Research article Special Issues

Bifurcation analysis of a predator-prey model with cross-diffusion and two delays

  • Published: 25 December 2025
  • In this paper, a predator-prey model with cross-diffusion and two delays is investigated. First, the conditions for local stability and Turing instability of positive steady-state solution are studied separately when the system was without and with diffusion. Second, the existence and the stability of Hopf bifurcation were investigated by computing stability switching curves in the parameter plane with two delays. Moreover, explicit formulas for determining the stability and the direction of the bifurcation periodic solutions were derived using the normal form theory and the center manifold theorem. Finally, the theoretical results were verified by numerical simulations.

    Citation: Hongyan Sun, Jianzhi Cao, Pengmiao Hao, Li Ma. Bifurcation analysis of a predator-prey model with cross-diffusion and two delays[J]. Electronic Research Archive, 2025, 33(12): 7866-7901. doi: 10.3934/era.2025347

    Related Papers:

  • In this paper, a predator-prey model with cross-diffusion and two delays is investigated. First, the conditions for local stability and Turing instability of positive steady-state solution are studied separately when the system was without and with diffusion. Second, the existence and the stability of Hopf bifurcation were investigated by computing stability switching curves in the parameter plane with two delays. Moreover, explicit formulas for determining the stability and the direction of the bifurcation periodic solutions were derived using the normal form theory and the center manifold theorem. Finally, the theoretical results were verified by numerical simulations.



    加载中


    [1] F. M. Alwan, D. K. Archana, D. G. Prakasha, H. A. Ali, Computational optimization of fractional-order influenza sir epidemic modeling using two effective techniques, Commun. Math. Biol. Neurosci., 2025 (2025), 101. https://doi.org/10.28919/cmbn/9401 doi: 10.28919/cmbn/9401
    [2] Y. Javaid, S. Jawad, R. Ahmed, H. A. Ali, B. Rashwani, Dynamic complexity of a discretized predator prey system with allee effect and herd behaviour, Appl. Math. Sci. Eng., 32 (2024), 2420953. https://doi.org/10.1080/27690911.2024.2420953 doi: 10.1080/27690911.2024.2420953
    [3] H. A. Ali, A. Ahmad, F. Abbas, E. Hincal, A. Ghaffar, B. Batiha, et al., Modeling the behavior of a generalized cholera epidemic model with asymptomatic measures for early detection, PLoS One, 20 (2025), e0319684. https://doi.org/10.1371/journal.pone.0319684 doi: 10.1371/journal.pone.0319684
    [4] A. Ali, S. Jawad, Stability analysis of the depletion of dissolved oxygen for the phytoplankton-zooplankton model in an aquatic environment, Iraqi J. Sci., 65 (2024), 2736–2748. https://doi.org/10.24996/ijs.2024.65.5.31 doi: 10.24996/ijs.2024.65.5.31
    [5] A. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. https://doi.org/10.1038/116461b0
    [6] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
    [7] H. I. Freedman, P. Waltman, Persistence in models of three interacting predator-prey populations, Math. Biosci., 68 (1984), 213–231. https://doi.org/10.1016/0025-5564(84)90032-4 doi: 10.1016/0025-5564(84)90032-4
    [8] P. Y. H. Pang, M. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differ. Equations, 200 (2004), 245–273. https://doi.org/10.1016/j.jde.2004.01.004 doi: 10.1016/j.jde.2004.01.004
    [9] M. Wang, P. Y. H. Pang, Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model, Appl. Math. Lett., 21 (2008), 1215–1220. https://doi.org/10.1016/j.aml.2007.10.026 doi: 10.1016/j.aml.2007.10.026
    [10] X. Tang, Y. Song, Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior, Nonlinear Anal. Real World Appl., 24 (2015), 36–49. https://doi.org/10.1016/j.nonrwa.2014.12.006 doi: 10.1016/j.nonrwa.2014.12.006
    [11] D. Wu, H. Zhao, Spatiotemporal dynamics of a diffusive predator-prey system with Allee effect and threshold hunting, J. Nonlinear Sci., 30 (2020), 1015–1054. https://doi.org/10.1007/s00332-019-09600-0 doi: 10.1007/s00332-019-09600-0
    [12] D. Sen, S. Ghorai, M. Banerjee, A. Morozov, Bifurcation analysis of the predator-prey model with the Allee effect in the predator, J. Math. Biol., 84 (2022), 7. https://doi.org/10.1007/s00285-021-01707-x doi: 10.1007/s00285-021-01707-x
    [13] C. Wang, S. Yuan, H. Wang, Spatiotemporal patterns of a diffusive prey-predator model with spatial memory and pregnancy period in an intimidatory environment, J. Math. Biol., 84 (2022), 12. https://doi.org/10.1007/s00285-022-01716-4 doi: 10.1007/s00285-022-01716-4
    [14] C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol. 91 (1959), 385–398. https://doi.org/10.4039/Ent91385-7 doi: 10.4039/Ent91385-7
    [15] J. Zhou, Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent diffusion, Nonlinear Anal. Theory Methods Appl., 82 (2013), 47–65. https://doi.org/10.1016/j.na.2012.12.014 doi: 10.1016/j.na.2012.12.014
    [16] N. Ali, M. Jazar, Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses, J. Appl. Math. Comput., 43 (2013), 271–293. https://doi.org/10.1007/s12190-013-0663-3 doi: 10.1007/s12190-013-0663-3
    [17] P. Lenzini, J. Rebaza, Nonconstant predator harvesting on ratio-dependent predator-prey models, Appl. Math. Sci., 4 (2010), 791–803.
    [18] H. Shi, W. Li, G. Lin, Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response, Nonlinear Anal. Real World Appl., 11 (2010), 3711–3721. https://doi.org/10.1016/j.nonrwa.2010.02.001 doi: 10.1016/j.nonrwa.2010.02.001
    [19] X. Chen, Z. Du, Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst., 17 (2018), 67–80. https://doi.org/10.1007/s12346-017-0223-6 doi: 10.1007/s12346-017-0223-6
    [20] Y. Li, S. Huang, T. Zhang, Dynamics of a non-selective harvesting predator-prey model with Hassell-Varley type functional response and impulsive effects, Math. Methods Appl. Sci., 39 (2016), 189–201. https://doi.org/10.1002/mma.3468 doi: 10.1002/mma.3468
    [21] Y. Zhang, J. Huang, Bifurcation analysis of a predator-prey model with beddington-deangelis functional response and predator competition, Math. Methods Appl. Sci., 45 (2022), 9894–9927. https://doi.org/10.1002/mma.8345 doi: 10.1002/mma.8345
    [22] D. Luo, The study of global stability of a periodic Beddington-DeAngelis and Tanner predator-prey model, Results Math., 74 (2019), 101. https://doi.org/10.1007/s00025-019-1016-9 doi: 10.1007/s00025-019-1016-9
    [23] A. Singh, P. Malik, Bifurcations in a modified Leslie-Gower predator-prey discrete model with Michaelis-Menten prey harvesting, J. Appl. Math. Comput., 67 (2021), 143–174. https://doi.org/10.1007/s12190-020-01491-9 doi: 10.1007/s12190-020-01491-9
    [24] R. Yang, C. Zhang, Dynamics in a diffusive predator-prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1–22. https://doi.org/10.1016/j.nonrwa.2016.01.005 doi: 10.1016/j.nonrwa.2016.01.005
    [25] W. Yang, Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response, Nonlinear Anal. Real World Appl., 14 (2013), 1323–1330. https://doi.org/10.1016/j.nonrwa.2012.09.020 doi: 10.1016/j.nonrwa.2012.09.020
    [26] R. Yang, Bifurcation analysis of a diffusive predator-prey system with Crowley-Martin functional response and delay, Chaos, Solitons Fractals, 95 (2017), 131–139. https://doi.org/10.1016/j.chaos.2016.12.014 doi: 10.1016/j.chaos.2016.12.014
    [27] X. Zhang, H. Zhu, Q. An, Dynamics analysis of a diffusive predator-prey model with spatial memory and nonlocal fear effect, J. Math. Anal. Appl., 525 (2023), 127123. https://doi.org/10.1016/j.jmaa.2023.127123 doi: 10.1016/j.jmaa.2023.127123
    [28] X. Tao, L. Zhu, Study of periodic diffusion and time delay induced spatiotemporal patterns in a predator-prey system, Chaos, Solitons Fractals, 150 (2021), 111101. https://doi.org/10.1016/j.chaos.2021.111101 doi: 10.1016/j.chaos.2021.111101
    [29] F. Liu, R. Yang, L. Tang, Hopf bifurcation in a diffusive predator-prey model with competitive interference, Chaos, Solitons Fractals, 120 (2019), 250–258. https://doi.org/10.1016/j.chaos.2019.01.029 doi: 10.1016/j.chaos.2019.01.029
    [30] Y. Lou, W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157
    [31] W. Zuo, Global stability and Hopf bifurcations of a Beddington-DeAngelis type predator-prey system with diffusion and delays, Appl. Math. Comput., 223 (2013), 423–435. https://doi.org/10.1016/j.amc.2013.08.029 doi: 10.1016/j.amc.2013.08.029
    [32] J. Cao, H. Sun, P. Hao, P. Wang, Bifurcation and turing instability for a predator-prey model with nonlinear reaction cross-diffusion, Appl. Math. Modell., 89 (2021), 1663–1677. https://doi.org/10.1016/j.apm.2020.08.030 doi: 10.1016/j.apm.2020.08.030
    [33] X. Lin, H. Wang, Stability analysis of delay differential equations with two discrete delays, Can. Appl. Math. Q., 20 (2012), 519–533.
    [34] J. Cao, L. Ma, P. Hao, Bifurcation analysis in a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response, J. Appl. Anal. Comput., 13 (2023), 3026–3053. https://doi.org/10.11948/20230183 doi: 10.11948/20230183
    [35] S. Li, S. Yuan, Z. Jin, H. Wang, Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator, J. Differ. Equations, 357 (2023), 32–63. https://doi.org/10.1016/j.jde.2023.02.009 doi: 10.1016/j.jde.2023.02.009
    [36] H. Sun, J. Cao, P. Hao, L. Zhang, Instability and bifurcation analysis of a diffusive predator-prey model with fear effect and delay, Int. J. Biomath., 17 (2024), 2350080. https://doi.org/10.1142/S1793524523500808 doi: 10.1142/S1793524523500808
    [37] H. Sun, P. Hao, J. Cao, Dynamics analysis of a diffusive prey-taxis system with memory and maturation delays, Electron. J. Qual. Theory Differ. Equations, 40 (2024), 1–20. https://doi.org/10.14232/ejqtde.2024.1.40 doi: 10.14232/ejqtde.2024.1.40
    [38] J. Liu, J. Chen, C. Tian, Stability of Turing bifurcation in a weighted networked reaction-diffusion system, Appl. Math. Lett., 118 (2021), 107135. https://doi.org/10.1016/j.aml.2021.107135 doi: 10.1016/j.aml.2021.107135
    [39] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [40] Y. Du, B. Niu, J. Wei, Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system, Chaos, 29 (2019), 013101. https://doi.org/10.1063/1.5078814 doi: 10.1063/1.5078814
    [41] Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differ. Equations, 300 (2021), 597–624. https://doi.org/10.1016/j.jde.2021.08.010 doi: 10.1016/j.jde.2021.08.010
    [42] Y. Lv, The spatially homogeneous Hopf bifurcation induced jointly by memory and general delays in a diffusive system, Chaos, Solitons Fractals, 156 (2022), 111826. https://doi.org/10.1016/j.chaos.2022.111826 doi: 10.1016/j.chaos.2022.111826
    [43] S. N. Chow, J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. https://doi.org/10.1007/978-1-4613-8159-4
    [44] T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217–2238. https://doi.org/10.1090/S0002-9947-00-02280-7 doi: 10.1090/S0002-9947-00-02280-7
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(282) PDF downloads(14) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog