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Abstract: In this paper, a predator-prey model with cross-diffusion and two delays is investigated.
First, the conditions for local stability and Turing instability of positive steady-state solution are studied
separately when the system was without and with diffusion. Second, the existence and the stability of
Hopf bifurcation were investigated by computing stability switching curves in the parameter plane
with two delays. Moreover, explicit formulas for determining the stability and the direction of the
bifurcation periodic solutions were derived using the normal form theory and the center manifold
theorem. Finally, the theoretical results were verified by numerical simulations.
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1. Introduction

Mathematical modeling is a powerful tool for understanding and predicting the dynamics of
complex ecosystems. By abstracting and quantifying key elements in biological processes-such as
population growth, interactions, spatial movement, and time delays, it transforms qualitative ecological
hypotheses into an analyzable and simulatable quantitative framework [1–4]. Mathematical models
enable ‘numerical experiments’ under controlled conditions, exploring the long-term behavior of
systems under various parameters and scenarios, revealing underlying threshold phenomena (e.g.,
bifurcations), stability transitions, and mechanisms of spatial pattern formation, which are often
difficult to obtain through observation or experimentation alone.

As an important part of ecology, population ecology is rich in dynamics and application value.
Therefore, scholars have developed a strong interest in population dynamics models. The population
dynamics model is a mathematical model that describes the interactions between populations and
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the environment, and between populations and populations. The study of these models is of great
significance in protecting resources and the environment, maintaining the balance of ecosystems and
the rational use of biological resources. It is well known that the relationships among biological
populations include four basic relationships: reciprocal symbiosis, parasitism, competition, and
predation. Predation relationship plays an important role in the survival and development of the
biological community. Hence, the study of the predator-prey dynamics model has also received
extensive attention in biomathematics.

In 1926, Lotka [5] and Volterra [6] proposed the most basic and important Lotka-Volterra predator-
prey model to describe the dynamic relationship between two populations. Since the establishment of
the predator-prey model, the study of this model has been rapidly developed and much research has
been carried out on it from different perspectives [7–13]. In 1959, Holling proposed three functional
response functions [14], which have promoted the research process of the predator-prey model. It is
well known that functional response functions are the key factors to reflect the interaction between
predator and prey in the predator-prey model. To describe the characteristics of interactions between
populations, many types of functional response functions have been proposed, mostly including
Holling type, ratio-dependent type, Hassell-Varley type, Beddington-DeAngelis type, Leslie-Gower
type, and Crowley-Martin type. A large amount of research work has been done on these common
functional response functions [15–23]. The Leslie-Gower model and its modifications have received
great attention, and the modified Leslie-Gower model in [24] is as follows:

du
dt

= ru(1 −
u
K

) − vψ(u, v),

dv
dt

= v(β −
γv

u + α
),

(1.1)

where u and v represent the population density of prey and predators, respectively. r, K, β, γ, and α
are positive numbers. r denotes the internal growth rate of the prey. K is the environmental carrying
capacity of the prey. The growth rate of the prey is logistic with the carrying capacity K and the
intrinsic growth rate r. ψ(u, v) represents the functional response function of the predator to the prey.
β is the internal growth rate of the predator population. γ is the maximum per capita reduction rate of
predators, and α measures the degree to which the environment protects predators.

In an ecosystem, a species does not always stay in a certain position but migrates due to changes in
resources and intra species competition, and diffusion is a common phenomenon. Similarly, population
trends are related not only to the current state but also to the state at some time in the past or future,
which is known as the delay phenomenon. Therefore, researchers have introduced diffusion or delay
into the predator-prey model and conducted numerous studies. For example, Yang [25] investigated
the global asymptotic stability and persistence of diffusive predator-prey systems with modified Leslie-
Gower functional response. With a deeper study of the predator-prey model, it was found that, by
introducing delay in the diffusive system, the system has a richer dynamical behavior. For a detailed
example, Yang and Zhang in [24] considered a diffusive predator-prey system with constant prey
refuge and delay under Neumann boundary conditions. The local stability and Turing instability of
positive equilibrium are investigated, and the property of Hopf bifurcation is determined using the
center manifold theorem and the normal form theorem, so the model with delay and diffusion has
richer dynamical properties. Therefore, predator-prey models with diffusion and delay have received
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widespread attention and research from scholars [26–29]. The types of diffusion can generally be
categorized into self-diffusion and cross-diffusion. Moreover, cross diffusion refers to the migration
of a population due to the presence of another population [30], and the model with a cross-diffusion
term can more accurately reflect the predation relationship between the predator and the prey [31, 32].
Therefore, in this paper, we consider the introduction of cross-diffusion and two delays on the basis of
model (1.1).

Although many researchers have focused on predator-prey models with delay or diffusion, studies
on Beddington-DeAngelis functional response models that simultaneously incorporate cross-diffusion
and two delays (especially production delay and digestion delay) remain relatively limited. Cross-
diffusion can more realistically reflect the mutually driven spatial movement between populations,
while the two delays can separately capture the feedback delay in prey growth and the physiological
delay in predator digestion. However, the spatiotemporal dynamics under the joint effect of both
factors, particularly the systematic analysis of delay-induced Hopf bifurcation via stability switching
curves in the two-delay planes, has not been fully explored. We aim to fill this gap by systematically
analyzing the complex dynamical behaviors of such a model regarding the stability of equilibria, Turing
instability, and spatiotemporal Hopf bifurcation induced by two delays.

The remainder of the paper is as follows. In Section 2, we display the model to be discussed in
the paper. In Section 3, the existence of the positive equilibrium of system (2.3) and the stability of
the unique positive equilibrium are investigated by analyzing the relevant characteristic equations. In
Section 4, the existence of Hopf bifurcation is studied by applying the method of stability switching
curves given in reference [33]. In Section 5, using the normal form theory and the central manifold
theorem, we obtain the direction of Hopf bifurcation and the stability of the bifurcation periodic
solutions of the system. In Section 6, the theoretical results are illustrated by performing a series
of numerical simulations. Finally, we conclude the paper and give a brief discussion in Section 7.

2. Model formulation

In this paper, the base model follows model (2.1) in reference [34], which is a model based on a
modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response. The
detailed and specific reasons that we select the Beddington-DeAngelis functional response is also
given in [34]. The Beddington-DeAngelis functional response that embodies predator-prey interactions
ψ(u, v) =

qu
a + bu + cv

are as described in [34].

Since the delay can reflect the number fluctuation law of the biological population, the population
production has a certain delay, as well as when the population feeds it takes a certain amount of
time to digest and absorb. Production delay represents the time lag between predator reproduction
and the maturation of offspring; digestion delay corresponds to the time required for predators to
process consumed prey into energy available for growth or reproduction [35–37]. For system (1.1), we
introduce production delay τ1 and digestion delay τ2, and the model is as follows:

du
dt

= ru(1 −
u(t − τ1)

K
) −

quv
a + bu + cv

,

dv
dt

= v(β −
γv(t − τ2)

u(t − τ2) + α
),

(2.1)
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where a, b, c, q, τ1, τ2 are positive numbers, q is to measure the number of prey that the predator can
eat in each time unit, a is the prey density with half-saturated attack rate, b represents the measurement
of food abundance relative to the predator population, c is a measure of competition intensity between
individuals of the predator population. In the latter part, u(t − τ1), u(t − τ2), and v(t − τ2) can be
represented by uτ1 , uτ2 , and vτ2 , respectively.

Based on the analysis in the previous section, the model with cross-diffusion terms can more
accurately reflect the predator-prey relationship between predator and prey. Thus we introduce cross-
diffusion in model (2.1) and construct the following model under Neumann boundary conditions:

∂u(x, t)
∂t

= d1∆[u(1 + θv)] + ru(1 −
u(t − τ1)

K
) −

quv
a + bu + cv

, 0 < x < lπ, t > 0,

∂v(x, t)
∂t

= d2∆[v(1 + δu)] + v(β −
γv(t − τ2)

u(t − τ2) + α
), 0 < x < lπ, t > 0,

ux(x, t) = vx(x, t) = 0, x = 0, lπ, t ≥ 0,

u(x, t) = u0(x, t) ≥ 0, 0 ≤ x ≤ lπ, −max {τ1, τ2} ≤ t ≤ 0,

v(x, t) = v0(x, t) ≥ 0, 0 ≤ x ≤ lπ, −τ2 ≤ t ≤ 0,
(2.2)

where d1 and d2 denote the diffusion coefficients of predator and prey, and they are non-negative
numbers. d1θ and d2δ are cross-diffusion coefficients. θ and δ belong to the real number field.
The cross-diffusion term can imply different biological significance: d1θ > 0, (d1θ < 0), depicting
a tendency that prey species is far from (resp., close to) high-density areas of predator species; d2δ > 0
means that the diffusion rate and the population pressure of predator species may weaken in the high
density location of prey species. d2δ < 0, the rate of diffusive spread of predator populations, increases
in the process of forming spheres, and the pressure on the predator population enlarges in the center of
the sphere. We refer to [32] for more background about the biological explanation regarding the cross-
diffusion. The domain inhabited by the species is closed with a one-dimensional length of lπ. Before
discussing in detail, we simplify model (2.2) by being dimensionless. The specific scaling process is
as follows:

ū =
u
K
, v̄ =

qv
bKr

, t̄ = rt, d =
a

Kb
, d11 =

d1

r
, d12 =

Krbθ
q

,

e =
rc
q
, m =

β

r
, n =

bγ
q
, p =

α

K
, d21 = Kδ, d22 =

d2

r
.

Dropping the bars, the model (2.2) becomes the following form:

∂u(x, t)
∂t

= d11∆[u(1 + d12v)] + u(1 − u(t − τ1)) −
uv

d + u + ev
, 0 < x < lπ, t > 0,

∂v(x, t)
∂t

= d22∆[v(1 + d21u)] + v(m −
nv(t − τ2)

u(t − τ2) + p
), 0 < x < lπ, t > 0,

ux(x, t) = vx(x, t) = 0, x = 0, lπ, t ≥ 0,

u(x, t) = u0(x, t) ≥ 0, 0 ≤ x ≤ lπ, −max {τ1, τ2} ≤ t ≤ 0,

v(x, t) = v0(x, t) ≥ 0, 0 ≤ x ≤ lπ, −τ2 ≤ t ≤ 0,
(2.3)
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where all coefficients are positive numbers expect that d12 and d21 are real numbers.
In this paper, we work on the effect of feedback delay and digestion delay on the spatio-temporal

distribution of model (2.3).

3. Existence and stability for the constant steady state

First, we discuss the existence of the coexisting constant steady state of model (2.3). The existence
and stability for the constant steady state is a further study of [34]. The existence and the stability of
the boundary equilibria are also given in [34]. To avoid excessive length, in the following, we give a
summary about the existence and the stability of the boundary equilibria and trivial equilibrium.

Remark 3.1. The constant steady state solution of system (2.3) is the same as the equilibria of
system (3.1). System (3.1) always has three boundary equilibria (0, 0), (1, 0) and (0,

mp
n

).


u(1 − u −

v
d + u + ev

) = 0,

v(m −
nv

u + p
) = 0.

(3.1)

• The origin (0, 0) is always an unstable node.
• The Boundary equilibrium (1, 0) is always a saddle.

• The Boundary equilibrium (0,
mp
n

) is always a saddle if d >
pm(1 − e)

n
; (0,

mp
n

) is always a

stable node if 0 < d <
pm(1 − e)

n
; (0,

mp
n

) is always a degenerate equilibrium if d =
pm(1 − e)

n
.

3.1. Existence of the positive equilibrium

Let Ē = (ū, v̄) be a positive constant steady-state solution of system (2.3), and the coexisting
constant steady state of the system should satisfy the following equation

1 − u −
v

d + u + ev
= 0,

m −
nv

u + p
= 0.

(3.2)

From the second equation of (3.2), we have v̄ =
m(u+p)

n . Bringing it into the first equation, there is

m2u2 + m1u + m0 = 0, (3.3)

where
m2 = −(n + em), m1 = n + em − nd − epm − m, m0 = nd + epm − pm.

Thus, the system (2.3) has positive equilibria equivalent to Eq (3.3) having positive real roots.

Theorem 3.2. Denote ∆1 = m2
1 − 4m2m0. For the existence of positive roots for f (u) = 0, we have the

following conclusions:
(H1) If ∆1 > 0, m0 < 0,

m1

2m2
< 0, Eq (3.3) has two distinct roots u1, u2.
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(H2) If ∆1 = 0, m0 < 0,
m1

2m2
< 0, Eq (3.3) has two identical roots u1 = u2.

(H3) As one of the following conditions holds, Eq (3.3) always has a positive root u2.
(i) m0 > 0.
(ii) m0 = 0,

m1

2m2
< 0.

(H4) If ∆1 < 0, the Eq (3.3) has no positive roots.

According to Theorem 3.2, there are two constant steady-state solutions when system (2.3) satisfies
condition (H1), one constant steady-state solution when system (2.3) satisfies the conditions (H2) and
(H3), and no steady-state solution when system (2.3) satisfies the condition (H4).

Remark 3.3. It follows that if either of (H2) and (H3) holds, system (2.3) has a unique positive steady-
state solution, which is denoted by E∗ = (u∗, v∗).

Regarding the existence, stability, and instability of the positive equilibrium point of the system
without diffusion terms and time-delay terms, we present these contents in Section 3 of [34]. We
don’t elaborate on them here. Next, we will focus on the Turing instability of the positive steady-
state solutions.

3.2. Stability of the positive steady state

In the following section, we consider that condition (H3) holds. Linearizing model (2.3) at E∗,
we have

∂u(x, t)
∂t

= d11δ11∆u + d11δ12∆v + α11u + α12v + β11u(x, t − τ1), x ∈ (0, lπ), t > 0,

∂v(x, t)
∂t

= d22δ21∆u + d22δ22∆v + β21u(x, t − τ2) + β22v(x, t − τ2), x ∈ (0, lπ), t > 0,

ux(x, t) = vx(x, t) = 0, x = 0, lπ, t ≥ 0,

u(x, t) = u0(x, t) ≥ 0, 0 ≤ x ≤ lπ, −max {τ1, τ2} ≤ t ≤ 0,

v(x, t) = v0(x, t) ≥ 0, 0 ≤ x ≤ lπ, −τ2 ≤ t ≤ 0,
(3.4)

where

δ11 = 1 + d12v∗, δ12 = d12u∗, δ21 = d21v∗, δ22 = 1 + d21u∗, β11 = −u∗, β21 =
nv∗2

(u∗ + p)2 ,

β22 = −
nv∗

u∗ + p
, α11 = 1 − u∗ −

v∗(d + ev∗)
(d + u∗ + ev∗)2 , α12 = −

u∗(d + u∗)
(d + u∗ + ev∗)2 .

Assume that the eigenvector corresponding to the eigenvalues λ of (3.4) is

(u(t), v(t)) = (c1, c2)eλt cos((
n
l
)x), (3.5)

where n ∈ N is the wavenumber. Substituting (3.4) into Eq (3.5) yieldsλc1 = −d11δ11c1(n
l )2 − d11δ12c2( n

l )2 + α11c1 + α12c2 + β11c1e−λτ1 ,

λc2 = −d22δ21c1(n
l )2 − d22δ22c2( n

l )2 + β21c1e−λτ2 + β22c2e−λτ2 .
(3.6)
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Thus, there are λ(c1, c2)T = J(n; τ1, τ2)(c1, c2)T and

J(n; τ1, τ2) =

−d11δ11(n
l )2 + α11 + β11e−λτ1 −d11δ12( n

l )2 + α12

−d22δ21( n
l )2 + β21e−λτ2 −d22δ22( n

l )2 + β22e−λτ2

 ,
so we can obtain the characteristic equation at the positive equilibrium (u∗, v∗)

B(λ; τ1, τ2) = Bn
0(λ) + Bn

1(λ)e−λτ1 + Bn
2(λ)e−λτ2 + Bn

3e−λ(τ1+τ2) = 0, (3.7)

where 
Bn

0(λ) = λ2 + Bn
01λ + Bn

00,

Bn
1(λ) = Bn

11λ + Bn
10,

Bn
2(λ) = Bn

21λ + Bn
20,

Bn
3 = Bn

30,

for 

Bn
01 = (d11δ11 + d22δ22)(n

l )2 − α11,

Bn
00 = (d11d22δ11δ22 − d11d22δ12δ21)( n

l )4 + (d22δ21α12 − d22δ22α11)(n
l )2,

Bn
11 = −β11,

Bn
10 = −d22δ22β11( n

l )2,

Bn
21 = −β22,

Bn
20 = (β21d11δ12 − d11δ11β22)( n

l )2 + β22α11 − β21α12,

Bn
30 = β11β22.

3.2.1. Local stability of the positive equilibrium

We investigate the long-time behavior of model (2.3) without time delay and diffusion. In the case
of n = 0, τ1 = 0, and τ2 = 0, Eq (3.7) becomes

λ2 − (α11 + β11 + β22)λ + β22α11 − β21α12 + β11β22 = 0, (3.8)

and the root of (3.8) is given by the following equation

λ1,2 =
(α11 + β11 + β22) ±

√
(α11 + β11 + β22)2 − 4(β22α11 − β21α12 + β11β22)

2
.

Due to the complexity of the eigenvalues of the above characteristic equations, it is difficult to directly
determine the behavior of the positive equilibrium. Its behavior can be directly determined by the trace
and determinant of the Jacobian matrix J(0; 0, 0) at E∗.
Let the two eigenvalues of Eq (3.8) be λ1 and λ2, and there are

λ1 + λ2 = tr(J(0; 0, 0)) = α11 + β11 + β22,

λ1λ2 = det(J(0; 0, 0)) = β22α11 − β21α12 + β11β22,

so we have the following theorem:
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Theorem 3.4. If conditions H5 and H6 hold, where
(H5) α11 + β11 + β22 < 0;
(H6) β22α11 − β21α12 + β11β22 > 0,
then Eq (3.8) always has two roots of the negative real part. Under the above conditions, the
equilibrium E∗ of model (2.3) is asymptotically stable.

3.2.2. Turing instability of the positive steady state

Now, we aim to derive the stability for the spatial model (2.3) at E∗(u∗, v∗) without delay. In this
case, Eq (3.7) becomes

λ2 − tr(J(n; 0, 0))λ + det(J(n; 0, 0)) = 0, (3.9)

where

tr(J(n; 0, 0)) = − (d11δ11 + d22δ22)
(n

l
)2

+ tr(J(0; 0, 0)),

det(J(n; 0, 0)) = d11d22(δ11δ22 − δ12δ21)
(n

l
)4

+
(
d22δ21α12 − d22δ22(α11 + β11)

+ β21d11δ12 − d11δ11β22
)(n

l
)2

+ det(J(0; 0, 0)).

Note that tr(J(0; 0, 0)) < 0 when condition H5 holds. For tr(J(n; 0, 0)), let(n
l
)2∗

=
tr(J(0; 0, 0))

d11δ11 + d22δ22
, d∗12 = −

1
v∗
−

d22(1 + d21u∗)
d11v∗

, d∗21 = −
1
u∗
−

d11(1 + d12v∗)
d22u∗

,

and we have the following cases:
If d12 ≥ 0 and d21 ≥ 0, and one can deduce d11δ11 + d22δ22 ≥ d11 + d22 > 0, then tr(J(n; 0, 0)) < 0.

If d12 < 0 and d21 < 0, as −
1
v∗
< d12 < 0 and −

1
u∗
< d21 < 0, d11(1+d12v∗)+d22(1+d21u∗) > 0. That

is, d11δ11+d22δ22 > 0, and tr(J(n; 0, 0)) < 0; As d12 < −
1
v∗

and d21 < −
1
u∗

, d11(1+d12v∗)+d22(1+d21u∗) <

0. That is, d11δ11 + d22δ22 < 0 can be derived, then tr(J(n; 0, 0)) > 0 when condition
(n

l
)2
≤

(n
l
)2∗ is

satisfied, and tr(J(n; 0, 0)) < 0 when condition
(n

l
)2
>

(n
l
)2∗ is met.

If d12 < 0 and d21 > 0, or d12 > 0 and d21 < 0, as d12 < d∗12 or d21 < d∗21, d11(1 + d12v∗) + d22(1 +

d21u∗) < 0, tr(J(n; 0, 0)) > 0 when condition
(n

l
)2
≤

(n
l
)2∗ holds, and tr(J(n; 0, 0)) < 0 when condition(n

l
)2
>

(n
l
)2∗ is met.

Next we consider det(J(n; 0, 0)) as a quadratic function with respect to
(n

l
)2. Let

D = d11d22(δ11δ22 − δ12δ21), b = d22δ21α12 − d22δ22(α11 + β11) + β21d11δ12 − d11δ11β22,

As D = 0, b < 0, denote
(n

l
)2
∗

=
det(J(0; 0, 0))

−b
; As D , 0, denote

∆2 = b2 − 4Ddet(J(0; 0, 0)),
(n

l
)2

0 =
−b

2D
,
(n

l
)2

1 =
−b −

√
∆2

2D
,
(n

l
)2

2 =
−b +

√
∆2

2D
.

We have the following cases:
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As d12 > 0 and d21 > 0, d11d22(1+d21u∗+d12v∗) > 0, and one can deriveD > 0, then det(J(n; 0, 0)) >
0 if condition ∆2 < 0 is satisfied; If ∆2 = 0, b < 0, then det(J(n; 0, 0)) = 0 as

(n
l
)2

=
(n

l
)2

0; If

∆2 > 0, b < 0, then det(J(n; 0, 0)) = 0 as
(n

l
)2

=
(n

l
)2

1 or
(n

l
)2

=
(n

l
)2

2, and then det(J(n; 0, 0)) < 0 as(n
l
)2

1 <
(n

l
)2
<

(n
l
)2

2.

As d12 < 0 and d21 < 0, or d12d21 < 0, if 1 + d21u∗ + d12v∗ < 0 and one can deduce D < 0, ∆2 > 0,
then det(J(n; 0, 0)) > 0 as 0 <

(n
l
)2

2 <
(n

l
)2

2, det(J(n; 0, 0)) = 0 as
(n

l
)2

2 =
(n

l
)2

2, and det(J(n; 0, 0)) < 0

as
(n

l
)2
>

(n
l
)2

2.

Summarizing the above discussion, we have the following theorem.

Theorem 3.5. Assuming that conditions (H5) and (H6) hold, if one of the following conditions is
satisfied, then the positive steady-state solution E∗ changes from asymptotically stable to unstable as
the parameter range changes. That is to say, Turing instability of E∗ emerges.

(H7a) d12 ≥ 0 and d21 ≥ 0, ∆2 = 0, b < 0,
(n

l
)2

=
(n

l
)2

0;

(H7b) d12 ≥ 0 and d21 ≥ 0, ∆2 > 0, b < 0,
(n

l
)2

1 ≤
(n

l
)2
≤

(n
l
)2

2;

(H8a) D < 0, ∆2 > 0,
(n

l
)2
≥

(n
l
)2

2;

(H8b) D = 0, b < 0,
(n

l
)2
≥

(n
l
)2
∗
;

(H9a) d11(1 + d12v∗) + d22(1 + d21u∗) < 0,
(n

l
)2
≤

(n
l
)2∗, D = 0, b > 0;

(H9b) d11(1 + d12v∗) + d22(1 + d21u∗) < 0,
(n

l
)2
≤

(n
l
)2∗, D > 0, ∆2 ≥ 0, b < 0;

(H9c) d11(1 + d12v∗) + d22(1 + d21u∗) < 0,
(n

l
)2
≤

(n
l
)2∗, D > 0, ∆2 < 0;

(H9d) d11(1 + d12v∗) + d22(1 + d21u∗) < 0,
(n

l
)2
≤

(n
l
)2∗, D < 0, ∆2 > 0, 0 ≤

(n
l
)2
<

(n
l
)2

2;

(H9e) d11(1 + d12v∗) + d22(1 + d21u∗) < 0,
(n

l
)2
≤

(n
l
)2∗, D = 0, b < 0, 0 <

(n
l
)2
≤

(n
l
)2
∗
.

Theorem 3.6. Assume H5 and H6 hold. If one of the conditions is satisfied,

(H10) d12 ≥ 0 and d21 ≥ 0, ∆2 < 0;
(H11a) d11(1 + d12v∗) + d22(1 + d21u∗) < 0,

(n
l
)2
>

(n
l
)2∗, D = 0, b > 0;

(H11b) d11(1 + d12v∗) + d22(1 + d21u∗) < 0,
(n

l
)2
>

(n
l
)2∗, D > 0, ∆2 < 0.

Then Eq (3.9) always has two roots of the negative real part, and the equilibrium E∗ is
asymptotically stable.

Remark 3.7. If the conditions (H5), (H6), and (H7a) or conditions (H5), (H6), and (H7b) hold, then
det(J(n; 0, 0)) = 0 as

(n
l
)2

=
(n

l
)2

0,
(n

l
)2

=
(n

l
)2

1, or
(n

l
)2

=
(n

l
)2

2, so Eq (3.9) possesses a zero eigenvalue,
which means that Turing bifurcation occurs [38].

4. Hopf bifurcation

In this section, under the assumption that condition (H3) holds, we focus on obtaining the existence
of Hopf bifurcation for the spatial model (2.3) with two delays τ1 and τ2 using the method in [33] to
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study the stability switching curves and the crossing directions of the curve.

4.1. Stability switching curves

First, we need to verify whether assumptions (i) − (iv) hold for any fixed n of the characteristic
Eq (3.7).
(i) Finite number of characteristic roots on C+ = {λ ∈ C : Reλ > 0} under the condition

deg
(
Bn

0(λ)
)
≥ max

{
deg

(
Bn

1(λ)
)
, deg

(
Bn

2(λ)
)
, deg

(
Bn

3
)}
.

(ii) Bn
0(0) + Bn

1(0) + Bn
2(0) + Bn

3 , 0.
(iii) Bn

0(λ), Bn
1(λ), Bn

2(λ) and Bn
3 are coprime polynomials.

(iv) lim
λ→∞

(∣∣∣∣∣Bn
1(λ)

Bn
0(λ)

∣∣∣∣∣ +

∣∣∣∣∣Bn
2(λ)

Bn
0(λ)

∣∣∣∣∣ +

∣∣∣∣∣ Bn
3

Bn
0(λ)

∣∣∣∣∣) < 1.

The above conditions (ii)− (iv) holds, and (i) follows the [39]. To obtain the stability switching curves,
assume that λ = iω(ω > 0) is a root of Eq (3.7). Substituting it into the equation, there is(

Bn
0(iω) + Bn

1(iω)e−iωτ1
)

+
(
Bn

2(iω) + Bn
3e−iωτ1

)
e−iωτ2 = 0.

Since
∣∣∣e−iωτ2

∣∣∣ = 1, one can get∣∣∣Bn
0(iω) + Bn

1(iω)e−iωτ1
∣∣∣ =

∣∣∣Bn
2(iω) + Bn

3e−iωτ1
∣∣∣ , (4.1)

the above equation is equivalent to

(Bn
0(iω) + Bn

1(iω)e−iωτ1)(B̄n
0(iω) + B̄n

1(iω)eiωτ1) = (Bn
2(iω) + Bn

3e−iωτ1)(B̄n
2(iω) + B̄n

3eiωτ1).

Through simple calculations, we obtain∣∣∣Bn
0(iω)

∣∣∣2 +
∣∣∣Bn

1(iω)
∣∣∣2 − ∣∣∣Bn

2(iω)
∣∣∣2 − ∣∣∣Bn

3

∣∣∣2 = 2An
1(ω) cos(ωτ1) − 2Cn

1(ω) sin(ωτ1), (4.2)

where
An

1(ω) = Re(Bn
2(iω)B̄n

3) − Re(Bn
0(iω)B̄n

1(iω)),

Cn
1(ω) = Im(Bn

2(iω)B̄n
3) − Im(Bn

0(iω)B̄n
1(iω)).

If there exists ω, such that An
1(ω)2 + Cn

1(ω)2 = 0, then we get

Bn
2(iω)B̄n

3 = Bn
0(iω)B̄n

1(iω),
∣∣∣Bn

0(iω)
∣∣∣2 +

∣∣∣Bn
1(iω)

∣∣∣2 =
∣∣∣Bn

2(iω)
∣∣∣2 +

∣∣∣Bn
3

∣∣∣2 . (4.3)

Therefore, if exists ω such that (4.3) holds, then all τ1 ∈ R+ are solutions of Eq (4.1).
If An

1(ω)2 + Cn
1(ω)2 > 0, then there is a continuous function ψn

1(ω) such that

An
1(ω) =

√
An

1(ω)2 + Cn
1(ω)2 cos(ψn

1(ω)),

Cn
1(ω) =

√
An

1(ω)2 + Cn
1(ω)2 sin(ψn

1(ω)),
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where ψn
1(ω) = arg

{
Bn

2(iω)B̄n
3 − Bn

0(iω)B̄n
1(iω)

}
. Thus, Eq (4.2) becomes

∣∣∣Bn
0(iω)

∣∣∣2 +
∣∣∣Bn

1(iω)
∣∣∣2 − ∣∣∣Bn

2(iω)
∣∣∣2 − ∣∣∣Bn

3

∣∣∣2 = 2
√

An
1(ω)2 + Cn

1(ω)2 cos(ψn
1(ω) + ωτ1). (4.4)

Thus, there exists τ1 ∈ R+, satisfying (4.4) equivalent to∣∣∣∣∣∣∣Bn
0(iω)

∣∣∣2 +
∣∣∣Bn

1(iω)
∣∣∣2 − ∣∣∣Bn

2(iω)
∣∣∣2 − ∣∣∣Bn

3

∣∣∣2∣∣∣∣ ≤ 2
√

An
1(ω)2 + Cn

1(ω)2. (4.5)

Let the set of ω ∈ R+, satisfying (4.5), be Ωn
1, and note that (4.5) also includes the case An

1(ω)2 +

Cn
1(ω)2 = 0. Let

cos(φn
1(ω)) =

∣∣∣Bn
0(iω)

∣∣∣2 +
∣∣∣Bn

1(iω)
∣∣∣2 − ∣∣∣Bn

2(iω)
∣∣∣2 − ∣∣∣Bn

3

∣∣∣2
2
√

An
1(ω)2 + Cn

1(ω)2
, φn

1(ω) ∈ [0, π].

From the above expression, we have

τn±
1,k1

(ω) =
±φn

1(ω) − ψn
1(ω) + 2k1π

ω
, k1 ∈ Z. (4.6)

By the same method as above, one can obtain

τn±
2,k2

(ω) =
±φn

2(ω) − ψn
2(ω) + 2k2π

ω
, k2 ∈ Z, (4.7)

where

cos(φn
2(ω)) =

∣∣∣Bn
0(iω)

∣∣∣2 − ∣∣∣Bn
1(iω)

∣∣∣2 +
∣∣∣Bn

2(iω)
∣∣∣2 − ∣∣∣Bn

3

∣∣∣2
2
√

An
1(ω)2 + Cn

1(ω)2
, φn

2(ω) ∈ [0, π],

ψn
2(ω) = arg

{
Bn

1(iω)B̄n
3 − Bn

0(iω)B̄n
2(iω)

}
.

The condition for ω is as follows∣∣∣∣∣∣∣Bn
0(iω)

∣∣∣2 − ∣∣∣Bn
1(iω)

∣∣∣2 +
∣∣∣Bn

2(iω)
∣∣∣2 − ∣∣∣Bn

3

∣∣∣2∣∣∣∣ ≤ 2
√

An
1(ω)2 + Cn

1(ω)2. (4.8)

Let the set of ω ∈ R+, satisfying (4.8), be Ωn
2. We find that (4.5) is equivalent to (4.8) by squaring both

sides of the two conditions (4.5) and (4.8). Therefore, there are Ωn , Ωn
1 = Ωn

2, and Ωn is called the
crossing set of Eq (3.7). Denote

F n(ω) ,
(∣∣∣Bn

0(iω)
∣∣∣2 +

∣∣∣Bn
1(iω)

∣∣∣2 − ∣∣∣Bn
2(iω)

∣∣∣2 − ∣∣∣Bn
3

∣∣∣2)2
− 4

(
An

1(ω)2 + Cn
1(ω)2

)
, (4.9)

and

Ωn =

{
ω ∈ R+

∣∣∣∣∣F n(ω) ≤ 0
}
.

Theorem 4.1. The crossing set Ωn consists of a finite number of finite-length intervals.
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Proof. We demonstrate the above results by a method similar to that in the [33]. From Eq (4.9), it can
be seen that F n(ω) is an eighth degree polynomial and F n(+∞) = +∞, so F n(ω) has a finite number
of roots on R+.

If F n(0) > 0, then the roots of the equation F n(ω) = 0 are expressed as 0 < an
1 < bn

1 ≤ an
2 < bn

2 <

· · · ≤ an
N < bn

N < +∞ and

Ωn =

N⋃
l=1

Ωl,n, Ωl,n = [an
l , b

n
l ].

If F n(0) < 0, then the roots of the equation F n(ω) = 0 are expressed as 0 < bn
1 ≤ an

2 < bn
2 ≤ an

3 <

bn
3 < · · · ≤ an

N < bn
N < +∞ and

Ωn =

N⋃
l=1

Ωl,n, Ω1,n = (0, bn
1], Ωl,n = [an

l , bn
l ] (l ≥ 2).

Through the above analysis, the crossing set Ωn consists of intervals of finite length.

By verification, we have τ2 = τn−
2,k2

(ω) when τ1 = τn+
1,k1

(ω) and τ2 = τn+
2,k2

(ω) when τ1 = τn−
1,k1

(ω).
Therefore,

T =

N⋃
l=1

T
n ±l
k1,k2
∩ R2

+, (k1 ≥ L1,l,L1,l+1, · · · , k2 ≥ L2,l,L2,l+1, · · · ), (4.10)

where L j,l denotes a lower bound for k j.

T
n ±l
k1,k2

=

{(
τn±

1,k1
(ω), τn∓

2,k2
(ω)

) ∣∣∣∣∣ ω ∈ Ωl,n

}
=

{(
±φn

1(ω) − ψn
1(ω) + 2k1π

ω
,
∓φn

2(ω) − ψn
2(ω) + 2k2π

ω

) ∣∣∣∣∣ ω ∈ Ωl,n

}
.

(4.11)

For any (τ1, τ2) ∈ T is called a crossing point, and Eq (3.7) has at least one root iω with ω ∈ Ωn. The
set T is the set composed of all the crossing points, which is known as stability switching curves.

Since F n(an
l ) = F n(bn

l ) = 0, we have

φn
j(a

n
l ) = δa

jπ, φ
n
j(b

n
l ) = δb

jπ,

where δa
j , δ

b
j = 0, 1 ( j = 1, 2). Based on (4.6) and (4.7), we can verify that(

τn +l
1,k1

(an
l ), τn −l

2,k1
(an

l )
)

=
(
τn −l

1,k1+δa
1
(an

l ), τn +l
2,k2−δ

a
2
(an

l )
)
, (4.12)(

τn +l
1,k1

(bn
l ), τn −l

2,k1
(bn

l )
)

=

(
τn −l

1,k1+δb
1
(bn

l ), τn +l
2,k2−δ

b
2
(bn

l )
)
. (4.13)

Therefore, for the stability switching curves corresponding to Ωl,n, Tn +l
k1,k2

connects Tn −l
k1+δa

1,k2−δ
a
2

and
Tn −l

k1+δb
1,k2−δ

b
2

at its ends to an
l and bn

l .
Due to Theorem 3.1 in [33], we can directly obtain the following results.

Theorem 4.2. T defined in (4.10) is the set of all stability switching curves on the (τ1, τ2) plane of
Eq (3.7). In addition, the following conclusions are available:
(i) When

(
δa

1, δ
a
2

)
=

(
δb

1, δ
b
2

)
, Tn +l

k1,k2
and Tn −l

k1+δa
1,k2−δ

a
2

form a loop on R2. At this point, T is a set of closed
continuous curves;
(ii) when

(
δa

1, δ
a
2

)
,

(
δb

1, δ
b
2

)
, T is a set of continuous curves whose two endpoints either lie on the axes

or extend to the infinity region on R2
+.
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4.2. Crossing directions

Assuming that λ = µ + iω satisfies Eq (3.7), by the implicit function theorem, τ1 and τ2 can be
expressed as functions of µ and ω. As λ = iω, denote B(λ; τ1, τ2) as B(iω). Thus, we have the
following expressions:

∂Re B(iω)
∂µ

=Re

Bn′
0 (iω) +

2∑
k=1

(
Bn′

k (iω) − τkBn
k(iω)

)
e−iωτk − (τ1 + τ2)Bn

3e−iω(τ1+τ2)

 = R0,

∂Im B(iω)
∂µ

=Im

Bn′
0 (iω) +

2∑
k=1

(
Bn′

k (iω) − τkBn
k(iω)

)
e−iωτk − (τ1 + τ2)Bn

3e−iω(τ1+τ2)

 = I0,

∂Re B(iω)
∂τ1

=Re
{
−iω

(
Bn

1(iω)e−iωτ1 + Bn
3e−iω(τ1+τ2)

)}
= R1,

∂Im B(iω)
∂τ1

=Im
{
−iω

(
Bn

1(iω)e−iωτ1 + Bn
3e−iω(τ1+τ2)

)}
= I1,

∂Re B(iω)
∂τ2

=Re
{
−iω

(
Bn

2(iω)e−iωτ2 + Bn
3e−iω(τ1+τ2)

)}
= R2,

∂Im B(iω)
∂τ2

=Im
{
−iω

(
Bn

2(iω)e−iωτ2 + Bn
3e−iω(τ1+τ2)

)}
= I2,

∂Re B(iω)
∂ω

= − I0,
∂Im B(iω)

∂ω
= R0.

If det
(
R1 R2

I1 I2

)
= R1I2 − R2I1 , 0, through the implicit function theorem, then

∆(ω) ,


∂τ1

∂µ

∂τ1

∂ω
∂τ2

∂µ

∂τ2

∂ω


∣∣∣∣∣∣
µ=0,ω∈Ωn

= −

(
R1 R2

I1 I2

)−1 (
R0 −I0

I0 R0

)
. (4.14)

For an arbitrary stability switching curve Tn ±l
k1,k2

, the direction of the curve corresponding to the increase
in ω ∈ Ωl,n is called the positive direction. We call the region on the left-hand (right-hand) side the
left (right) region when the curve moves in a positive direction. Since the tangent vector of Tn ±l

k1,k2
along

the positive direction of the curve is
(
∂τ1
∂ω
, ∂τ2
∂ω

)
, the normal vector of Tn ±l

k1,k2
pointing to the right region is(

∂τ2
∂ω
,−∂τ1

∂ω

)
. When a pair of complex eigenvalues cross the imaginary axis on the complex plane to the

right with the change of µ, it is obvious that (τ1, τ2) moves along the direction of
(
∂τ1
∂µ
, ∂τ2
∂µ

)
. If the inner

product of the following two vectors is positive,

δ(ω) ,
(
∂τ1

∂µ
,
∂τ2

∂µ

) (
∂τ2

∂ω
,−
∂τ1

∂ω

)
=
∂τ1

∂µ

∂τ2

∂ω
−
∂τ2

∂µ

∂τ1

∂ω
> 0, (4.15)

then Eq (3.7) has two more characteristic roots with positive real parts in the region to the right of
Tn ±l

k1,k2
. If inequality (4.15) is reversed, then Eq (3.7) has two more characteristic roots with positive real

parts in the region to the left of Tn ±l
k1,k2

.

It is obvious to see that δ(ω) = det∆(ω), and det
(
−R0 I0

−I0 −R0

)
= R2

0 + I2
0 ≥ 0, so the sign of δ(ω) is

determined by the range of R1I2 − R2I1. If either R0 , 0 or I0 , 0, it holds without considering that
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iω is the multiple root of Eq (3.7). By further calculation, we obtain

R1I2 − R2I1

= Im
{
−iω

(
Bn

1e−iωτn±
1,k1 + Bn

3e−iω(τn±
1,k1

+τn∓
2,k2

)
)
(−iω) ×

(
Bn

2e−iωτn∓
2,k2 + Bn

3e−iω(τn±
1,k1

+τn∓
2,k2

)
)}

= ω2Im
{(

Bn
2Bn

3 − Bn
0Bn

1

)
eiωτn±

1,k1

}
= ±ω2

∣∣∣Bn
2Bn

3 − Bn
0Bn

1

∣∣∣ sin φn
1.

Therefore,

sign δ(ω ∈ Ω̊l,n) = ±sign
{
ω2

∣∣∣Bn
2Bn

3 − Bn
0Bn

1

∣∣∣ sin φn
1

}
= ±1, (4.16)

where φn
1(Ω̊l,n) ⊂ (0, π), and Ω̊l,n indicates the interior of Ωl,n. Equation (4.16) indicates that they

have different stability switching directions, which means that when we move along these continuous
curves, the stability switching directions are consistent.

From the above analysis and by combining Theorem 4.1 of the [33], we can directly obtain the
following results.

Lemma 4.3. For arbitrary l=1, 2· · ·N, we have

sign δ(ω ∈ Ω̊l,n) , ±1, ∀ (τ1(ω), τ2(ω)) ∈ Tn ±l
k1,k2

.

Therefore, the region to the left of Tn +l
k1,k2

(Tn −l
k1,k2

) has two more (fewer) characteristic roots with positive
real parts.

Based on the above discussion, we have introduced the following conclusion about the existence of
the Hopf bifurcation [40].

Theorem 4.4. T is a Hopf bifurcation curve in the following cases: For any ς ∈ T and for any smooth
curve z intersecting with ς ∈ T transversely at ς, we define the tangent of z at ς by ~z. If ∂Reλ

∂~z

∣∣∣
ς
, 0,

and the other eigenvalues of (3.7) at ς have nonzero real parts, then system (2.3) undergoes a Hopf
bifurcation at ς when parameters (τ1, τ2) cross T at ς along z.

5. The direction and stability of bifurcation periodic solutions

In Section 4, we know that the positive equilibrium E∗ of the system (2.3) undergoes a Hopf
bifurcation at any critical values (τ1, τ2) = (τ∗1, τ

∗
2) ∈ T for n = ns. This section extends the

method proposed in [35, 41, 42] to system (2.3), calculate the normal form of the model at the positive
equilibrium E∗ to further determine the direction of Hopf bifurcation and the stability of the bifurcation
periodic solutions. Without loss of generality, we always assume that τ1 > τ2, and the case τ1 < τ2

can be carried out in a similar form. We fix τ2 = τ∗2, and denote the value of ω to (τ∗1, τ
∗
2) as ω∗.

For convenience of representation, the latter part τ∗2, τ∗1 and ω∗ is represented by τ2, τ∗, and ω.
Before making the calculations of the normal form, we need to introduce some basic notation and
equation transformation.
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5.1. The basic notations and equation transformation

In this subsection, we introduce some convention symbols used in [35, 41, 42] and define the
following real-valued Hilbert space

X = {U = (u1, u2) ∈ H2(0, lπ) ⊕ H2(0, lπ) :
∂u1

∂x
=
∂u2

∂x
= 0, x = 0, lπ},

and its inner product is defined as

[U,V] =

∫ lπ

0
UT Vdx, for U,V ∈ X.

Let M = C([−max{1, τ2
τ1
}, 0]; X), and it is a Banach space with a continuous mapping from

[−max{1, τ2
τ1
}, 0] to X.

Denote

bn(x) =
cos(n

l x)∥∥∥cos(n
l x)

∥∥∥
L2

=


√

1
lπ , n = 0,√

2
lπ cos( n

l x), n ≥ 1.

Set β(1)
n = (bn, 0)T , β(2)

n = (0, bn)T .
By setting τ1 = τ∗ + ζ, ζ � 1 is a small perturbation of τ∗ is such that ζ = 0 is the Hopf bifurcation
value of model (2.3). In addition, in the following calculations, ζ is considered a state variable.

Make the following transformation to shift E∗(u∗, v∗) to the originu1(x, t) = u(x, t) − u∗,

u2(x, t) = v(x, t) − v∗,

and normalize the delay by rescaling the time variable t → t
τ1

. Let U(x, t) = (u1(x, t), u2(x, t))T . We
rewrite U(x, t) as U(t) and Ut(κ) = Ut(x, t + κ) as Ut, where −max{1, τ2

τ1
} ≤ κ ≤ 0 and Ut ∈ X.

5.2. The normal form

Based on the calculation in Appendix A and Appendix B, we obtain the normal form of Hopf
bifurcation as shown below

ṁ = Vm +
1
2

(
N1m1ζ

N̄1m2ζ

)
+

1
3!

(
N2m2

1m2

N̄2m1m2
2

)
+ O

(
|m| ζ2 + |m|4

)
, (5.1)

where

N1 = 2pT (0)
(
A1q(0) + A2q(−1) + (1 + iωτ2)A3q(−

τ2

τ∗
) −

(ns

l

)2
B1q(0)

)
,

N2 = N21 +
3
2

(N22 + N23 + N24).

According to references [41] and [42], we can rewrite Eq (5.1) as

σ̇ = K1σζ +K2σ
3 + O

(
ζ2σ + |(σ, ζ)|4

)
,
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where
K1 =

1
2

Re(N1), K2 =
1
3!

Re(N2).

According to [43], we know that the symbols of K1 and K2 can determine the direction of Hopf
bifurcation and the stability of periodic solutions. Therefore, based on the previous analysis, we infer
the following theorem:

Theorem 5.1. The sign of K1K2 determines the direction of Hopf bifurcation, while the sign of K2

determines the stability of the periodic solution of Hopf bifurcation. The main situation is as follows:
1) Hopf bifurcation is supercritical when K1K2 < 0, Hopf bifurcation is subcritical when K1K2 > 0.
2) The periodic solution of Hopf bifurcation is stable when K2 < 0, the periodic solution of Hopf
bifurcation is unstable when K2 > 0.

The calculation process of the coefficients corresponding to the above theorem is shown in
the Appendix.

6. Numerical simulations

In this section, we give some numerical simulations to verify the findings of this paper. The
numerical simulations about the existence, stability, and instability for the positive equilibrium point
and boundary equilibria of the system without diffusion and delay are shown in [34]. Here, we omit it.

In the numerical simulations, we choose the parameters in the model (2.2) as n = 0.8, d = 1.2,
e = 0.5, p = 0.6, m = 0.4, d11 = 0.13, and d22 = 0.13. By changing the value of d12 and d21, we can
obtain Turing instability of E∗ = (0.7074, 0.6537).
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Figure 1. Turing instability of E∗.

By Theorem 3.5, as (d12, d21) takes the value from (−10,−10) to (10, 10), condition (H8a) holds,
and the Turing region is displayed as the green field in Figure 1(a). As (d12, d21) takes the value from
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(−50,−50) to (50, 50), condition (H9b) holds, and the Turing region is displayed as the yellow field in
(b) in Figure 1. By Theorem 3.6, as (d12, d21) takes the value from (−50,−50) to (50, 50), condition
(H11b) holds, and the stable region is displayed as the cyan field in Figure 1(c). Take (d12, d21) as
(4, 4), (0, 0), (4,−20), (−4, 0.001), and (−4,−3). As (d12, d21) = (4, 4), condition (H10) holds, and E∗ is
asymptotically stable; as (d12, d21) = (0, 0), conditions (H5) and (H6) holds, and E∗ is asymptotically
stable; As (d12, d21) = (4,−20), condition (H8a) holds, and Turing instability appear; as (d12, d21) =

(−4, 0.001), condition (H9b) holds, and Turing instability appears; as (d12, d21) = (−4,−3), condition
(H8a) holds, and Turing instability appears. In Figure 1(d), one can directly see that the real part
of the maximum eigenvalue of (3.9) is always negative as (4, 4) and (0, 0), so the equilibrium E∗ is
asymptotically stable. However, when (d12, d21) takes (4,−20), (−4, 0.001) and (−4,−3), the real part
of the maximum eigenvalue of (3.9) changes positive from negative, that is, Turing instability appears.

As n = 0.8, d = 1.2, e = 0.5, p = 0.6, m = 0.4, d11 = 0.13, d22 = 0.13, n = 1, τ1 = 13, τ2 = 6, as
d12 = 4, and d21 = 4, one can see E∗ = (0.7074, 0.6537) is stable (see Figure 2(a),(b)) and as d12 = −4,
d21 = −3, one can obtain that E∗ is unstable (see Figure 2(c),(d)). For Panel (a): The surface fluctuates
slightly around (u∗ = 0.7074) (the z−axis range is 0.7 − 0.8) and maintains spatial homogeneity (no
distinct patterns form across the x−axis). For Panel (b): v(x, t) oscillates near v∗ = 0.6537 (the z−axis
range is 0.66 − 0.74 with no spatial heterogeneity. These results confirm that E∗ is asymptotically
stable under this parameter set: Small initial perturbations decay, and the system remains near the
equilibrium. For Panel (c): The surface deviates sharply from u∗: Initial small fluctuations (near t = 0)
grow into spatially heterogeneous patterns (striped structures along the x−axis). The z−axis range
expands to 0−5, indicating large deviations from E∗. For Panel (d): v(x, t) exhibits analogous behavior-
small initial perturbations evolve into distinct spatial patterns, with the z−axis range also expanding to
0 − 5. This transition from homogeneous, small fluctuations (Panels (a) and (b)) to heterogeneous,
large-amplitude patterns (Panels (c) and (d)) directly demonstrates that E∗ becomes Turing-unstable
under d12 = −4, d21 = −3.

(a) d12 = 4, d21 = 4 (b) d12 = 4, d21 = 4

(c) d12 = −4, d21 = −3 (d) d12 = −4, d21 = −3

Figure 2. Turing instability of E∗.
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Next, we focus on the pattern formation of E∗. As d12 = −4, d21 = −3, the parameter group satisfies
conditions (H5), (H6), and (H8a), and a Turing pattern of E∗ = (0.7074, 0.6537) appears. The situations
of other diffusion parameters can be obtained in a similar way. Thus, we choose the initial value as
u0 = 0.7074 + 0.02 ∗ rand(1,M) and v0 = 0.6537 + 0.02 ∗ rand(1,M) with M = 100.

Start pattern formation with a homogeneous steady state solution at nt = 1, which almost equals to
the case that d11 = d12 = d21 = d22 = 0. One can conclude that E∗ is stable and obtains the stationary
pattern shown in (a) in Figures 3 and 4. As time T increases, d11d12d21d22 , 0, Turing instability and
heterogeneous pattern formation of system (2.2) around E∗ appear (see (b) − ( f ) of Figures 3 and 4).

At nt = 1, (u(x, t), v(x, t)) starts near the stable equilibrium E∗, exhibiting only small, uniform
spatial fluctuations-this reflects the initial stable regime (small perturbations decay, and the system
remains homogeneous). By nt = 100, subtle spatial variations emerge (faint striped structures along
x), signaling the onset of Turing instability: Cross-diffusion begins to amplify small inhomogeneities,
pushing the system away from the uniform steady state. As nt increases to 200 − 250, these variations
grow into distinct, organized spatial patterns (pronounced stripes), confirming the loss of stability.
By nt = 400, (u(x, t), v(x, t)) forms robust, large-amplitude heterogeneous structures (dense patches
and sparse regions), with values deviating significantly from E∗. This final state embodies the
Turing-unstable regime, where cross-diffusion sustains persistent spatial heterogeneity (no return to
uniformity). In short, Figures 3 and 4 trace the classic Turing instability cascade: From stable
homogeneity to incipient spatial variation, and finally to fully developed heterogeneous patterns, which
is driven by cross-diffusion-induced breakdown of the uniform equilibrium.

Figure 3. The pattern formation of u as d11 = 0.13, d12 = −4, d21 = −3, d22 = 0.13.

Electronic Research Archive Volume 33, Issue 12, 7866–7901.



7884

Figure 4. The pattern formation of v as d11 = 0.13, d12 = −4, d21 = −3, d22 = 0.13.

Next, the parameters are chosen as

n = 0.6, d = 0.9, e = 0.8, p = 0.6, m = 0.4,
l = 2, d11 = 0.6, d12 = 0.3, d21 = 0.4, d22 = 5,

and we can obtain the unique positive constant equilibrium E∗ = (0.5291, 0.7527), and the equilibrium
E∗ is always stable. To illustrate the dynamics in the presence of delays, we apply the procedure given
in Section 4 for verification. F 1(ω) has only two roots a1

1≈0.4831, a1
2≈0.5654, as shown in (a) of

Figure 5, and

δa
1 = 0, δa

2 = 1, δb
1 = 1, δb

2 = 1.

From Theorem 4.2, we can determine that the switching curves belong to class (ii). As τ1 and τ2 vary,
we can determine the cross direction of the characteristic roots according to Lemma 4.3, as shown in
(b) of Figure 5. We can investigate the direction and stability of the Hopf bifurcation based on the
procedure in Section 5. When n = 1, by further calculations τ1 = τ∗1 = 14.4975 and τ2 = τ∗2 = 5.3208,
for the above critical Hopf bifurcation values, we have

K1 = 0.0810 > 0, K2 = −0.0243 < 0,

which implies that the mode-1 spatial inhomogeneous Hopf bifurcation at τ∗1 and τ∗2 are supercritical
and stable. When τ1 = τ∗1, τ2 = τ∗2, the inhomogeneous Hopf bifurcation is stable, whose figure is
displayed in Figure 6(a),(b). When τ1 = 15 > τ∗1, τ2 = 6 > τ∗2, the inhomogeneous Hopf bifurcation is
unstable and converges to E∗, whose figure is displayed in Figure 6(c),(d).
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Figure 5. Stability switching curves.

(a) τ1 = 14.4975, τ2 = 5.3208, nt = 1000 (b) τ1 = 14.4975, τ2 = 5.3208, nt = 1000.

(c) τ1 = 15, τ2 = 6, nt = 1000 (d) τ1 = 15, τ2 = 6, nt = 1000.

Figure 6. Bifurcation near E∗.

7. Conclusions

In this paper, we deal with a predator-prey model with two delays and cross-diffusion. Through
theoretical analysis, we obtain some sufficient conditions for the Turing instability at positive
equilibrium. Numerical calculations verify the case of Turing instability. Over time, the stability
of the steady state solution of the system changes from stable to unstable, and the time increases up to
a certain point where the solution curve diverges and tends to infinity.

Drawing on the stability crossing curves method proposed in [33], we obtain stability crossing
curves in the (τ1, τ2) plane. When (τ1, τ2) lies on the crossing curves, the characteristic Eq (3.7) has
at least one pair of pure imaginary roots, so we identify the stable region of positive equilibrium.
Furthermore, taking τ1, τ2 as the bifurcation parameter, the conditions for the existence of Hopf
bifurcation are obtained. Based on the emergence of Hopf bifurcation and combined with the central
manifold theorem and the normal form theory, by calculating the coefficients of the normal form, the
determining conditions for the Hopf bifurcation direction and the stability of the bifurcation periodic
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solutions are further determined, and the corresponding theorems are given.
Turing patterns describe the formation mechanism of spatial heterogeneity in ecology. By

introducing cross-diffusion terms, the paper reveals how populations in a uniform habitat can
spontaneously form non-uniform spatial distribution patterns (e.g., patches, stripes) through the
coupling of diffusion and local interactions (such as predation and competition). The specific
ecological implications include: When the system satisfies the Turing instability conditions (e.g.,
conditions (H7a) − (H9e) in Theorem 3.5 of the paper), the homogeneous steady-state solution E
becomes unstable, and the spatial distribution transitions from a uniform state to an ordered patchy
distribution (as shown in the numerical simulations in Figures 1–4 of the paper). For instance, the
spatial separation of predators and prey may reduce competitive pressure and promote the maintenance
of biodiversity. Numerical simulations in Section 6 demonstrate that when diffusion parameters meet
specific conditions (e.g., d12 = −4 and d21 = −3), the system exhibits Turing patterns (Figures 3 and 4),
simulating the aggregated distribution of species in natural ecosystems.

We focus on the coupling effects of two types of delays: The production delay (reflecting the
population’s reproduction maturation time) and the digestion delay (reflecting the predator’s digestion
and absorption process). Their interaction leads to periodic oscillations in the system through Hopf
bifurcation (Sections 4 and 5), with specific mechanisms as follows: The coupling of delays introduces
phase differences, amplifying system fluctuations. For example, in the characteristic Eq (3.7), the
superposition of delay terms e−λτ1 and e−λτ2 may transition the system from a stable equilibrium
(Theorem 3.4) to a Hopf bifurcation (Theorem 4.4), generating periodic oscillations. Numerical
simulations (Figures 5 and 6) show that when the delay combination (τ1, τ2) crosses the stability
switching curves, the system transitions from a stable state (Figures 6(a),(b)) to periodic oscillations
(Figures 6(c),(d)), demonstrating the regulatory role of delay coupling on population dynamics. Stable
periodic solutions (e.g., limit cycles) represent predictable periodic fluctuations in population numbers
(such as seasonal fluctuations), indicating ecosystem resilience. In Section 5, the stability of periodic
solutions is determined by calculating the normal form coefficient K2 (Theorem 5.1; the solution
is stable when K2 < 0). Unstable periodic solutions: Indicate critical thresholds where minor
disturbances may lead to population collapse or outbreaks. For example, when delay parameters
approach the bifurcation curve (Figure 5), the system becomes highly sensitive to environmental
fluctuations, explaining phenomena such as sudden species extinction or invasion.

Moreover, several other promising avenues for future investigation remain open. For instance:
(i) Introducing stochastic perturbations: Incorporating environmental noise or random fluctuations
into the model could enable us to analyze the robustness and dynamic behavior of the system under
stochastic influences, which is often more realistic for ecological settings.
(ii) Extending to heterogeneous spatial environments: Studying the effects of cross-diffusion and delays
in non-uniform media, such as landscapes with spatially varying resource distributions or habitat
fragmentation, could provide insights into pattern formation in real-world ecosystems.
(iii) Model validation with real ecological data: Applying the model to field observations of specific
predator-prey systems and using statistical methods to fit and validate parameters would strengthen
the ecological relevance and predictive power of the theoretical framework developed here. Such
extensions would not only deepen the theoretical understanding of spatiotemporal dynamics in
interacting populations but also enhance the applicability of the model in conservation biology and
ecosystem management.
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Appendix

Appendix A. The calculations of the normal form

By equation transformation, model (2.3) can be written in the following form

dU(t)
dt

= D(ζ)(Ut)xx + L(ζ)Ut + F(Ut, ζ), (A.1)

where ϕ = (ϕ(1), ϕ(2))T ∈ M, and each component is represented as follows:

D(ζ)(ϕ)xx = D0(ϕ)xx + Fd(ϕ, ζ),

where

D0(ϕ)xx = τ∗
(
d11 + d11d12v∗ d11d12u∗

d21d22v∗ d22 + d21d22u∗

) (
ϕ(1)

xx (0)
ϕ(2)

xx (0)

)
= τ∗B1ϕxx(0),

Fd(ϕ, ζ) =(τ∗ + ζ)
(
d11d12ϕ

(2)(0)ϕ(1)
xx (0) + 2d11d12ϕ

(1)
x (0)ϕ(2)

x (0) + d11d12ϕ
(1)(0)ϕ(2)

xx (0)
d21d22ϕ

(1)(0)ϕ(2)
xx (0) + 2d21d22ϕ

(1)
x (0)ϕ(2)

x (0) + d21d22ϕ
(2)(0)ϕ(1)

xx (0)

)
+ ζ

(
(d11 + d11d12v∗)ϕ(1)

xx (0) + d11d12u∗ϕ(2)
xx (0)

d21d22v∗ϕ(1)
xx (0) + (d22 + d21d22u∗)ϕ(2)

xx (0)

)
,

(A.2)

and

L(ζ)(ϕ) = (τ∗ + ζ)
(α11 α12

0 0

) (
ϕ(1)(0)
ϕ(2)(0)

)
+

(
β11 0
0 0

) (
ϕ(1)(−1)
ϕ(2)(−1)

)
+

(
0 0
β21 β22

) ϕ(1)(− τ2
τ∗+ζ

)
ϕ(2)(− τ2

τ∗+ζ
)


= (τ∗ + ζ)

(
A1ϕ(0) + A2ϕ(−1) + A3ϕ(−

τ2

τ∗ + ζ
)
)
,

F(ϕ, ζ) = (τ∗ + ζ)

 f
(
ϕ(1)(0) + u∗, ϕ(2)(0) + v∗, ϕ(1)(−1) + u∗

)
g
(
ϕ(2)(0) + v∗, ϕ(1)(− τ2

τ∗+ζ
) + u∗, ϕ(2)(− τ2

τ∗+ζ
) + v∗

) − L(ζ)(ϕ). (A.3)

Based on the previous expression, by separating the linear term from the nonlinear term, we can
rewrite Eq (A.1) as

dU(t)
dt

= D0(Ut)xx + L0(Ut) + F̃(Ut, ζ), (A.4)

where
L0(ϕ) = τ∗

(
A1ϕ(0) + A2ϕ(−1) + A3ϕ(−

τ2

τ∗
)
)
,

F̃(ϕ, ζ) = L(ζ)(ϕ) − L0(ϕ) + F(ϕ, ζ) + Fd(ϕ, ζ). (A.5)

From the previous statement, the linear system of Eq (A.4) is represented as follows

dU(t)
dt

= D0(Ut)xx + L0(Ut). (A.6)
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According to [35], in order to write Eq (A.4) as an abstract ordinary differential equation in Banach
space, we choose the following amplification space:

C :=
{

Φ

∣∣∣∣∣Φ ∈ C([−max{1,
τ2

τ1
}, 0], X),∃ lim

κ→0−
Φ(κ) ∈ X

}
.

Then, Eq (A.4) is equivalent to an abstract ordinary differential equation on C

dUt

dt
= H̃Ut + Z0F̃(Ut, ζ). (A.7)

where H̃ is a linear operator from M1
0 =

{
ϕ ∈ M

∣∣∣∣∣ϕ̇ ∈ M, ϕ(0) ∈ dom((·)xx)
}

to C, and there are the

following statements:
H̃ϕ = ϕ̇ + Z0 (τ∗B1ϕxx(0) + L0(ϕ) − ϕ̇(0)) ,

and Z0 = Z0(κ) is expressed as follows:

Z0(κ) =

{
0, κ ∈ [−max{1, τ2

τ1
}, 0),

1, κ = 0.

Next, we use the method proposed in [44] to decompose C. Let

M2 := C([−max{1,
τ2

τ1
}, 0];R2), M∗

2 := C([0,max{1,
τ2

τ1
}];R2∗),

where R2∗ is the two-dimensional space of row vector. The adjoint bilinear form on M∗
2 ×M2 is defined

as follows:

〈P(s),Q(κ)〉 = P(0)Q(0) −
∫ 0

−max{1, τ2
τ1
}

∫ κ

ξ=0
P(ξ − κ)dWn(κ)Q(ξ)dξ,

where P ∈ M∗
2, Q ∈ M2, and Wn(κ) ∈ BV

(
[−max{1, τ2

τ1
}, 0];R2×2

)
, such that for Q(κ) ∈ M2, and

we have

−τ∗(
ns

l
)2B1Qxx(0) + L0 (Q(κ)) =

∫ 0

−max{1, τ2
τ1
}

dWn(κ)Q(κ),

where Q(κ) = (q(κ), q̄(κ)) and P(s) =
(
p(s)T , p̄(s)T

)T
; q(κ) = (q1(κ), q2(κ))T = qeiωτ∗κ and p(s) =

(p1(s), p2(s))T = pe−iωτ∗s; q = (q1, q2) is the eigenvector corresponding to the eigenvalues iωτ∗ of
Eq (A.6); and p = (p1, p2)T is the adjoint eigenvector corresponding to the eigenvalues −iωτ∗ of
Eq (A.6). They meet the following condition

〈P(s),Q(κ)〉 = I2.

Through calculation, we obtain

q =


1

β21e−iωτ2 − (ns
l )2d21d22v∗

(d22 + d21d22u∗)( ns
l )2 − β22e−iωτ2 + iω

 , p = η


1

α12 − ( ns
l )2d11d12u∗

(d22 + d21d22u∗)( ns
l )2 − β22e−iωτ2 + iω

 ,
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where

η =
k2

1

(1 + β11τ∗e−iωτ∗)k2
1 + (1 + β22τ2e−iωτ2)k2 + k1β21α12τ2e−iωτ2 − ( ns

l )2k1β21d11d12u∗τ2e−iωτ2
,

k1 = (d22 + d21d22u∗)(
ns

l
)2 − β22e−iωτ2 + iω,

k2 = α12β21e−iωτ2 − α12(
ns

l
)2d21d22v∗ − (

ns

l
)2d11d12u∗β21e−iωτ2 + (

ns

l
)4d11d12d21d22u∗v∗.

According to [35, 42, 44], phase space C can be decomposed into

C = Imπ ⊕ Kerπ,

where π : C −→ Imπ. For ψ ∈ M, we have

π(ψ) =

(
Q(κ)

〈
P(0),

(
[ψ(·), β(1)

ns ]
[ψ(·), β(2)

ns ]

)〉)T

bns(x). (A.8)

Through the above analysis, we decompose Ut(κ) into

Ut(κ) =

(
Q(κ)

(
m1

m2

))T (
β(1)

ns

β(2)
ns

)
+ z

=
(
m1qeiωτ∗κ + m2q̄e−iωτ∗κ

)
bns(x) +

(
z(1)

z(2)

)
= Q(κ)mx + z,

where z ∈ P1 := M1
0 ∩ Kerπ, mx = (m1bn(x),m2bn(x))T and z =

(
z(1), z(2)

)T
. Therefore, we can

decompose the system (A.7) into the following abstract ordinary differential equation on R2 × Kerπṁ = Vm + P(0)
(
[F̃(Q(κ)mx + z, ζ), β(1)

ns ]
[F̃(Q(κ)mx + z, ζ), β(2)

ns ]

)
,

ż = AP1z + (I − π)Z0(κ)F̃(Q(κ)mx + z, ζ),
(A.9)

where m = (m1,m2)T ,V = diag {iωτ∗,−iωτ∗}, andAP1 : P1 −→ Kerπ are represented by

AP1z = ż + Z0(κ) (τ∗B1zxx(0) + L0(z) − ż(0)) .

Next, we consider the following Taylor expansions

L(ζ)(ϕ) =
∑
i≥1

1
i!

Li(ζ)(ϕ), F̃(ϕ, ζ) =
∑
i≥2

1
i!

F̃i(ϕ, ζ),

F(ϕ, ζ) =
∑
i≥2

1
i!

Fi(ϕ, ζ), Fd(ϕ, ζ) =
∑
i≥2

1
i!

Fd
i (ϕ, ζ).

Combining Eq (A.5), we have

F̃2(ϕ, ζ) = 2ζ
(
A1ϕ(0) + A2ϕ(−1) + A3ϕ(−

τ2

τ∗
) +

τ2

τ∗
A3ϕ

′

(−
τ2

τ∗
)
)

+ F2(ϕ, ζ) + Fd
2(ϕ, ζ), (A.10)
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and
F̃i(ϕ, ζ) = Li(ζ)(ϕ) + Fi(ϕ, ζ) + Fd

i (ϕ, ζ), i = 3, 4 · · · . (A.11)

Therefore, Eq (A.9) can be rewritten as
ṁ = Vm +

∑
i≥2

1
i!

f 1
i (m, z, ζ),

ż = AP1z +
∑
i≥2

1
i!

f 2
i (m, z, ζ),

(A.12)

where  f 1
i (m, z, ζ) = P(0)


[
F̃i(Q(κ)mx + z, ζ), β(1)

ns

][
F̃i(Q(κ)mx + z, ζ), β(2)

ns

] ,
f 2
i (m, z, ζ) = (I − π)Z0(κ)F̃i(Q(κ)mx + z, ζ).

(A.13)

According to the normal form theory of partial functional differential equations [44], by applying the
following variable transformations

(m, z) = (m̃, z̃) +
1
i!

(
U1

i (m̃, ζ),U2
i (m̃, ζ)

)
, i ≥ 2, (A.14)

where m, m̃ ∈ R2, z, z̃ ∈ P1, U1
i : R3 → R2 and U2

i : R3 → P1 are homogeneous polynomials of degree
i in m̃ and ζ, we obtain the normal form of (A.12), as follows:

ṁ = Vm +
∑
i≥2

g1
i (m, 0, ζ).

According to [35, 41, 42], by defining
(
M1

i q
)

(m, ζ) = Dmq(m, ζ)Vm − Vq(m, ζ) and
(
M2

i h
)

(m, ζ) =

Dmh(m, ζ)Vm −AP1h(m, ζ), we have

g1
2(m, 0, ζ) = ProjKer(M1

2 ) f 1
2 (m, 0, ζ), (A.15)

and
g1

3(m, 0, ζ) = ProjKer(M1
3 ) f̃ 1

3 (m, 0, ζ) = ProjS f̃ 1
3 (m, 0, 0) + O

(
ζ2 |m|

)
, (A.16)

where f̃ 1
3 (m, 0, ζ) is the cubic polynomial of (m, ζ) under the variable transformation of (A.14), and it

can be determined by Eq (A.16),

ker(M1
2) = Span

{(
ζm1

0

)
,

(
0
ζm2

)}
,

ker(M1
3) = Span

{(
m2

1m2

0

)
,

(
ζ2m1

0

)
,

(
0

m1m2
2

)
,

(
0

ζ2m2

)}
,

and

S = Span
{(

m2
1m2

0

)
,

(
0

m1m2
2

)}
. (A.17)

For the convenience of representing subsequent calculations, denote

B(αmu1
1 mu2

2 ζ) =

(
αmu1

1 mu2
2 ζ

ᾱmu2
1 mu1

2 ζ

)
, α ∈ C.
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Calculation of g1
2(m, , 0, ζ)

According to Eq (A.2), we have

Fd
2(ϕ, ζ) = Fd

20(ϕ) + ζFd
21(ϕ) (A.18)

and
Fd

3(ϕ, ζ) = ζFd
31(ϕ), Fd

i (ϕ, ζ) = (0, 0)T , i = 4, 5 · · · , (A.19)

where 
Fd

20(ϕ) = 2τ∗
(
d11d12ϕ

(2)(0)ϕ(1)
xx (0) + 2d11d12ϕ

(1)
x (0)ϕ(2)

x (0) + d11d12ϕ
(1)(0)ϕ(2)

xx (0)
d21d22ϕ

(1)(0)ϕ(2)
xx (0) + 2d21d22ϕ

(1)
x (0)ϕ(2)

x (0) + d21d22ϕ
(2)(0)ϕ(1)

xx (0)

)
,

Fd
21(ϕ) = 2B1ϕxx(0),

Fd
31(ϕ) = 6

(
d11d12ϕ

(2)(0)ϕ(1)
xx (0) + 2d11d12ϕ

(1)
x (0)ϕ(2)

x (0) + d11d12ϕ
(1)(0)ϕ(2)

xx (0)
d21d22ϕ

(1)(0)ϕ(2)
xx (0) + 2d21d22ϕ

(1)
x (0)ϕ(2)

x (0) + d21d22ϕ
(2)(0)ϕ(1)

xx (0)

)
.

(A.20)

Therefore, we can obtain
[
2ζ

(
A1 (Q(0)mx) + A2 (Q(−1)mx) + A3

(
Q(− τ2

τ∗
)mx

)
+ τ2

τ∗
A3

(
Q
′

(− τ2
τ∗

)mx

))
, β(1)

ns

][
2ζ

(
A1 (Q(0)mx) + A2 (Q(−1)mx) + A3

(
Q(− τ2

τ∗
)mx

)
+ τ2

τ∗
A3

(
Q
′

(− τ2
τ∗

)mx

))
, β(2)

ns

] (A.21)

= 2ζ
(
A1Q(0) + A2Q(−1) + (1 + iωτ2)A3Q(− τ2

τ∗
)
) (m1

m2

)
,

and 
[
ζFd

21 (Q(κ)mx) , β
(1)
ns

][
ζFd

21 (Q(κ)mx) , β
(2)
ns

] = −2
(ns

l

)2
ζ

(
B1

(
Q(0)

(
m1

m2

)))
. (A.22)

Besides, for all ζ ∈ R, we have F2 (Q(κ)mx, ζ) = F2 (Q(κ)mx, 0). From the first expression of Eq (A.13),
we can obtain

f 1
2 (m, 0, ζ) = P(0)


[
F̃2(Q(κ)mx, ζ), β(1)

ns

][
F̃2(Q(κ)mx, ζ), β(2)

ns

] . (A.23)

Combining Eqs (A.18)–(A.23), we get

g1
2(m, 0, ζ) = Projker(M1

2 ) f 1
2 (m, 0, ζ) = B(N1ζm1), (A.24)

where

N1 = 2pT

(
A1q(0) + A2q(−1) + (1 + iωτ2)A3q(−

τ2

τ∗
) −

(ns

l

)2
B1q(0)

)
.

Calculation of g1
3(m, , 0, ζ)

We need to calculate g1
3(m, , 0, ζ) from Eq (A.16). Denote

f (1,1)
2 (m, z, 0) = P(0)


[
F2(Q(κ)mx + z, 0), β(1)

ns

][
F2(Q(κ)mx + z, 0), β(2)

ns

] , (A.25)
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f (1,2)
2 (m, z, 0) = P(0)


[
Fd

2(Q(κ)mx + z, 0), β(1)
ns

][
Fd

2(Q(κ)mx + z, 0), β(2)
ns

] . (A.26)

According to Eq (A.24), we can obtain g1
2(m, 0, 0) = (0, 0)T . Then, f̃ 1

3 (m, 0, 0) is expressed by the
following formula

f̃ 1
3 (m, 0, 0) = f 1

3 (m, 0, 0) +
3
2

[(
Dm f 1

2 (m, 0, 0)V1
2(m, 0) +

(
Dz f (1,1)

2 (m, 0, 0)
)
V2

2(m, 0)(κ)
)]

+
3
2

[(
Dz,zx,zxx f (1,2)

2 (m, 0, 0)V(2,d)
2 (m, 0)(κ)

)]
,

where
f 1
2 (m, 0, 0) = f (1,1)

2 (m, 0, 0) + f (1,2)
2 (m, 0, 0), (A.27)

V1
2(m, 0) =

(
M1

2

)−1
ProjIm(M1

2 ) f 1
2 (m, 0, 0), V2

2(m, 0) =
(
M2

2

)−1
f 2
2 (m, 0, 0), (A.28)

Dz,zx,zxx f (1,2)
2 (m, 0, 0) =

(
Dz f (1,2)

2 (m, 0, 0),Dzx f (1,1)
2 (m, 0, 0),Dzxx f (1,2)

2 (m, 0, 0)
)
, (A.29)

V
(2,d)
2 (m, 0)(κ) =

(
V2

2(m, 0)(κ),V2
2x(m, 0)(κ),V2

2xx(m, 0)(κ)
)T
. (A.30)

Next, we divide it into the following four steps to calculate ProjS f̃ 1
3 (m, 0, 0).

Step 1. The calculation of ProjS f 1
3 (m, 0, 0).

Let
F3(Q(κ)mx, 0) =

∑
u1+u2=3

Φu1u2m
u1
1 mu2

2 b3
ns

(x), u1, u2 ∈ N0. (A.31)

From Eqs (A.11) and (A.19), we obtain F̃3(Q(κ)mx, 0) = F3(Q(κ)mx, 0), and it can be inferred from
Eqs (A.13) and (A.31) that

f 1
3 (m, 0, 0) = P(0)

 ∑
u1+u2=3

Φu1u2m
u1
1 mu2

2

∫ lπ

0
b4

ns
(x)dx

 ,
where

∫ lπ

0
b4

ns
(x)dx = 3

2lπ , and then we have

ProjS f 1
3 (m, 0, 0) = B(N21m2

1m2),

where
N21 =

3
2lπ

pT Φ21.

Step 2. The calculation of ProjS

(
Dm f 1

2 (m, 0, 0)V1
2(m, 0)

)
.

According to Eqs (A.10) and (A.18), we have

F̃2(Q(κ)mx, 0) = F2(Q(κ)mx, 0) + Fd
20(Q(κ)mx). (A.32)

From Eq (A.3), we have

F2 (Q(κ)mx + z, ζ) = F2 (Q(κ)mx + z, 0)

= b2
ns

(x)

 ∑
u1+u2=2

Φu1u2m
u1
1 mu2

2

 + S2 (Q(κ)mx, z) + O
(
|z|2

)
,

(A.33)
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where S2 (Q(κ)mx, z) represents the product of Q(κ)mx and z. From Eqs (A.18) and (A.20), we have

Fd
2 (Q(κ)mx, 0) = Fd

20 (Q(κ)mx) =

(ns

l

)2 (
ρ2

ns
(x) − b2

ns
(x)

)  ∑
u1+u2=2

Φd
u1u2

mu1
1 mu2

2

 , (A.34)

where

ρns(x) =

√
2
√

lπ
sin

(nsx
l

)
,

Φd
20 = 2q1(0)q2(0)τ∗

(
d11d12

d21d22

)
= Φd

02,

Φd
11 = 2τ∗

(
4d11d12Re

{
q1(0)q2(0)

}
4d21d22Re

{
q1(0)q2(0)

}) . (A.35)

Noted that
∫ lπ

0
ρ2

ns
(x)bns(x)dx =

∫ lπ

0
b3

ns
(x)dx = 0. Based on the previous content, we have

f 1
2 (m, 0, 0) = P(0)


[
F̃2(Q(κ)mx, 0), β(1)

ns

][
F̃2(Q(κ)mx, 0), β(2)

ns

] = (0, 0)T . (A.36)

By combining (A.18) and (A.36), we have

ProjS

(
Dm f 1

2 (m, 0, 0)V1
2(m, 0)

)
= B(N22m2

1m2),

where
N22 = (0, 0)T .

Step 3. The calculation of ProjS

((
Dz f (1,1)

2 (m, 0, 0)
)
V2

2(m, 0)(κ)
)
.

Let
V2

2(m, 0)(κ) = h(κ,m) =
∑
n∈N0

hn(κ,m)bn(x), (A.37)

where
hn(κ,m) =

∑
u1+u2=2

hn,u1u2(κ)m
u1
1 mu2

2 .

Therefore, we can directly obtain
[
S2

(
Q(κ)mx,

∑
n∈N0

hn(κ,m)bn(x)
)
, β(1)

ns

]
[
S2

(
Q(κ)mx,

∑
n∈N0

hn(κ,m)bn(x)
)
, β(2)

ns

]
 =

∑
n∈N0

Zn (S2(q(κ)m1, hn(κ,m)) + S2(q̄(κ)m2, hn(κ,m))) ,

where

Zn =

∫ lπ

0
b2

ns
(x)bn(x)dx =


1
√

lπ
, n = 0,

1
√

2lπ
, n = 2ns,

0, otherwise.
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Therefore, we have(
Dz f (1,1)

2 (m, 0, 0)
)
V2

2(m, 0)(κ) = P(0)

 ∑
n=0,2ns

Zn (S2(q(κ)m1, hn(κ,m)) + S2(q̄(κ)m2, hn(κ,m)))

 ,
ProjS

((
Dz f (1,1)

2 (m, 0, 0)
)
V2

2(m, 0)(κ)
)

= B(N23m2
1m2),

where

N23 =
1
√

lπ
pT (
S2(q(κ), h0,11(κ)) + S2(q̄(κ), h0,20(κ))

)
+

1
√

2lπ
pT (
S2(q(κ), h2ns,11(κ)) + S2(q̄(κ), h2ns,20(κ))

)
.

Step 4. The calculation of ProjS

((
Dz,zx,zxx f (1,2)

2 (m, 0, 0)
)
V

(2,d)
2 (m, 0)(κ)

)
.

Denote U(κ) = (U (1), U (2)) = Q(κ)mx and

Fd
2(U(κ), z, zx, zxx) =Fd

2(U(κ) + z, 0) = Fd
20(U(κ) + z)

=2τ∗
d11d12

(
U (1)

xx (0) + z(1)
xx (0)

) (
U (2)(0) + z(2)(0)

)
d21d22

(
U (2)

xx (0) + z(2)
xx (0)

) (
U (1)(0) + z(1)(0)

)
+ 4τ∗

d11d12

(
U (1)

x (0) + z(1)
x (0)

) (
U (2)

x (0) + z(2)
x (0)

)
d21d22

(
U (2)

x (0) + z(2)
x (0)

) (
U (1)

x (0) + z(1)
x (0)

)
+ 2τ∗

d11d12

(
U (2)

xx (0) + z(2)
xx (0)

) (
U (1)(0) + z(1)(0)

)
d21d22

(
U (1)

xx (0) + z(1)
xx (0)

) (
U (2)(0) + z(2)(0)

) .
According to [41], we have

S̃
(d,1)
2 (q(κ), y(κ)) = 2τ∗

(
d11d12 (q1(0)y2(0) + q2(0)y1(0))
d21d22 (q2(0)y1(0) + q1(0)y2(0))

)
,

S̃
(d,2)
2 (q(κ), y(κ)) = 4τ∗

(
d11d12 (q1(0)y2(0) + q2(0)y1(0))
d21d22 (q2(0)y1(0) + q1(0)y2(0))

)
,

S̃
(d,3)
2 (q(κ), y(κ)) = 2τ∗

(
d11d12 (q1(0)y2(0) + q2(0)y1(0))
d21d22 (q2(0)y1(0) + q1(0)y2(0))

)
.

From (A.26), (A.30), and (A.37), we have(
Dz,zx,zxx f (1,2)

2 (m, 0, 0)
)
V

(2,d)
2 (m, 0)(κ) = P(0)


[(
Dz,zx,zxx F

d
2(m, 0, 0)

)
V

(2,d)
2 (m, 0)(κ), β(1)

ns

][(
Dz,zx,zxx F

d
2(m, 0, 0)

)
V

(2,d)
2 (m, 0)(κ), β(2)

ns

] ,
therefore, we obtain

ProjS

((
Dz,zx,zxx f (1,2)

2 (m, 0, 0)
)
V

(2,d)
2 (m, 0)(κ)

)
= B(N24m2

1m2),

where

N24 = −
1
√

lπ
(
ns

l
)2 pT

(
S̃

(d,1)
2 (q(κ), h0,11(κ)) + S̃

(d,1)
2 (q̄(κ), h0,20(κ))

)
+

1
√

2lπ
pT

∑
i=1,2,3

c(i)
2ns

(
S̃

(d,i)
2 (q(κ), h2ns,11(κ)) + S̃

(d,i)
2 (q̄(κ), h2ns,20(κ))

)
and

c(1)
2ns

= −(
ns

l
)2, c(2)

2ns
= 2(

ns

l
)2, c(3)

2ns
= −4(

ns

l
)2.
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Appendix B. Calculation of the corresponding coefficients for Theorem 5.1

The calculations of Φi j and S2 (Q(κ)mx, z)
Denote η̂ = τ2

τ∗+ζ
and η̄ = τ2

τ∗
, we have

F2(ϕ, 0) = f200000ϕ
2
1(0) + f020000ϕ

2
2(0) + f000200ϕ

2
1(−η̄) + 2 f110000ϕ1(0)ϕ2(0)

+ 2 f101000ϕ1(0)ϕ1(−1) + 2 f010100ϕ2(0)ϕ1(−η̄)
+ 2 f010010ϕ2(0)ϕ2(−η̄) + 2 f000110ϕ1(−η̄)ϕ2(−η̄),

(B.1)

and

F3(ϕ, 0) = f300000ϕ
3
1(0) + f030000ϕ

3
2(0) + f000300ϕ

3
1(−η̄) + 3 f210000ϕ

2
1(0)ϕ2(0)

+ 3 f000210ϕ
2
1(−η̄)ϕ2(−η̄) + 3 f120000ϕ1(0)ϕ2

2(0)
+ 3 f010200ϕ2(0)ϕ2

1(−η̄) + 6 f010110ϕ2(0)ϕ1(−η̄)ϕ2(−η̄),
(B.2)

where

f200000 =


2v∗τ∗(d + ev∗)
(d + u∗ + ev∗)3 − τ

∗

0

 , f020000 =


2eu∗τ∗(d + u∗)
(d + u∗ + ev∗)3

0

 , f000200 =

 0
−2nu∗v∗τ∗

(u∗ + p)3

 ,
f110000 =


2ev∗τ∗(d + ev∗) − τ∗(d + 2ev∗)(d + u∗ + ev∗)

(d + u∗ + ev∗)3

0

 , f101000 =

(
−τ∗

0

)
, f010100 =

 0
nv∗τ∗

(u∗ + p)2

 ,
f010010 =

 0

−
nτ∗

u∗ + p

 , f000110 =

 0
nv∗τ∗

(u∗ + p)2

 , f300000 =


−6v∗τ∗(d + ev∗)
(d + u∗ + ev∗)4

0

 , f030000 =


−6e2u∗τ∗(d + u∗)
(d + u∗ + ev∗)4

0

 ,
f000300 =


0

6nτ∗v∗2

(u∗ + p)4

 , f210000 =


−6ev∗τ∗(d + ev∗) + 2τ∗ (d + u∗ + ev∗)2

(d + u∗ + ev∗)4

0

 , f000210 =

 0
−2nv∗τ∗

(u∗ + p)3

 ,
f120000 =


2eτ∗(d + u∗ + ev∗)2 − 2e2v∗τ∗(d + ev∗) − 4dτ∗(d + u∗ + ev∗) + 8eτ∗v∗u∗

(d + u∗ + ev∗)4

0

 ,
f010200 =

 0
−2nv∗τ∗

(u∗ + p)3

 , f010110 =

 0
nτ∗

(u∗ + p)2

 .
Denote

ϕ(κ) =Q(κ)mx = q(κ)m1(t)bns(x) + q̄(κ)m2(t)bns(x)

=

(
q1(κ)m1(t)bns(x) + q̄1(κ)m2(t)bns(x)
q2(κ)m1(t)bns(x) + q̄2(κ)m2(t)bns(x)

)
=

(
ϕ1(κ)
ϕ2(κ)

)
.

(B.3)

Similar to the expression in (A.31), we have

F2(Q(κ)mx, 0) =
∑

u1+u2=2

Φu1u2m
u1
1 mu2

2 b2
ns

(x), u1, u2 ∈ N0. (B.4)
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By combining equations (A.31) and (B.1)–(B.4), we can calculate that

Φ20 = f200000q2
1(0) + f020000q2

2(0) + f000200q2
1(−η̄) + 2 f110000q1(0)q2(0) + 2 f101000q1(0)q1(−1)

+ 2 f010100q2(0)q1(−η̄) + 2 f010010q2(0)q2(−η̄) + 2 f000110q1(−η̄)q2(−η̄),
Φ11 =2 f200000q1(0)q̄1(0) + 2 f020000q2(0)q̄2(0) + 2 f000200q1(−η̄)q̄1(−η̄) + 2 f110000q1(0)q̄2(0)

+ 2 f110000q̄1(0)q2(0) + 2 f101000q1(0)q̄1(−1) + 2 f101000q̄1(0)q1(−1)
+ 2 f010100q2(0)q̄1(−η̄) + 2 f010100q̄2(0)q1(−η̄) + 2 f010010q2(0)q̄2(−η̄)
+ 2 f010010q̄2(0)q2(−η̄) + 2 f000110q1(−η̄)q̄2(−η̄) + 2 f000110q̄1(−η̄)q2(−η̄),

Φ02 = f200000q̄2
1(0) + f020000q̄2

2(0) + f000200q̄2
1(−η̄) + 2 f110000q̄1(0)q̄2(0) + 2 f101000q̄1(0)q̄1(−1)

+ 2 f010100q̄2(0)q̄1(−η̄) + 2 f010010q̄2(0)q̄2(−η̄) + 2 f000110q̄1(−η̄)q̄2(−η̄),
Φ30 = f300000q3

1(0) + f030000q3
2(0) + f000300q3

1(−η̄) + 3 f210000q2
1(0)q2(0) + 3 f000210q2

1(−η̄)q2(−η̄)
+ 3 f120000q1(0)q2

2(0) + 3 f010200q2(0)q2
1(−η̄) + 6 f010110q2(0)q1(−η̄)q2(−η̄),

Φ03 = f300000q̄3
1(0) + f030000q̄3

2(0) + f000300q̄3
1(−η̄) + 3 f210000q̄2

1(0)q̄2(0) + 3 f000210q̄2
1(−η̄)q̄2(−η̄)

+ 3 f120000q̄1(0)q̄2
2(0) + 3 f010200q̄2(0)q̄2

1(−η̄) + 6 f010110q̄2(0)q̄1(−η̄)q̄2(−η̄),
Φ21 =3 f300000q2

1(0)q̄1(0) + 3 f030000q2
2(0)q̄2(0) + 3 f000300q2

1(−η̄)q̄1(−η̄)

+ 3 f210000

(
q2

1(0)q̄2(0) + 2q1(0)q2(0)q̄1(0)
)

+ 3 f000210

(
q2

1(−η̄)q̄2(−η̄) + 2q1(−η̄)q2(−η̄)q̄1(−η̄)
)

+ 3 f120000

(
q̄1(0)q2

2(0) + 2q2(0)q̄2(0)q1(0)
)

+ 3 f010200

(
q2

1(−η̄)q̄2(0) + 2q1(−η̄)q2(0)q̄1(−η̄)
)

+ 6 f010110 (q2(0)q1(−η̄)q̄2(−η̄) + q2(0)q2(−η̄)q̄1(−η̄) + q̄2(0)q1(−η̄)q2(−η̄)) ,
Φ12 =3 f300000q̄2

1(0)q1(0) + 3 f030000q̄2
2(0)q2(0) + 3 f000300q̄2

1(−η̄)q1(−η̄)

+ 3 f210000

(
q̄2

1(0)q2(0) + 2q1(0)q̄2(0)q̄1(0)
)

+ 3 f000210

(
q̄2

1(−η̄)q2(−η̄) + 2q1(−η̄)q̄2(−η̄)q̄1(−η̄)
)

+ 3 f120000

(
q1(0)q̄2

2(0) + 2q2(0)q̄2(0)q̄1(0)
)

+ 3 f010200

(
q̄2

1(−η̄)q2(0) + 2q1(−η̄)q̄2(0)q̄1(−η̄)
)

+ 6 f010110 (q2(0)q̄1(−η̄)q̄2(−η̄) + q̄2(0)q̄2(−η̄)q1(−η̄) + q̄2(0)q̄1(−η̄)q2(−η̄)) .

Denote

ϕ(κ) + z(κ) =Q(κ)mx + z(κ) = q(κ)m1(t)bns(x) + q̄(κ)m2(t)bns(x) + z(κ)

=

(
q1(κ)m1(t)bns(x) + q̄1(κ)m2(t)bns(x) + z1(κ)
q2(κ)m1(t)bns(x) + q̄2(κ)m2(t)bns(x) + z2(κ)

)
=

(
ϕ1(κ) + z1(κ)
ϕ2(κ) + z2(κ)

)
.

(B.5)

Similarly, we have

F2(Q(κ)mx + z, 0) =
∑

u1+u2=2

Φu1u2m
u1
1 mu2

2 b2
ns

(x) + S2(Q(κ)mx, z) + O
(
|z|2

)
, u1, u2 ∈ N0. (B.6)

Combining Eqs (B.1), (B.5) and (B.6), we have

S2(Q(κ)mx, z) =[2 f200000q1(0)z1(0) + 2 f020000q2(0)z2(0) + 2 f000200q1(−η̄)z1(−η̄)
+ 2 f110000(q1(0)z2(0) + q2(0)z1(0)) + 2 f101000(q1(0)z1(−1) + q1(−1)z1(0))
+ 2 f010100(q2(0)z1(−η̄) + q1(−η̄)z2(0)) + 2 f010010(q2(0)z2(−η̄) + q2(−η̄)z2(0))
+ 2 f000110(q1(−η̄)z2(−η̄) + q2(−η̄)z1(−η̄))]m1(t)bn(x)
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+ [2 f200000q̄1(0)z1(0) + 2 f020000q̄2(0)z2(0) + 2 f000200q̄1(−η̄)z1(−η̄)
+ 2 f110000(q̄1(0)z2(0) + q̄2(0)z1(0)) + 2 f101000(q̄1(0)z1(−1) + q̄1(−1)z1(0))
+ 2 f010100(q̄2(0)z1(−η̄) + q̄1(−η̄)z2(0)) + 2 f010010(q̄2(0)z2(−η̄) + q̄2(−η̄)z2(0))
+ 2 f000110(q̄1(−η̄)z2(−η̄) + q̄2(−η̄)z1(−η̄))]m2(t)bn(x).

The calculations of h0,11(κ), h0,20(κ), h2ns,11(κ) and h2ns,20(κ)
From [44], there is

M2
2 (hn(κ,m)bn(x)) = Dm (hn(κ,m)bn(x))Vm −AP1 (hn(κ,m)bn(x)) ,

which causes
[
M2

2 (hn(κ,m)bn(x)) , β(1)
n

][
M2

2 (hn(κ,m)bn(x)) , β(2)
n

] =2iωτ∗
(
hn,20(κ)m2

1 − hn,02(κ)m2
2

)
−

(
ḣn(κ,m) + Z0(κ)

(
L0 (hn(κ,m)) − ḣn(0,m)

))
,

(B.7)

where

L0 (hn(κ,m)) = −τ∗(
n
l
)2B1hn(0,m) + τ∗ (A1hn(0,m) + A2hn(−1,m) + A3hn(−η̄,m)) .

By combining (A.8) with the second equation of (A.13), we have

f 2
2 (m, 0, 0) =Z0(κ)F̃2(Q(κ)mx, 0) − π

(
Z0(κ)F̃2(Q(κ)mx, 0)

)
=Z0(κ)F̃2(Q(κ)mx, 0) − Q(κ)P(0)


[
F̃2(Q(κ)mx, 0), β(1)

ns

][
F̃2(Q(κ)mx, 0), β(2)

ns

] bns(x).
(B.8)

From Eqs (A.32), (A.33) and (A.34), we have


[
f 2
2 (m, 0, 0), β(1)

n

][
f 2
2 (m, 0, 0), β(2)

n

] =


1
√

lπ
Z0(κ)

(
Φ20m2

1 + Φ02m2
2 + Φ11m1m2

)
, n = 0,

1
√

2lπ
Z0(κ)

(
Φ̃20m2

1 + Φ̃02m2
2 + Φ̃11m1m2

)
, n = 2ns,

(B.9)

where Φ̃i j is represented by the following equationΦ̃i j = Φi j − 2(
ns

l
)2Φd

i j,

i, j = 0, 1, 2, i + j = 2,
(B.10)

and the expression for Φd
i j is given by (A.35). Therefore, by combining (B.7)–(B.9) and matching

coefficients of m2
1, m1m2, we obtain

n = 0,


m2

1 :


ḣ0,20(κ) − 2iωτ∗h0,20(κ) = (0, 0)T ,

ḣ0,20(0) − L0(h0,20(κ)) =
1
√

lπ
Φ20,

m1m2 :


ḣ0,11(κ) = (0, 0)T ,

ḣ0,11(0) − L0(h0,11(κ)) =
1
√

lπ
Φ11,

(B.11)
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n = 2ns,


m2

1 :


ḣ2ns,20(κ) − 2iωτ∗h2ns,20(κ) = (0, 0)T ,

ḣ2ns,20(0) − L0(h2ns,20(κ)) =
1
√

2lπ
Φ̃20,

m1m2 :


ḣ2ns,11(κ) = (0, 0)T ,

ḣ2ns,11(0) − L0(h2ns,11(κ)) =
1
√

2lπ
Φ̃11.

(B.12)

By solving Eqs (B.11) and (B.12), we obtain the following results

h0,20(κ) =
1
√

lπ
e2iωτ∗κ

(
2iωτ∗I2 − τ

∗A1 − τ
∗A2e−2iωτ∗ − τ∗A3e−2iωτ2

)−1
Φ20,

h0,11(κ) =
1
√

lπ
(−τ∗A1 − τ

∗A2 − τ
∗A3)−1

Φ11,

h2ns,20(κ) =
1
√

2lπ
e2iωτ∗κ

(
2iωτ∗I2 + τ∗(

2ns

l
)2B1 − τ

∗A1 − τ
∗A2e−2iωτ∗ − τ∗A3e−2iωτ2

)−1

Φ̃20,

h2ns,11(κ) =
1
√

2lπ

(
τ∗(

2ns

l
)2B1 − τ

∗A1 − τ
∗A2 − τ

∗A3

)−1

Φ̃11.
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