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Abstract: Let py, ps, ..., p7 be primes. In this paper, we first show that when k; = 23, every sufficiently
large odd integer can be represented as the sum of one prime square, five prime cubes, one prime
biquadrate and at most k; powers of 2. We further prove that for k, = 45, every pair of sufficiently large
odd integers satisfying certain necessary conditions can be represented as a pair of equations involving
one prime square, five prime cubes, one prime biquadrate and at most k, powers of 2.
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1. Introduction

The Goldbach conjecture concerns the representation of every even integer greater than two as the
sum of two primes, but a direct proof remains unavailable. Researchers have therefore studied various
modified versions of the problem. Among these, Linnik [1, 2] establishes that every sufficiently large
even integer n; can be expressed as the sum of two primes and at most K; powers of 2, namely

D LI o o (1.1)

Many scholars have investigated the value of K;, and the minimum acceptable value so far is K; = 8
established by Pintz and Ruzsa [3].

Besides this linear relationship, the representation of integers as sums of mixed prime powers has also
attracted the attention of many scholars. For instance, Liu [4], Lii and Cai [5] investigated the equations

ny = pi+ps+ pi+ Dy + P+ e (1.2)

n3=py+py+ i+ + plos (1.3)
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respectively. A natural hybrid problem arises by combining the forms of (1.2) and (1.3), leading to
the equation

My = i+ py+ Py + Pyt ps+ Py + py. (1.4)
However, current techniques remain insufficient to establish the solvability of (1.4) directly. In 2017,
motivated by the works of Linnik, Liu [6] proved that every sufficiently large odd integer N; can be

expressed as the sum of one prime square, five prime cubes, one prime biquadrate and a bounded number
of powers of 2, i.e.,

Ni=plpi+pi+pi+plapi+ph+21 422 4. 42, (1.5)

where k; is an unspecified constant. Further references on this topic include [7-10]. In this work,
we provide an explicit bound for k; resolving the question of solvability for (1.5), as presented in the
following theorem.

Theorem 1.1. For any integer k; > 23 and every sufficiently large odd integer Ny, Eq (1.5) is solvable.

Kong [11] first studied the Eq (1.1) in a extended way. Specifically, Kong [11] considered the
simultaneous representation of every pair of positive even integers By, B, with B, > By > B,, in the form

B = 201 420 4 4 Dl
{1 PL+ Py + 28 21 4 QK (16)

By =p3+ps+2" +22 4 - 4 2K,

where K, > 63 is an integer. Note that in the system of equations, the primes p;, p,, ps, ps are not
necessarily same, while the powers of 2 share the same tuple (u;, us, . . ., ug,). Subsequently, Kong and
Liu [12] improved this bound to K, > 34.

We follow the idea of Kong [11] and study the simultaneous representation of every pair of sufficiently
large odd integers N, and Nj; satisfying N, < N3, in the form

{Nz:p%+p§+p§+pi+pg+p2+p§+2”+2V2+~--+2Vk2, (7

Ny=pg+po+plo+ i P+ D+ D, +2" +27 4 4 2%,
Our second theorem establishes an explicit bound for &, that guarantees the solvability of Eq (1.7).

Theorem 1.2. For any integer k, > 45 and every pair of sufficiently large odd integers N, and N5 satisfying
N, < Ns, (1.8)

the system (1.7) is solvable.

In this paper, we employ the circle method combined with analytic techniques to establish our
results. The proofs of Theorems 1.1 and 1.2 follow similar arguments, thus we focus on outlining
the strategy for Theorem 1.1. We begin by decomposing the integral representation of the weighted
solution number into the major arcs and minor arcs (see (2.7) below). By carefully computing the
singular integral and the singular series (see Lemmas 2.2 and 3.1 below), we establish a sharp lower
bound for the major arcs contribution (see Proposition 3.1 below). When handling R,(N), we utilize
integral mean value estimates of exponential sums (see Proposition 3.2 below), which allows us to
exploit the value A appearing in Lemma 2.3. Combining these with more precise upper bounds for
R3(N)) (see Proposition 3.3 below), we ultimately establish the conclusion of Theorem 1.1.
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Notation. Throughout this paper, we take the following conventions:

- The letters p and k, with or without a subscript, always represent a prime and a positive integer,
respectively.

- The function e(x) is defined as e>™™.

- The letter € represents an arbitrarily small positive constant, which may have different values in
different occurrences.

- M =< N means that both N < M and N > M hold.

i=1,23,r=1,2,j=2,3.

2. QOutline and preliminary lemmas

To apply the circle method, we first introduce some symbols. Define the parameters

A7 -8 AT _ N,
P;=N»*(ogN)™", Qi=N?, L,=log,

logN,’
which satisfy the condition
Q,' > 2Pl > 2.
For1 <a; < ¢g; < P; and (a;,q;) = 1, we define
a; 1
M; (@i, qi) = {a/i €[0,1]: 'a/~ -— = —} 2.1
gl qiQi

The major arcs I; and the minor arcs m; are defined as

w= ) J M@, m=101mM% (2.2)

1<¢i<P; 1<a;<gq;
(ai,gi)=1

respectively. Observe that for distinct rationals ;i * Z—’g, we have

7
a a;

qi q;

1 1 ( 1 1 ) 1 1
2 — 2= +—1> + —.
qaq;  2\qPi qPi) qQi g0
By combining this inequality with (2.1), it follows that 9t; (a;, ¢;) are mutually disjoint. Then we further

define
MW =My x N3 = {(042, @) € [0,112 : ay € My, a3 € sm3}, m’ = [0, 12\, (2.3)

Let

1 1 (N;\? 1 (nN;\?
A= 5((1—77)]\71')%, B; = 5(%) , Ci= E(UT) )
1 (2.4)

NV
Ui=|—"—]| , Vi= U},
(16(1+n)) ’

Nl

where 7 is a sufficiently small positive constant. We shall consider the sums

R(N)) = > (log p)(log ps) - - (log p7), (2.5)

Ni=p24p34p3apiepiepi+pie2’1 422 442"k
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which is the weighted number of solutions of (1.5) in (py, p2, ..., P7, V1, V2, ..., Vk,) such that

Al < Pp1 < 2A19 Bl < P2 SZBl, Ul < p3, P4 < 2U1’ ‘/1 < Ps, Ps < 2V1’
C < p7 SZCI, 4SV1,V2,...,Vk1 < Ly

R(Na, N3) = > (log pi)iog po) -+ (log pra),  (2.6)

Na=p2+piplepl+piepitphe21 422 442"
3 e v
N3=p2+pa+pig+p3,+piy+pis+pt,+21 42724422

which is the weighted number of solutions of (1.7) in (py, p2, ..., P14, Vi, V2, - . ., Vk,) such that
Ay < p1 £2A;, By < py 2By, Uy < p3, py < 2U,, Vo < ps, ps < 2V,, Cy < p7 <205,
Az < pg < 2A3, B3 < pg < 2B3, U3 < p1o, p11 < 2U3, V3 < pia, p13 < 2V3, C3 < p1a < 2G5,

4SV1,V2,...,V}<2 SLZ

Let A be a constant to be determined later. We define the following exponential sums

flay= > (ogpe(Pan, fla)= ). (ogple(p’ay,

Ai<p<L2A; Bi<p<2B;

S)= ) (ogpe(p'ai), T@)= ), (ogpe(p'a),

Ul-<p32U,- Vi<pS2Vi

filay= ). (ogpe(p'a), G,a)= ) e'ay,

Ci<p<2C; 4<v<L,

and the exceptional sets
i =lan €10,11: 1G] = ALY, &, = {(an,a3) € 0,11 : [Galas + 3)] = ALy}

By (2.2), (2.3), (2.5), (2.6) and orthogonality, we have

R(Ny) = f+ f +f Flan) fi@) fi@)S*(@)T(@)GY (ar)e(-ai Ny)day

o omnéa M\

2.7)

::Rl(Nl) + Rz(Nl) + R3(N1)

R(N,, N3) = ff"‘ ff‘*‘ff Hla) fi(ar) fi(@)S (@) T (@) falas) fo(@3)

N mné, w\é, (28)
X fil@3)S *(@3)T*(@3)G5: (2 + @3) e (—aaN; — @3N3) dasdas
:=Rj (N2, N3) + Ry (N3, N3) + R3 (N2, N3).

Let [ be a positive integer throughout this section. Let also

9 l
Clga)= ). e(%)

m=1
(m,q)=1

and
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1 4 an
A = 2 - 2.
() = = Zl cz<q,a>c3(q,a)c4(q,a)e( q), (2.9)
(a,q)=1
S(n) = Y Aln,q). (2.10)

g=1

Lemma 2.1. Let M; be defined as in (2.2). Then for 2 < n; < N;, we have

1
f AlaDfilan) fi@)S @) T a)e(-aNyday = m®(ﬂ1)¢(ﬂ1)+0(N‘6L )

NYy

()3 + O (N%L )

1
[ faps@psiaps )T @pecan o = 1o

n;
Here S (n;) is defined as (2.10) and satisfies S (n;) > 1 for n; = 1 (mod 2), J (n;) is defined as

~ _1 2 3
() = Z m, * (mymzmamsmeg)~ 3 m,* (2.11)

(my,m3,..m7)€D
with
my+my+ - +m; =n, A7 <my < (24;)
D=S(m,m,...,my): B} <my <(2B)’, U} <ms,my < 2U;)’ ,
Vl.3 < ms,mg < (2Vl‘)3,C;1 <my < 2C)*
and satisfies J (n;) < Nl.;%.

Proof. The proof of this lemma is a standard application of handling enlarged major arcs in the circle
method (see [13, 14], etc.). Thus we omit its proof here. O

Lemma 2.2. For (1 —n)N; < n; < N;, we have
3(n;) = 489.952(1 + )N, * B,C;UV?.
Proof. Let

. A? <my < (A% B} <my < (2B),U? < m3,my < 5U?
D =<(m,my,...,mqp): .

Vl3 < ms,mg < (2V,')3, C? <my < (2Cl)4
For (my,m,, ...,m;) € D, we deduce from (1 — n)N; < n; < N, that
Ai2 <my=n—my—my—my —ms —mg —my < (24;)%.

Thus D is a subset of ©. Then by (2.11), we have

30m) 2(1+ )N Z my’ Z m,’ Z m,

B}<my<(2B;)? U <m3<5U3 U?<my<5U3
_2 _2 _3
3 3 4
X E M E me E m,
V3<ms<(2V;)? V3<ms<(2V;)? Cl<m<2Ci)*

>3x3(V5 - 1) x3(V5 - 1) x3x 3 x4(1 + 77)%N,.‘%Bic,-vai2
>489.952(1 + )} N, BCUV?,
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where ) ,_,.<, m ¢ is well approximated by the corresponding integral fa * x~¢dx. Thus we complete the
proof of the lemma. O

Lemma 2.3. Let meas(&,,)) denote the Lebesgue measure of &,,. Then for A = 0.83372, we have

~2_10720
meas (&) < N, °* )

Proof. This lemma follows from Lemma 5 and (3.10) in [15]. O

Remark. The above lemma was established through an optimized implementation of the Pintz and
Ruzsa algorithm [16] by Languasco and Zaccagnini [15], which is sharper than the one of Heath-Brown
and Puchta [17]. The refined algorithm achieves improvements to existing results, particularly enhancing
the findings in Huang’s [18] and Lii’s [19] works.

The complete algorithmic implementation is accessible in the code ocean capsule [20] of Professor
Alessandro Languasco’s homepage.

Lemma 2.4. We have

1
f (@) fAa)fia)lda; < 6.52263(1 + 122 BXC?.
0

Proof. Following the argument in Section 4 of [9], we have

! log 2A;
fo 1 (@) f5 (@) fi(@lda; < 210?%(1 +0(1)S(A3I(4)

< 8log2(1 + o(1))S(4)J(4),

(2.12)

1_
where Dy = Af ° D, = VD, witha positive constant § < 107! S(4) is defined by (3.3) in [9], and

1
22 % 32x 42

m+my+m3=n|+ny+n3
A?<ml,n1 <(2A)*
B? <ma,n<(2B;)?

Ch<msz,n3<(2C)*

i

34) = (miny)? ™ (many) s~ (mang) i~

Noting that

my =ny+ny;+n3—m;—m;y
>n + B} +C! - (2B)* - 2C))*
> (1 - 12np)n,,

and we have

34) < (1 = 12)" 207" (many) s~ (msns) ™!

2 2 2

2 X3 X4 my+my+m3=n|+ny+n3
AZ<my,m <(24;)?
B?<m2,n2£(23,')3

C<m3,n3<(2Cy)*

2log?2 ) 5 1
S T3 2 B (AC) (1 + 12m)> (1 + o(1))

log 2
< (% + 0(1))(1 + 120! B3 C2.
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This in combination with (2.12) and Lemma 3.1 in [9] leads to

1
f P20 f2 () f2(a)lda; < 6.52263(1 + 1217)? BAC?,
0

which completes the proof of the lemma. O

Lemma 2.5. We have |
f 1S *(a)T*(@,)|de; < 7.39088U,V}, (2.13)
0

1 1
f |fal@) f3(@) falan)S 2 () T(a)|dey; < 27.77279(1 + 77)%(1 + 1277)%Ni_§BiCiUi2Vi2. (2.14)
0

Proof. The estimate (2.13) is Lemma 3.6 in [21]. Next, we give the proof of the estimate (2.14). By
Cauchy’s inequality, (2.4), (2.13) and Lemma 2.4 we have

1 1
fol |l@) fy(@) fa(@)S > (@) T (@)lda; < (I}l |fzz(ai)f32(ai)f42(ai)|da'i)2 (fo] |S4(ai)T4(a'i)|da'i)2
< 27.77279(1 + )F(1 + 120N B,C,UPV2.
Thus the lemma follows. O
Lemma 2.6. We have

£ @) fi@lda; < NP, (2.15)

i
m;

1
f 15 (@) fi (@)lde; < N} (2.16)
0

Proof. The estimate (2.15) is Lemma 3.1 in [22]. By Hua’s well-known theorem on mean value
estimates for exponential sums [23], we can get the estimate (2.16). O

3. The proof of Theorem 1.1

Lemma 3.1. Let EWNLk)=m =22 :n =N =-2" =27 —... =2 4 < Vi, V2, ooy Vig = L.} with
ki = 20. Then for Ny = 1 (mod 2), we have

> &)= 1.97616L;".

n1€E(Ny,ky)
n1=1l (mod 2)

Proof. For k > 2, by (2.9) we have

Alni, p') = 0
and A(n;, p) is multiplicative. Then
S(n;) = l_[(l + A(ni, p)). (3.1
p=2

Electronic Research Archive Volume 33, Issue 12, 7902-7917.
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For p = 2, we have

0, n,=0 (mod 2),
1+AMn;,2) = 3.2)
2, n;=1 (mod 2).

For 3 < p <200, with help of a mathematical software, we can get
1+A(n;,3)>09375, 1+ An;,7)>0.704861, 1+ A(n;,13)>0.926757

and
(1+Am;,5) + A, 11)) H (1 + A(n;, p)) = 0.99045. (3.3)

17<p<200

For p > 200 and p =1 (mod 3), we have

p—1
> 1Ca(p, a)C3(p, a)Ca(p, a)|
1+A(m,p)>1- =

L (VP + DRAP+ 1B p+1) (3.4)
(p—1) B (p—1)° ’

where the elementary estimate |C)(p,a)| < (I — 1) +/p + 1 are used. For p > 200, if p =2 (mod 3) and
(a, p) = 1, we can deduce that C3(p, a) = —1. Therefore, we have

p—1

2 Ca(p, a)Cu(p, a)l L (VP + DG D + 1).

a=1
1+ A, p)>1- T > TG (3.5)
By (3.4) and (3.5), we again apply a mathematical software and get
5
n (I +A@;, p)) = n (1 — (Wp+D@Vp+ VGyp+ 1))
200 o o (P - e
<p<10 200<p<10
p=1 (mod 3)
o 1—[ (1_(\/ﬁ+1)(3\/65+1)) (3.6)
200<p<10° p-1
p=2 (mod 3)
>0.99789,
5
[Tt = [ 1- SEH DA 16 P )
>106 >106 (-1
p= p=
I (3.7)
1 —
y 1_1!( - 1)2)
p>
> 0.99998.
From (3.3), (3.6) and (3.7), we have
(1 + A, 5)(1 + A(n;, 11)) 1—[(1 + A(n;, p)) > 0.98834 := C. (3.8)

p=17

Electronic Research Archive Volume 33, Issue 12, 7902-7917.
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Letg=3x7x13=273,by (3.1), (3.2) and (3.8), we get

> emnz2c Y ] a+Am,p

I’lGE(Nl,kl) n1€E(N1,k1) p=3,7,13
ni=l (mod 2) ni=l (mod 2)
>2C E | | (1 + A(h, p)) § 1.
1<h<q p=3.7,13 n1€2(Ny,k1)
ni=l  (mod 2)
ni=h (mod q)

(3.9

To estimate the innermost sum at the right side of (3.9), we take a similar argument to Lemma 4.4

in [24]. We can deduce that

ki
S = Z 1:(%+O(1)) Z 1,

n TE(E\’l Jiil )2) 1<vi,v2,.0k <6(q)
n= mo VI42V2 4ot 2k =N
m=j (mod q) 21 42V2 4042 N-h (mod q)

where 6(q) denotes the smallest positive integer 6 such that 2° = 1 (mod ¢). Noting that

1L S (KN =)
(6() 0(1)) Ze( q )9()

we get

1( L, . ¥
> — (m + 0(1)) ((S(q)"1 - (q - 1)(051;1;51 |9(t)|) )

Lk Jmax [6(0]\*
>71 1-(q —1)[2(7) +o(Lh™),

where (1) = X1 <5< € ( ) Recalling the definition of d(q), we have
o0(q) =12 and max |6(1)| =6
0<t<g—-1
Therefore, we can get
S >3.66205 x 107°L}".

From (3.9) and
D, (U+Ahp)=p+ > AGhp)=p,

1<h<p 1<h<p

we have

Z S (ny) > 2% 3.66205 x 10‘3Cc1L’1‘l > 1.97616L’1‘1,
n1€E(N1.k1)
ni=1 (mod 2)
which completes the proof of this lemma.

Proposition 3.1. Let R(N)) be defined as in (2.7). We have

-1 4
R, (N}) > 0.49805(1 + )P N, * B,CURVALY + O(N]% Ll]q—l)'

(3.10)
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Proof. Let Z(Ny, k;) be defined as in Lemma 3.1. We have

GllaNe(-aiN)= " D1 e +2" 4o +2%)ay)e(-a1Ny)

4Sv1,V2,...,Vkl <L

= D e(@ 427+ +2% = Npa)

4SV1,Vz,.A.,Vk1 <Ly

= Z e(—nmay).

ni€E(N1,k1)
ni=1l  (mod 2)

We deduce from Lemmas 2.1, 2.2 and 3.1 that

RM)Z@ > (st +o(NFL))

n1€E(Ny,k1)
ni=l (mod 2)

1% 221k 3 ki1
>0.49805(1 + m)2N, *B,C,UTViL,' + O|N;*L," " |.
Thus this proposition follows. O
Proposition 3.2. Let Ry(N)) be defined as in (2.7). We have
% k-1
Ry(Ny) < Nj°L}'.

Proof. By the trivial bound G(a;) < L;, Holder’s inequality, (2.4), (2.13), (2.15), (2.16) and Lemma
2.3, we have

. X 3 1 i
Ry (Ny) <<L11q( |]24(01)]C32(a1)|da1) (f |fzz(6¥1)ff(6¥1)|dal)
nmp 0

1 3 %
x ( | |S“(a1>T“<a1)|da1) ( | 1da1)
0 1
Hydlie €1
<<N136+54+ (meas(&; 1))316 L’]<1
% k-1
<N°L\"".
Thus this proposition follows. O
Proposition 3.3. Let R3(N,) be defined as in (2.7). We have
_1
IR3(N))| < 27.77279(1 + (1 + 127 NN, 2 B,C, UV LY
with A = 0.83372.
Proof. By (2.14) and the definition of &},, we get

1
|R3(N1)|S(/1L1)k1f |l f(an) falan)S *(a)T?(a)lde,
0

<27.77279(1 + )3 (1 + 120 AN N, 2 B, CLURVALE

Thus this proposition follows. O

Electronic Research Archive Volume 33, Issue 12, 7902-7917.
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By (2.7), Propositions 3.1-3.3, we have
R(VD) 2 Ry(V)) = Re(N)| + O (N L4
> (0.49805(1 +m)* —27.77279(1 + )*(1 + 121)* 2 ) Ny B,CURVALE
Recall that 4 = 0.83372 in Lemma 2.3, then R (N;) > 0 with k; > 23, which proves Theorem 1.1.

4. The proof of Theorem 1.2

Lemma 4.1. Let E(Nj,ky) = {nj 22 :nj=N; =2" =2 — ... = 2% 4 <y, v,,..., Vi, < Ly} with
ky > 20. Then for N, = N3 =1 (mod 2), we have

D S(m) S (m) 2 3.90624L5.

n2€E(N2,k2)
n3€E(N3,k2)
ny=n3=1 (mod 2)

Proof. Let g = 273, by (3.1), (3.2) and (3.8), we get

§ S (n2) ©(n3)
n2€E(Np k)
n3€E(N3.kz)
m=n3=1 (mod 2)

>ecr Y. ] ] (+A(w.p)

ny€E(Ny,ky) 2<j<3 p;j=3,7,13
n3€E(N3,k2)
ny=n3=1 (mod 2)

s B3 [ T] (+a(r) “

1<h<q ny€E(Na,ky) 2<j<3 pj:3,7,13
n3€=(N3,k2)
my=n3=1 (mod 2)
m=n3=h (mod q)

2(20)22 ﬂ(1+A(h,p))2 Z 1.

1<h<q p=3,7,13 np€E(Na ko)
mp=1 (mod 2)
m=h (mod q)

For the innermost sum at the right side of (4.1), by (3.10), we can get

1 >3.66205 x 107°LY.

n2€E(N2 k2)
ny=1 (mod 2)
np=h (mod q)

From (4.1) and
D U+AGp) =p+2 ) Ahp)+ ), A(hp)

I<h<p 1<h<p I<h<p
2
=p+ ) Ahp)
1<h<p
> p,

Electronic Research Archive Volume 33, Issue 12, 7902-7917.
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we have
Z S (n2) ©(n3) = 4 x 3.66205 x 10°C2qLY > 3.90624LY,
n€E(N2,k2)
n3€=(N3,ka)
ny=n3=1 (mod 2)
which completes the proof of this lemma. O

Proposition 4.1. Let R |(N,, N3) be defined as in (2.8). We have
-3 A7"3 212221 ke %A% k-1
R{(N2, N3) > 0.24812(1 + )N, * N, * BoB3C,C3Us UV VLY + O N, NJ° Ly ).
Proof. Let E(Nj, k) be defined as in Lemma 4.1. We have

G];z(az + az)e(—aN; — a3N3)

= D @27+ 4 2%) (@ + @3))e(—aaN; — asNs)

4SV1,V2,..‘,W<2 <L

= D @274 4 2% = NJa)e(2" 427 4o + 2% — Nyas)

4<y; V2eesViky <L,

= § e(—man)e(—n3as).
n2€E(No k2)
n3€E(N3,k2)
my=n3=1 (mod 2)

This, in combination with Lemmas 2.1, 2.2 and 4.1, yields

RGN 2o D) (@03 + (VL)) (Sm30m) + o (N5 131

n€E(Nakz)
n3€=(N3,k2)
ny=n3=1  (mod 2)

S 3.90624 x (489.952)?
B 19442

-1 21 72v2v72 1k 2 -l
>0.24812(1 + )N, >N, B,B;C>C3 U2UZVEVALE + O (NF NS LR,

-1 1 4 4
(1+ 0N, >Ny > B,B;C,C3Us USVAVELE + 0 (N§6N336 L’;“)

Thus this proposition follows. O
Proposition 4.2. Let R,(N,, N3) be defined as in (2.8). We have
N
Rz(Nz,Nj,) < N2361\]336Lz2 .
Proof. By (2.2) and (2.3), we obtain
m C{(az,@3) : @y € My, a3 € [0, 1]} U {(@2, @3) : a3 € [0, 1], a3 € m3}.
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From the trivial bound G,(a; + ;) < L,, we have

Ry (o, Ny) <L f f v f f [fo(aea) fo(2) filx2)S ) T(ax)

(a2,a3)emyx[0,1]  (@2,a3)€[0,1]xm3
Go(ar+a3)|=AL, |Ga(ar+a3)|=AL,

X fa@s) fa(@3) fa(@3)S?(a3)T?(as)|dardas

1
:ng(f |f2(“2)f3(a/2)f4(6¥2)52(02)T2(0/2)Jl(02)|dCYz
0

1
+f0 |f2(a3)f3(a3)f4(a3)5z(a/3)T2(a3)J2(a/3)|da3),
where

Ji(e) = f |fa(@3) f3(@3) fa(@3)S *(a3) T (a3)| das,

a3zems
|Ga(@a+as3)zAL

D(as) = f |f2(6¥2)f3(a’2)f4(02)5Z(Clz)Tz(a/z)| das.

ax€EM)
|Ga(@a+as3)2AL,

We apply Holder’s inequality, (2.13), (2.15), (2.16) and the periodicity of G,(a) and get

. y 3 1 i
If;(aa)f;(az)ldaa) ( fo Ifzz(aa)ff(as)ldaa)

L
36

Ji(az) <<(

mp

1

1 2
X ( f |S4(a3)T4(a3)|doz3) f ldas;
0

azem;
Go(ap+a3)|>AL,

€L
36

Trdte
<<]\7336 > ldw| ,

welasz,l+a3]
Gr(w)|2ALy

where w = @, + a@3. This combining with (1.8), (2.4), (2.14) and Lemma 2.3 gives
1
f | (@) fi(@2) fa(@2)S (@) T (@)1 ()| day
0

Frdte !
< N;*757° (meas (£3,)) f |fale2) fr(@2) fi(@2)S *(@2) T (@2)| day
0

47 10—22 47 +e
6

<N NS
Arguing similarly we can also get

47 47 _10-22
36 te 10

1
fo|f2(0/3)f3(a3)f4(a/3)52(03)T2(6¥3)J2(013)|da/3 <N, N;®

4.2)

4.3)

(4.4)

4.5)
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Inserting (4.4) and (4.5) into (4.2), we have

Ry (N2, N3) < Lsz (Ngg_lo_zzNggﬂ + N§g+6N§g_10_22)
9w (4.6)
< N;°NJ°LyY .
Thus this proposition follows. m|
Proposition 4.3. Let R3(N,, N3) be defined as in (2.8). We have
1 1 1
IR3(Na, N3)| < 771.32787(1 + n)(1 + 121)2 A% N, > N, ? By B;C,C3 U3 U3 V3 VILY
with A = 0.83372.
Proof. By (2.14) and the definition of &>, we get
1
IR3 (N2, N3) | <(ALy)" f | a(@) f3(@2) fl@2)S *(@2) T* ()| das
0
1
X f | fal@s) fi(@s) fal@:)S *(@) T ()| das
0
11
<771.32787(1 + p)(1 + 122 12N, * N, B, B;C,Cy U U VEVALE.,
Thus this proposition follows. O

By (2.8), Propositions 4.1-4.3, we have

R(N2, V) 2 Ry(Va, Ns) = Rs(Va, No)| + O (N Ny 157
> (0.24812(1 + ) - 771.32787(1 + )1 + 122 A%) Ny * N, ByBsCoC3 URURVAVALE:.

Recall that 4 = 0.83372 in Lemma 2.3, then R (N,, N3) > 0 with k, > 45, which proves Theorem 1.2.
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