Let $ p_{1}, p_{2}, \ldots, p_{7} $ be primes. In this paper, we first show that when $ k_{1} = 23 $, every sufficiently large odd integer can be represented as the sum of one prime square, five prime cubes, one prime biquadrate and at most $ k_{1} $ powers of $ 2 $. We further prove that for $ k_{2} = 45 $, every pair of sufficiently large odd integers satisfying certain necessary conditions can be represented as a pair of equations involving one prime square, five prime cubes, one prime biquadrate and at most $ k_{2} $ powers of $ 2 $.
Citation: Xue Han, Rui Zhang. Goldbach-Linnik type problems for mixed powers of primes and powers of 2[J]. Electronic Research Archive, 2025, 33(12): 7902-7917. doi: 10.3934/era.2025348
Let $ p_{1}, p_{2}, \ldots, p_{7} $ be primes. In this paper, we first show that when $ k_{1} = 23 $, every sufficiently large odd integer can be represented as the sum of one prime square, five prime cubes, one prime biquadrate and at most $ k_{1} $ powers of $ 2 $. We further prove that for $ k_{2} = 45 $, every pair of sufficiently large odd integers satisfying certain necessary conditions can be represented as a pair of equations involving one prime square, five prime cubes, one prime biquadrate and at most $ k_{2} $ powers of $ 2 $.
| [1] | Y. V. Linnik, Prime numbers and powers of two, Trudy Mat. Inst. Steklov, 38 (1951), 152–169. |
| [2] | Y. V. Linnik, Addition of prime numbers with powers of one and the same number, Mat. Sb. (N.S.), 32 (1953), 3–60. |
| [3] |
J. Pintz, I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem Ⅱ, Acta Math. Hung., 161 (2020), 569–582. https://doi.org/10.1007/s10474-020-01077-8 doi: 10.1007/s10474-020-01077-8
|
| [4] |
Y. H. Liu, On a Waring-Goldbach problem involving squares and cubes, Math. Slovaca, 69 (2019), 1249–1262. https://doi.org/10.1515/ms-2017-0306 doi: 10.1515/ms-2017-0306
|
| [5] |
X. D. Lü, Y. C. Cai, Waring-Goldbach problem: one square and nine biquadrates, Chin. Ann. Math. Ser. B, 40 (2019), 273–284. https://doi.org/10.1007/s11401-019-0132-x doi: 10.1007/s11401-019-0132-x
|
| [6] |
Z. X. Liu, Goldbach-Linnik type problems with unequal powers of primes, J. Number Theory, 176 (2017), 439–448. https://doi.org/10.1016/j.jnt.2016.12.009 doi: 10.1016/j.jnt.2016.12.009
|
| [7] |
T. W. Ching, K. M. Tsang, Waring–Goldbach problem involving cubes of primes, Math. Z., 297 (2021), 1105–1117. https://doi.org/10.1007/s00209-020-02550-4 doi: 10.1007/s00209-020-02550-4
|
| [8] |
G. S. Lü, On sum of one prime, two squares of primes and powers of 2, Monatsh. Math., 187 (2018), 113–123. https://doi.org/10.1007/s00605-017-1104-4 doi: 10.1007/s00605-017-1104-4
|
| [9] |
L. L. Zhao, On unequal powers of primes and powers of 2, Acta Math. Hung., 146 (2015), 405–420. https://doi.org/10.1007/s10474-015-0535-4 doi: 10.1007/s10474-015-0535-4
|
| [10] |
L. Zhu, On pairs of equations with unequal powers of primes and powers of 2, AIMS Math., 10 (2025), 4153–4172. https://doi.org/10.3934/math.2025193 doi: 10.3934/math.2025193
|
| [11] |
Y. F. Kong, On pairs of linear equations in four prime variables and powers of two, Bull. Aust. Math. Soc., 87 (2013), 55–67. https://doi.org/10.1017/S0004972712000172 doi: 10.1017/S0004972712000172
|
| [12] |
Y. F. Kong, Z. X. Liu, On pairs of Goldbach-Linnik equations, Bull. Aust. Math. Soc., 95 (2017), 199–208. https://doi.org/10.1017/S000497271600071X doi: 10.1017/S000497271600071X
|
| [13] |
J. Y. Liu, Enlarged major arcs in additive problems Ⅱ, Proc. Steklov Inst. Math., 276 (2012), 176–192. https://doi.org/10.1134/S0081543812010154 doi: 10.1134/S0081543812010154
|
| [14] |
J. Y. Liu, T. Zhan, Sums of five almost equal prime squares Ⅱ, Sci. China Ser. A-Math., 41 (1998), 710–722. https://doi.org/10.1007/BF02901953 doi: 10.1007/BF02901953
|
| [15] |
A. Languasco, A. Zaccagnini, On a Diophantine problem with two primes and $s$ powers of two, Acta Arith., 145 (2010), 193–208. https://doi.org/10.4064/aa145-2-7 doi: 10.4064/aa145-2-7
|
| [16] |
J. Pintz, I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem Ⅰ, Acta Arith., 109 (2003), 169–194. https://doi.org/10.4064/aa109-2-6 doi: 10.4064/aa109-2-6
|
| [17] |
D. R. Heath-Brown, J. C. Puchta, Integers represented as a sum of primes and powers of two, Asian J. Math., 6 (2002), 535–565. https://doi.org/10.4310/AJM.2002.v6.n3.a7 doi: 10.4310/AJM.2002.v6.n3.a7
|
| [18] |
E. X. Huang, On pairs of Goldbach-Linnik equations with unequal powers of primes, Czech. Math. J., 73 (2023), 1219–1228. https://doi.org/10.21136/CMJ.2023.0470-22 doi: 10.21136/CMJ.2023.0470-22
|
| [19] |
X. D. Lü, Two prime squares, four prime cubes and powers of 2, Chin. Ann. Math., 43 (2022), 103–112. https://doi.org/10.16205/j.cnki.cama.2022.0007 doi: 10.16205/j.cnki.cama.2022.0007
|
| [20] | A. Languasco, Pintz-Ruzsa Algorithm on exponential sums over powers of 2 [Source Code], 2022. https://doi.org/10.24433/CO.2996876.v2 |
| [21] |
X. Han, H. F. Liu, A pair of equations in eight prime cubes and powers of 2, Bull. Aust. Math. Soc., 108 (2023), 244–253. https://doi.org/10.1017/s0004972722001289 doi: 10.1017/s0004972722001289
|
| [22] |
R. Zhang, Goldbach-Linnik type problems with mixed powers of primes, Ramanujan J., 60 (2023), 1069–1080. https://doi.org/10.1007/s11139-022-00662-5 doi: 10.1007/s11139-022-00662-5
|
| [23] |
L. K. Hua, Some results in the additive prime number theory, Q. J. Math., 1 (1938), 68–80. https://doi.org/10.1093/qmath/os-9.1.68 doi: 10.1093/qmath/os-9.1.68
|
| [24] |
L. L. Zhao, Four squares of primes and powers of 2, Acta Arith., 162 (2014), 255–271. https://doi.org/10.4064/aa162-3-4 doi: 10.4064/aa162-3-4
|