,1

 = sign
(
L′

(
z2,1

))
= 0.0029 > 0,

hence for σ = 0.5 > σ∗, E∗ is the mode-2 spatially nonhomogeneous periodic solution (see
Figure 8(c),(f)).
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When τ = 39, similarly, we calculate from (2.46) that

σ∗ = min
0≤n≤2,k=1,2,3

σ(0)
n,k = σ

(0)
0,1 ≈ 1.971880,

hence for σ = 2 > σ∗, E∗ is spatially nonhomogeneous periodic solution (see Figure 9(a),(c)).
Similarly, E∗ is spatially nonhomogeneous periodic solution (see Figure 9(b),(d)).

(a) (b) (c)

Figure 10. Bifurcation diagram in the plane of τ − σ for fixed d21 = 1.5 in which the
Hopf bifurcation curves are σ = σ(0)

n,1, n = 0, 1, 2. The points M1(1.2, 0.45), M2(1.2, 0.75),
M3(32.5, 0.55), and M4(32.5, 0.4) are chosen for the numerical simulations. Figure 10(b) and
(c) are the enlargement of Figure 10(a) restricted to the region 0 < d21 < 2.5, 0 < τ < 2.5 and
20 < d21 < 85, 0 < τ < 2.5, respectively.

4.2.3. d21 = 1.5 > d∗H
According to Theorem 2.9, when d21 = 1.5 > d∗H ≈ 0.8006 for σ = 0, E∗ is stable for any

0 ≤ τ < τ∗ ≈ 1.3313 and τ > τ∗ ≈ 27.1474, and unstable τ ∈ (τ∗, τ∗) ≈ (1.3313, 27.1474). Fixed
τ ∈ (0, 85) and d21 = 1.5, when σ ≥ 0 and n > N∗ = 3, Eq (2.38) with coefficient (2.39) has no positive
real roots. Then from (2.44), we plot a series of Hopf bifurcation curves σ = σ(0)

n,1(n = 0, 1, 2) (see
Figure 10).

For fixed τ = 1.2 < τ∗, we calculate from (2.46) that

σ∗ = min
0≤n≤2,k=1,2,3

σ(0)
n,k = σ

(0)
2,1 ≈ 0.614854,

hence for σ = 0.45 < σ∗, E∗ is spatially homogeneous steady state (see Figure 11(a),(e)); for σ =
0.75 > σ∗, E∗ is the mode-2 spatially nonhomogeneous periodic solution (see Figure 11(b),(f)).

For fixed τ = 32.5 > τ∗, we calculate from (2.46) that

σ∗ = min
0≤n≤2,k=1,2,3

σ(0)
n,k = σ

(0)
1,1 ≈ 0.524696,

so for σ = 0.55 > σ∗, E∗ is the mode-1 spatially nonhomogeneous periodic solution (see
Figure 11(c),(g)); E∗ is spatially homogeneous steady state when σ = 0.4 < σ∗ (see Figure 11(d),(h)).

Through numerical simulation, we take d21 as the bifurcation parameter and analyze the following
three cases: d21 = −0.55 < d∗S , d∗S < d21 = 0.75 < d∗H, and d21 = 1.5 > d∗H (see Figures 4, 7 and 10). In
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(a) M1(1.2, 0.45) (b) M2(1.2, 0.75) (c) M3(32.5, 0.55) (d) M4(32.5, 0.4)

(e) M1(1.2, 0.45) (f) M2(1.2, 0.75) (g) M3(32.5, 0.55) (h) M4(32.5, 0.4)

Figure 11. Numerical simulations of system (1.2) with σ > 0 for (τ, σ) chosen as Mi(i =
1, 2, 3, 4) in Figure 10, showing spatially homogeneous steady states and nonhomogeneous
periodic patterns. The initial conditions are chosen as (a)–(b): u(x, 0) = 0.9268 +
0.01 cos(x/4); (c)–(d): u(x, 0) = 0.9268 + 0.01 cos(3x/4); (e)–(f): v(x, 0) = 0.3312 +
0.01 cos(x/4); (g)–(h): v(x, 0) = 0.3312 + 0.01 cos(3x/4).

each case, there exist stable regions. Within the stable regions of each case, the positive equilibrium
E∗ is locally asymptotically stable, as illustrated in Figure 5(a),(c), Figure 8(a),(d), and
Figure 11(a),(e). In contrast, when (τ, σ) crosses the boundary of the stable region, the stability of E∗
changes, and the positive equilibrium E∗ manifests as either spatially homogeneous or
nonhomogeneous periodic solutions.

5. Conclusions

In this paper, we propose a diffusive predator-prey model with the distributed delay τ and the
gestation delay σ. Firstly, we present the conditions for the occurrence of Hopf bifurcation and Turing
bifurcation at the positive equilibrium E∗ of system (1.2). When σ = 0, for d21 < d∗S , the positive
equilibrium E∗ of system (1.2) undergoes Turing bifurcation at τ = τS ; for d21 > d∗H, the positive
equilibrium of system (1.2) undergoes Hopf bifurcation at τ = τ∗ (τ = τ∗). When σ > 0, for
d∗S < d21 < d∗H, there exists a critical value σ∗ of σ such that the positive equilibrium E∗ of system
(1.2) undergoes Hopf bifurcation at σ = σ∗; for d21 < d∗S , the positive equilibrium E∗ of system (1.2)
undergoes Turing–Hopf bifurcation at (τ, σ) = (τS , σ

( j)
n,k), where n ∈ N0, j ∈ N, and k = 1, 2, 3; for

d21 > d∗H, there also exists a critical value σ∗ of σ such that the positive equilibrium E∗ of system (1.2)
undergoes Hopf bifurcation at σ = σ∗. Secondly, when σ = 0, we calculate the normal form of Hopf
bifurcation induced by the memory delay, and study the direction and stability of Hopf bifurcation.
Finally, the numerical simulation results validate theoretical findings. Variations in the memory-based
diffusion coefficient, memory delay, and gestation delay may induce transitions between spatially
homogeneous or nonhomogeneous steady states and spatially homogeneous or nonhomogeneous
periodic solutions.
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In order to maintain ecological balance and protect biological diversity, we hope that prey and
predator can coexist and their numbers remain relatively stable. The density of prey and predator
populations approaches a relatively stable state when (τ, σ) is in the stable region, while it fluctuates
when (τ, σ) is outside the stable region. Therefore, by adjusting the gestation delay of predator and
the memory of predator on distribution of prey, the population densities can be made to tend towards a
stable state. Besides, the size of the stable region is affected by other parameters of the system, such
as the memory-based diffusion coefficient d21. According to memory, the prey moves to a relatively
safe area with fewer predators in order to avoid predation. Predators also remember the historical
distribution of the prey in space to improve their capture rate. Thus, we can take appropriate measures
to control the memory diffusion coefficient of species to expand the stable region of the
positive equilibrium.

In this paper, we calculated the normal form of Hopf bifurcation induced by the distributed memory
delay τ when the gestation delay σ = 0. In future work, we hope to calculate the normal forms of
Turing and Turing–Hopf bifurcations when the memory delay τ , 0 and the gestation delay σ , 0.
Moreover, the kernel function used in this paper is a weak kernel function. Exploring the impact
of strong or other kernel functions on the spatial patterns of the system is an worthwhile topic for
future research.
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Appendix

We can deduce from (3.3) that

F2(ψ) = f200ψ
2
1 + f020ψ

2
1 + 2 f110ψ1ψ2, (A.1)

and
F3(ψ) = f300ψ

3
1 + f030ψ

3
2 + 3 f120ψ1ψ

2
2 + 3 f210ψ

2
1ψ2. (A.2)

Here,

f110 =


− rk

(1+kv∗)2 −
au∗(u∗+2c)

(bu2
∗+u∗+c)2

ηau∗v∗(u∗+2c)
(θ+v∗)(bu2

∗+u∗+c)2 +
ηθau∗v∗(u∗+2c)

(θ+v∗)2(bu2
∗+u∗+c)2

0

 , f020 =


rk2u∗

(1+kv∗)3

−
θηau2

∗v∗
(1+kv∗)3(bu2

∗+u∗+c) +
ηθau2

∗

(θ+v∗)2(bu2
∗+u∗+c)

0

 ,

f030 =


−

r1u∗k3

(1+kv∗)4

θηau2
∗v∗

(θ+v∗)4(bu2
∗+u∗+c) −

θηau2
∗

(θ+v∗)3(bu2
∗+u∗+c)

0

 , f120 =


rk2

(1+kv∗)3

ηau∗θ(u∗+2c)
(θ+v∗)2(bu2

∗+u∗+c)2 −
ηθau∗v∗(u∗+2c)

(θ+v∗)3(bu2
∗+u∗+c)2

0

 ,

f210 =


a(bu3

∗+3bcu2
∗−c2)

(bu2
∗+u∗+c)3

−
θηav∗(bu3

∗+3bcu2
∗−c2)

(θ+v∗)2(bu2
∗+u∗+c)3 −

ηav∗(bu3
∗+3bcu2

∗−c2)
(θ+v∗)(bu2

∗+u∗+c)3

0

 , f200 =


−r1 +

av∗(bu3
∗+3bcu2

∗−c2)
(bu2
∗+u∗+c)3

−
ηav2
∗(bu3

∗+3bcu2
∗−c2)

(θ+v∗)(bu2
∗+u∗+c)3

0

 ,

f300 =


−

av∗(b2u4
∗+4u3

∗b
2c−4u∗bc2−c2)

(bu2
∗+u∗+c)4

ηav2
∗(b

2u4
∗+4u3

∗b
2c−4u∗bc2−c2)

(θ+v∗)(bu2
∗+u∗+c)4

0

 .
Letting

ψ = PωbnH (x) =


p1ω1bnH (x) + p̄1ω2bnH (x)
p2ω1bnH (x) + p̄2ω2bnH (x)
p3ω1bnH (x) + p̄3ω2bnH (x)

 =

ψ1

ψ2

ψ3

 , (A.3)

we have
F2(PωbnH (x)) =

∑
r1+r2=2

Ar1r2ω
r1
1 ω

r2
2 b2

nH
(x), (A.4)

then in conjunction with (A.1), (A.3), and (A.4), we obtain

A20 = f200 p2
1 + 2 f110 p1 p2 + f020 p2

2,A02 = f200 p̄2
1 + f020 p̄2

2 + 2 f110 p̄1 p̄2,

A11 =2 f200 p1 p̄1 + 2 f020 p2 p̄2 + 2 f110( p̄1 p2 + p1 p̄2).

Furthermore, from (3.27), (A.2), and (A.3), we have

A21 =3 f300 p2
1 p̄1 + 3 f030 p2

2 p̄2 + 3 f120(p2
2 p̄1 + 2p1 p̄2 p2) + 3 f210( p̄2 p2

1 + 2p1 p2 p̄1),
A12 =3 f300 p̄2

1 p1 + 3 f030 p̄2
2 p2 + 3 f120( p̄2

2 p1 + 2p̄1 p2 p̄2) + 3 f210(p2 p̄2
1 + 2p̄2 p1 p̄1),

A30 = f300 p3
1 + 3 f120 p1 p2

2 + 3 f210 p2
1 p2 + f030 p3

2,A03 = f300 p̄3
1 + 3 f120 p̄1 p̄2

2 + 3 f210 p̄2
1 p̄2 + 3 f030 p̄3

2.
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Similarly, we have

F2(PωbnH (x) + z) =
∑

r1+r2=2

Ar1r2ω
r1
1 ω

r2
2 b2

nH
(x) + S 2(PωbnH (x), z) + O(|z|2),

where
S 2(PωbnH (x), z) =2

[
f200 p1z1 + f020 p2z2 + f110(p2z1 + p1z2)

]
ω1bnH (x)

+ 2
[
f200 p̄1z1 + f020 p̄2z2 + f110( p̄2z1 + p̄1z2)

]
ω2bnH (x).

Next, we will compute h0,20, h0,11, h2nH ,20, and h2nH ,11. It follows from [26]

M2
2(hn(ω)bn(x)) = Dω(hn(ω)bn(x))Dω −L (hn(ω)bn(x))

that 
[
M2

2(hn(ω)bn(x)), β(1)
nH

][
M2

2(hn(ω)bn(x)), β(2)
nH

][
M2

2(hn(ω)bn(x)), β(3)
nH

]
 = 2iϖnH [hn,20ω

2
1 − hn,02ω

2
2] −L0(hn(ω)),

where
L0(hn(ω)) = − (

n
l
)2δ0hn(ω) + L0(hn(ω)).

By combining with (3.9) and (3.13), we obtain

f 2
2 (ω, 0, 0) =F̃2

(
PωbnH (x), 0

)
− P

〈
Q


[
F̃2

(
PωbnH (x), 0

)
, β(1)

nH

][
F̃2

(
PωbnH (x), 0

)
, β(2)

nH

][
F̃2

(
PωbnH (x), 0

)
, β(3)

nH

]

〉

bn(x).

Furthermore, by (3.28)–(3.31), we have
[
f 2
2 (ω, 0, 0), β(1)

nH

][
f 2
2 (ω, 0, 0), β(2)

nH

][
f 2
2 (ω, 0, 0), β(3)

nH

]
 =

 1
√

lπ

(
A20ω

2
1 +A02ω

2
2 +A11ω1ω2

)
, n = 0,

1
√

2lπ

(
Ã20ω

2
1 + Ã02ω

2
2 + Ã11ω1ω2

)
, n = 2nH,

where Ã is given by Ãi1i2 = Ai1i2 − 2
(

nH
l

)2
Ad

i1i2
,

i1, i2 = 0, 1, 2, i1 + i2 = 2,
(A.5)

whereAd
i1,i2

is given by (3.31), and by matching the coefficients of ω2
1 and ω1ω2, we get

n = 0,

ω2
1 : 2iϖnH h0,20 − L0

(
h0,20

)
= 1
√

lπ
A20,

ω1ω2 : −L0
(
h0,11

)
= 1
√

lπ
A11,

(A.6)

and

n = 2nH,

ω2
1 : 2iϖnH h2nH ,20 −L0

(
h2nH ,20

)
= 1
√

2lπ
Ã20,

ω1ω2 : −L0
(
h2nH ,11

)
= 1
√

2lπ
Ã11.

(A.7)
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Solving (A.6), we get (
2iϖnH E3 − L0

)
h0,20 =

1
√

lπ
A20,

therefore,

h0,20 =
(
2iϖnH E3 − L0

)−1 1
√

lπ
A20.

Similarly, we obtain

h0,11 = (−L0)−1 1
√

lπ
A11.

Solving (A.7), we have

L0(hn(ω)) = − (
n
l
)2δ0hn(ω) + L0(hn(ω)).

We have (
2iϖnH E3 +

4n2
H

l2 δ0 − L0

)
h2nH ,20 =

1
√

2lπ
Ã20,

therefore,

h2nH ,20 =

(
2iϖnH E3 +

4n2
H

l2 δ0 − L0

)−1 Ã20
√

2lπ
,

where Ã20 is determined by (A.5). Similarly, we have

h2nH ,11 =

(4n2
H

l2 δ0 − L0

)−1 1
√

2lπ
Ã11.
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