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Abstract: Let p1, p2, . . . , p7 be primes. In this paper, we first show that when k1 = 23, every sufficiently
large odd integer can be represented as the sum of one prime square, five prime cubes, one prime
biquadrate and at most k1 powers of 2. We further prove that for k2 = 45, every pair of sufficiently large
odd integers satisfying certain necessary conditions can be represented as a pair of equations involving
one prime square, five prime cubes, one prime biquadrate and at most k2 powers of 2.
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1. Introduction

The Goldbach conjecture concerns the representation of every even integer greater than two as the
sum of two primes, but a direct proof remains unavailable. Researchers have therefore studied various
modified versions of the problem. Among these, Linnik [1, 2] establishes that every sufficiently large
even integer n1 can be expressed as the sum of two primes and at most K1 powers of 2, namely

n1 = p1 + p2 + 2v1 + 2v2 + · · · + 2vK1 . (1.1)

Many scholars have investigated the value of K1, and the minimum acceptable value so far is K1 = 8
established by Pintz and Ruzsa [3].

Besides this linear relationship, the representation of integers as sums of mixed prime powers has also
attracted the attention of many scholars. For instance, Liu [4], Lü and Cai [5] investigated the equations

n2 = p2
1 + p2

2 + p3
3 + p3

4 + p3
5 + p3

6, (1.2)

n3 = p2
1 + p4

2 + p4
3 + · · · + p4

10, (1.3)
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respectively. A natural hybrid problem arises by combining the forms of (1.2) and (1.3), leading to
the equation

n4 = p2
1 + p3

2 + p3
3 + p3

4 + p3
5 + p3

6 + p4
7. (1.4)

However, current techniques remain insufficient to establish the solvability of (1.4) directly. In 2017,
motivated by the works of Linnik, Liu [6] proved that every sufficiently large odd integer N1 can be
expressed as the sum of one prime square, five prime cubes, one prime biquadrate and a bounded number
of powers of 2, i.e.,

N1 = p2
1 + p3

2 + p3
3 + p3

4 + p3
5 + p3

6 + p4
7 + 2v1 + 2v2 + · · · + 2vk1 , (1.5)

where k1 is an unspecified constant. Further references on this topic include [7–10]. In this work,
we provide an explicit bound for k1 resolving the question of solvability for (1.5), as presented in the
following theorem.

Theorem 1.1. For any integer k1 ≥ 23 and every sufficiently large odd integer N1, Eq (1.5) is solvable.

Kong [11] first studied the Eq (1.1) in a extended way. Specifically, Kong [11] considered the
simultaneous representation of every pair of positive even integers B1, B2 with B2 ≫ B1 > B2, in the form{

B1 = p1 + p2 + 2u1 + 2u2 + · · · + 2uK2 ,

B2 = p3 + p4 + 2u1 + 2u2 + · · · + 2uK2 ,
(1.6)

where K2 ≥ 63 is an integer. Note that in the system of equations, the primes p1, p2, p3, p4 are not
necessarily same, while the powers of 2 share the same tuple (u1, u2, . . . , uK2). Subsequently, Kong and
Liu [12] improved this bound to K2 ≥ 34.

We follow the idea of Kong [11] and study the simultaneous representation of every pair of sufficiently
large odd integers N2 and N3 satisfying N2 ≍ N3, in the form{

N2 = p2
1 + p3

2 + p3
3 + p3

4 + p3
5 + p3

6 + p4
7 + 2v1 + 2v2 + · · · + 2vk2 ,

N3 = p2
8 + p3

9 + p3
10 + p3

11 + p3
12 + p3

13 + p4
14 + 2v1 + 2v2 + · · · + 2vk2 .

(1.7)

Our second theorem establishes an explicit bound for k2 that guarantees the solvability of Eq (1.7).

Theorem 1.2. For any integer k2 ≥ 45 and every pair of sufficiently large odd integers N2 and N3 satisfying

N2 ≍ N3, (1.8)

the system (1.7) is solvable.

In this paper, we employ the circle method combined with analytic techniques to establish our
results. The proofs of Theorems 1.1 and 1.2 follow similar arguments, thus we focus on outlining
the strategy for Theorem 1.1. We begin by decomposing the integral representation of the weighted
solution number into the major arcs and minor arcs (see (2.7) below). By carefully computing the
singular integral and the singular series (see Lemmas 2.2 and 3.1 below), we establish a sharp lower
bound for the major arcs contribution (see Proposition 3.1 below). When handling R2(N1), we utilize
integral mean value estimates of exponential sums (see Proposition 3.2 below), which allows us to
exploit the value λ appearing in Lemma 2.3. Combining these with more precise upper bounds for
R3(N1) (see Proposition 3.3 below), we ultimately establish the conclusion of Theorem 1.1.
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Notation. Throughout this paper, we take the following conventions:
· The letters p and k, with or without a subscript, always represent a prime and a positive integer,

respectively.
· The function e(x) is defined as e2πix.
· The letter ϵ represents an arbitrarily small positive constant, which may have different values in

different occurrences.
· M ≍ N means that both N ≪ M and N ≫ M hold.
· i = 1, 2, 3, r = 1, 2, j = 2, 3.

2. Outline and preliminary lemmas

To apply the circle method, we first introduce some symbols. Define the parameters

Pi = N
3

20
i (log Ni)−8, Qi = N

17
20
i , Lr = log2

Nr

log Nr
,

which satisfy the condition
Qi > 2Pi ≥ 2.

For 1 ≤ ai ≤ qi ≤ Pi and (ai, qi) = 1, we define

Mi (ai, qi) =
{
αi ∈ [0, 1] :

∣∣∣∣∣αi −
ai

qi

∣∣∣∣∣ ≤ 1
qiQi

}
. (2.1)

The major arcsMi and the minor arcs mi are defined as

Mi =
⋃

1≤qi≤Pi

⋃
1≤ai≤qi
(ai,qi)=1

Mi (ai, qi) , mi = [0, 1]\Mi, (2.2)

respectively. Observe that for distinct rationals ai
qi
,

a′i
q′i

, we have∣∣∣∣∣∣ai

qi
−

a′i
q′i

∣∣∣∣∣∣ ≥ 1
qiq′i
≥

1
2

(
1

qiPi
+

1
q′i Pi

)
>

1
qiQi

+
1

q′i Qi
.

By combining this inequality with (2.1), it follows thatMi (ai, qi) are mutually disjoint. Then we further
define

M
′ = M2 ×M3 =

{
(α2, α3) ∈ [0, 1]2 : α2 ∈ M2, α3 ∈ M3

}
, m′ = [0, 1]2\M′. (2.3)

Let

Ai =
1
2

((1 − η)Ni)
1
2 , Bi =

1
2

(
ηNi

2

) 1
3

, Ci =
1
2

(
ηNi

2

) 1
4

,

Ui =

(
Ni

16(1 + η)

) 1
3

, Vi = U
5
6
i ,

(2.4)

where η is a sufficiently small positive constant. We shall consider the sums

R(N1) =
∑

N1=p2
1+p3

2+p3
3+p3

4+p3
5+p3

6+p4
7+2v1+2v2+···+2vk1

(log p1)(log p2) · · · (log p7), (2.5)
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which is the weighted number of solutions of (1.5) in (p1, p2, . . . , p7, v1, v2, . . . , vk1) such that

A1 < p1 ≤ 2A1, B1 < p2 ≤ 2B1, U1 < p3, p4 ≤ 2U1, V1 < p5, p6 ≤ 2V1,

C1 < p7 ≤ 2C1, 4 ≤ v1, v2, . . . , vk1 ≤ L1;

R(N2,N3) =
∑

N2=p2
1+p3

2+p3
3+p3

4+p3
5+p3

6+p4
7+2v1+2v2+···+2vk2

N3=p2
8+p3

9+p3
10+p3

11+p3
12+p3

13+p4
14+2v1+2v2+···+2vk2

(log p1)(log p2) · · · (log p14), (2.6)

which is the weighted number of solutions of (1.7) in (p1, p2, . . . , p14, v1, v2, . . . , vk2) such that

A2 < p1 ≤ 2A2, B2 < p2 ≤ 2B2, U2 < p3, p4 ≤ 2U2, V2 < p5, p6 ≤ 2V2, C2 < p7 ≤ 2C2,

A3 < p8 ≤ 2A3, B3 < p9 ≤ 2B3, U3 < p10, p11 ≤ 2U3, V3 < p12, p13 ≤ 2V3, C3 < p14 ≤ 2C3,

4 ≤ v1, v2, . . . , vk2 ≤ L2.

Let λ be a constant to be determined later. We define the following exponential sums

f2(αi) =
∑

Ai<p≤2Ai

(log p)e(p2αi), f3(αi) =
∑

Bi<p≤2Bi

(log p)e(p3αi),

S (αi) =
∑

Ui<p≤2Ui

(log p)e
(
p3αi

)
, T (αi) =

∑
Vi<p≤2Vi

(log p)e
(
p3αi

)
,

f4(αi) =
∑

Ci<p≤2Ci

(log p)e(p4αi), Gr (αi) =
∑

4≤v≤Lr

e (2vαi) ,

and the exceptional sets

E1λ = {α1 ∈ [0, 1] : |G1(α1)| ≥ λL1} , E2λ =
{
(α2, α3) ∈ [0, 1]2 : |G2(α2 + α3)| ≥ λL2

}
.

By (2.2), (2.3), (2.5), (2.6) and orthogonality, we have

R(N1) =


∫
M1

+

∫
m1∩E1λ

+

∫
m1\E1λ

 f2(α1) f3(α1) f4(α1)S 2(α1)T 2(α1)Gk1
1 (α1)e(−α1N1)dα1

:=R1(N1) + R2(N1) + R3(N1)

(2.7)

and

R(N2,N3) =


"
M′

+

"
m′∩E2λ

+

"
m′\E2λ

 f2(α2) f3(α2) f4(α2)S 2(α2)T 2(α2) f2(α3) f3(α3)

× f4(α3)S 2(α3)T 2(α3)Gk2
2 (α2 + α3) e (−α2N2 − α3N3) dα2dα3

:=R1 (N2,N3) + R2 (N2,N3) + R3 (N2,N3) .

(2.8)

Let l be a positive integer throughout this section. Let also

Cl(q, a) =
q∑

m=1
(m,q)=1

e
(
aml

q

)
,
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A(n, q) =
1
φ7(q)

q∑
a=1

(a,q)=1

C2(q, a)C5
3(q, a)C4(q, a)e

(
−

an
q

)
, (2.9)

S(n) =
∞∑

q=1

A(n, q). (2.10)

Lemma 2.1. LetMi be defined as in (2.2). Then for 2 ≤ ni ≤ Ni, we have∫
M1

f2(α1) f3(α1) f4(α1)S 2(α1)T 2(α1)e(−α1N1)dα1 =
1

1944
S(n1)J(n1) + O

(
N

47
36
1 L−1

1

)
,

∫
M j

f2(α j) f3(α j) f4(α j)S 2(α j)T 2(α j)e(−α jN j)dα j =
1

1944
S(n j)J(n j) + O

(
N

47
36
j L−1

2

)
.

Here S (ni) is defined as (2.10) and satisfies S (ni) ≫ 1 for ni ≡ 1 (mod 2), J (ni) is defined as

J(ni) =
∑

(m1,m2,...,m7)∈D

m−
1
2

1 (m2m3m4m5m6)−
2
3 m−

3
4

7 (2.11)

with

D =

(m1,m2, . . . ,m7) :
m1 + m2 + · · · + m7 = ni, A2

i < m1 ≤ (2Ai)2

B3
i < m2 ≤ (2Bi)3,U3

i < m3,m4 ≤ (2Ui)3

V3
i < m5,m6 ≤ (2Vi)3,C4

i < m7 ≤ (2Ci)4

 ,
and satisfies J (ni) ≍ N

47
36
i .

Proof. The proof of this lemma is a standard application of handling enlarged major arcs in the circle
method (see [13, 14], etc.). Thus we omit its proof here. □

Lemma 2.2. For (1 − η)Ni ≤ ni ≤ Ni, we have

J(ni) ≥ 489.952(1 + η)
1
2 N−

1
2

i BiCiU2
i V2

i .

Proof. Let

D
∗ =

{
(m1,m2, . . . ,m7) :

A2
i < m1 ≤ (2Ai)2, B3

i < m2 ≤ (2Bi)3,U3
i < m3,m4 ≤ 5U3

i
V3

i < m5,m6 ≤ (2Vi)3,C4
i < m7 ≤ (2Ci)4

}
.

For (m1,m2, . . . ,m7) ∈ D∗, we deduce from (1 − η)Ni ≤ ni ≤ Ni that

A2
i < m1 = ni − m2 − m3 − m4 − m5 − m6 − m7 ≤ (2Ai)2.

Thus D∗ is a subset of D. Then by (2.11), we have

J(ni) ≥(1 + η)
1
2 N−

1
2

i

∑
B3

i <m2≤(2Bi)3

m−
2
3

2

∑
U3

i <m3≤5U3
i

m−
2
3

3

∑
U3

i <m4≤5U3
i

m−
2
3

4

×
∑

V3
i <m5≤(2Vi)3

m−
2
3

5

∑
V3

i <m6≤(2Vi)3

m−
2
3

6

∑
C4

i <m7≤(2Ci)4

m−
3
4

7

≥3 × 3(
3√
5 − 1) × 3(

3√
5 − 1) × 3 × 3 × 4(1 + η)

1
2 N−

1
2

i BiCiU2
i V2

i

≥489.952(1 + η)
1
2 N−

1
2

i BiCiU2
i V2

i ,
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where
∑

a<m≤b m−c is well approximated by the corresponding integral
∫ b

a
x−cdx. Thus we complete the

proof of the lemma. □

Lemma 2.3. Let meas(Erλ) denote the Lebesgue measure of Erλ. Then for λ = 0.83372, we have

meas (Erλ) ≪ N−
2
3−10−20

r .

Proof. This lemma follows from Lemma 5 and (3.10) in [15]. □

Remark. The above lemma was established through an optimized implementation of the Pintz and
Ruzsa algorithm [16] by Languasco and Zaccagnini [15], which is sharper than the one of Heath-Brown
and Puchta [17]. The refined algorithm achieves improvements to existing results, particularly enhancing
the findings in Huang’s [18] and Lü’s [19] works.

The complete algorithmic implementation is accessible in the code ocean capsule [20] of Professor
Alessandro Languasco’s homepage.

Lemma 2.4. We have ∫ 1

0
| f 2

2 (αi) f 2
3 (αi) f 2

4 (αi)|dαi ≤ 6.52263(1 + 12η)
1
2 B2

i C
2
i .

Proof. Following the argument in Section 4 of [9], we have∫ 1

0
| f 2

2 (αi) f 2
3 (αi) f 2

4 (αi)|dαi ≤ 2
log 2Ai

log D1D2
(1 + o(1))S(4)J(4)

≤ 8 log 2(1 + o(1))S(4)J(4),
(2.12)

where D1 = A
1
6−δ

i , D2 =
√

D1 with a positive constant δ < 10−100, S(4) is defined by (3.3) in [9], and

J(4) =
1

22 × 32 × 42

∑
m1+m2+m3=n1+n2+n3

A2
i <m1,n1≤(2Ai)2

B3
i <m2,n2≤(2Bi)3

C4
i <m3,n3≤(2Ci)4

(m1n1)
1
2−1(m2n2)

1
3−1(m3n3)

1
4−1.

Noting that

m1 = n1 + n2 + n3 − m2 − m3

≥ n1 + B3
i +C4

i − (2Bi)3 − (2Ci)4

≥ (1 − 12η)n1,

and we have

J(4) ≤
1

22 × 32 × 42

∑
m1+m2+m3=n1+n2+n3

A2
i <m1,n1≤(2Ai)2

B3
i <m2,n2≤(2Bi)3

C4
i <m3,n3≤(2Ci)4

(1 − 12η)−
1
2 n−1

1 (m2n2)
1
3−1(m3n3)

1
4−1

≤
2 log 2

22 × 32 × 42 (3Bi)2(4Ci)2(1 + 12η)
1
2 (1 + o(1))

≤

(
log 2

2
+ o(1)

)
(1 + 12η)

1
2 B2

i C
2
i .
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This in combination with (2.12) and Lemma 3.1 in [9] leads to∫ 1

0
| f 2

2 (αi) f 2
3 (αi) f 2

4 (αi)|dαi ≤ 6.52263(1 + 12η)
1
2 B2

i C
2
i ,

which completes the proof of the lemma. □

Lemma 2.5. We have ∫ 1

0
|S 4(αi)T 4(αi)|dαi ≤ 7.39088UiV4

i , (2.13)

∫ 1

0
| f2(αi) f3(αi) f4(αi)S 2(αi)T 2(αi)|dαi ≤ 27.77279(1 + η)

1
2 (1 + 12η)

1
4 N−

1
2

i BiCiU2
i V2

i . (2.14)

Proof. The estimate (2.13) is Lemma 3.6 in [21]. Next, we give the proof of the estimate (2.14). By
Cauchy’s inequality, (2.4), (2.13) and Lemma 2.4 we have∫ 1

0
| f2(αi) f3(αi) f4(αi)S 2(αi)T 2(αi)|dαi ≤

(∫ 1

0
| f 2

2 (αi) f 2
3 (αi) f 2

4 (αi)|dαi

) 1
2
(∫ 1

0
|S 4(αi)T 4(αi)|dαi

) 1
2

≤ 27.77279(1 + η)
1
2 (1 + 12η)

1
4 N−

1
2

i BiCiU2
i V2

i .

Thus the lemma follows. □

Lemma 2.6. We have ∫
mi

| f
9
4

2 (αi) f
9
2

3 (αi)|dαi ≪ N
19
12+ϵ

i , (2.15)∫ 1

0
| f 2

2 (αi) f 4
4 (αi)|dαi ≪ N1+ϵ

i . (2.16)

Proof. The estimate (2.15) is Lemma 3.1 in [22]. By Hua’s well-known theorem on mean value
estimates for exponential sums [23], we can get the estimate (2.16). □

3. The proof of Theorem 1.1

Lemma 3.1. Let Ξ(N1, k1) = {n1 ≥ 2 : n1 = N1 − 2v1 − 2v2 − · · · − 2vk1 , 4 ≤ v1, v2, . . . , vk1 ≤ L1} with
k1 ≥ 20. Then for N1 ≡ 1 (mod 2), we have

∑
n1∈Ξ(N1,k1)

n1≡1 (mod 2)

S (n1) ≥ 1.97616Lk1
1 .

Proof. For k ≥ 2, by (2.9) we have
A(ni, pk) = 0

and A(ni, p) is multiplicative. Then

S(ni) =
∏
p≥2

(1 + A(ni, p)). (3.1)

Electronic Research Archive Volume 33, Issue 12, 7902–7917.
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For p = 2, we have

1 + A(ni, 2) =

0, ni ≡ 0 (mod 2),
2, ni ≡ 1 (mod 2).

(3.2)

For 3 ≤ p ≤ 200, with help of a mathematical software, we can get

1 + A(ni, 3) ≥ 0.9375, 1 + A(ni, 7) ≥ 0.704861, 1 + A(ni, 13) ≥ 0.926757

and
(1 + A(ni, 5))(1 + A(ni, 11))

∏
17≤p≤200

(1 + A(ni, p)) ≥ 0.99045. (3.3)

For p ≥ 200 and p ≡ 1 (mod 3), we have

1 + A(ni, p) ≥ 1 −

p−1∑
a=1
|C2(p, a)C5

3(p, a)C4(p, a)|

(p − 1)7 ≥ 1 −
(
√

p + 1)(2
√

p + 1)5(3
√

p + 1)
(p − 1)6 ,

(3.4)

where the elementary estimate |Cl(p, a)| ≤ (l − 1)
√

p + 1 are used. For p ≥ 200, if p ≡ 2 (mod 3) and
(a, p) = 1, we can deduce that C3(p, a) = −1. Therefore, we have

1 + A(ni, p) ≥ 1 −

p−1∑
a=1
|C2(p, a)C4(p, a)|

(p − 1)7 ≥ 1 −
(
√

p + 1)(3
√

p + 1)
(p − 1)6 . (3.5)

By (3.4) and (3.5), we again apply a mathematical software and get

∏
200≤p<106

(1 + A(ni, p)) ≥
∏

200≤p<106

p≡1 (mod 3)

(
1 −

(
√

p + 1)(2
√

p + 1)5(3
√

p + 1)
(p − 1)6

)

×
∏

200≤p<106

p≡2 (mod 3)

(
1 −

(
√

p + 1)(3
√

p + 1)
(p − 1)6

)

≥0.99789,

(3.6)

∏
p≥106

(1 + A(ni, p)) ≥
∏
p≥106

(
1 −

(
√

p + 1)(2
√

p + 1)5(3
√

p + 1)
(p − 1)6

)

≥
∏
p≥106

(
1 −

1
(p − 1)2

)17

≥ 0.99998.

(3.7)

From (3.3), (3.6) and (3.7), we have

(1 + A(ni, 5))(1 + A(ni, 11))
∏
p≥17

(1 + A(ni, p)) ≥ 0.98834 := C. (3.8)
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Let q = 3 × 7 × 13 = 273, by (3.1), (3.2) and (3.8), we get∑
n∈Ξ(N1,k1)

n1≡1 (mod 2)

S (n1) ≥ 2C
∑

n1∈Ξ(N1,k1)
n1≡1 (mod 2)

∏
p=3,7,13

(1 + A (n1, p))

≥ 2C
∑

1≤h≤q

∏
p=3,7,13

(1 + A(h, p))
∑

n1∈Ξ(N1,k1)
n1≡1 (mod 2)
n1≡h (mod q)

1. (3.9)

To estimate the innermost sum at the right side of (3.9), we take a similar argument to Lemma 4.4
in [24]. We can deduce that

S :=
∑

n1∈Ξ(N1,k1)
n1≡1 (mod 2)
n1≡ j (mod q)

1 =
(

L1

δ(q)
+ O(1)

)k1 ∑
1≤v1,v2,...,vk1≤δ(q)

2v1+2v2+···+2vk1≡N−h (mod q)

1,

where δ(q) denotes the smallest positive integer δ such that 2δ ≡ 1 (mod q). Noting that

S =
1
q

(
L1

δ(q)
+ O(1)

)k1 q−1∑
t=0

e
(
t(N − h)

q

)
θk1(t),

we get

S ≥
1
q

(
L1

δ(q)
+ O(1)

)k1
δ(q)k1 − (q − 1)

(
max

0<t≤q−1
|θ(t)|

)k1


≥
Lk1

1

q

1 − (q − 1)

 max
0<t≤q−1

|θ(t)|

δ(q)


k1
 + O

(
Lk1−1

1

)
,

where θ(t) =
∑

1≤s≤δ(q) e
(

t2s

q

)
. Recalling the definition of δ(q), we have

δ(q) = 12 and max
0<t≤q−1

|θ(t)| ≈ 6.

Therefore, we can get
S ≥ 3.66205 × 10−3Lk1

1 . (3.10)

From (3.9) and ∑
1≤h≤p

(1 + A(h, p)) = p +
∑

1≤h≤p

A(h, p) = p,

we have ∑
n1∈Ξ(N1,k1)

n1≡1 (mod 2)

S (n1) ≥ 2 × 3.66205 × 10−3CqLk1
1 ≥ 1.97616Lk1

1 ,

which completes the proof of this lemma. □

Proposition 3.1. Let R1(N1) be defined as in (2.7). We have

R1(N1) ≥ 0.49805(1 + η)
1
2 N−

1
2

1 B1C1U2
1V2

1 Lk1
1 + O

(
N

47
36
1 Lk1−1

1

)
.
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Proof. Let Ξ(N1, k1) be defined as in Lemma 3.1. We have

Gk1
1 (α1)e(−α1N1)=

∑
4≤v1,v2,...,vk1≤L1

e((2v1 + 2v2 + · · · + 2vk1 )α1)e(−α1N1)

=
∑

4≤v1,v2,...,vk1≤L1

e((2v1 + 2v2 + · · · + 2vk1 − N1)α1)

=
∑

n1∈Ξ(N1,k1)
n1≡1 (mod 2)

e(−n1α1).

We deduce from Lemmas 2.1, 2.2 and 3.1 that

R1(N1) ≥
1

1944

∑
n1∈Ξ(N1,k1)

n1≡1 (mod 2)

(
S(n1)J(n1) + O

(
N

47
36
1 L−1

1

))

≥0.49805(1 + η)
1
2 N−

1
2

1 B1C1U2
1V2

1 Lk1
1 + O

(
N

47
36
1 Lk1−1

1

)
.

Thus this proposition follows. □

Proposition 3.2. Let R2(N1) be defined as in (2.7). We have

R2(N1) ≪ N
47
36
1 Lk1−1

1 .

Proof. By the trivial bound G1(α1) ≪ L1, Hölder’s inequality, (2.4), (2.13), (2.15), (2.16) and Lemma
2.3, we have

R2 (N1) ≪Lk1
1

(∫
m1

| f
9
4

2 (α1) f
9
2

3 (α1)|dα1

) 2
9
(∫ 1

0
| f 2

2 (α1) f 4
4 (α1)|dα1

) 1
4

×

(∫ 1

0
|S 4(α1)T 4(α1)|dα1

) 1
2
(∫

E1λ

1dα1

) 1
36

≪N
47
36+

1
54+ϵ

1 (meas(E1λ))
1

36 Lk1
1

≪N
47
36
1 Lk1−1

1 .

Thus this proposition follows. □

Proposition 3.3. Let R3(N1) be defined as in (2.7). We have

|R3(N1)| ≤ 27.77279(1 + η)
1
2 (1 + 12η)

1
4λk1 N−

1
2

1 B1C1U2
1V2

1 Lk1
1

with λ = 0.83372.

Proof. By (2.14) and the definition of E1λ, we get

|R3 (N1) | ≤(λL1)k1

∫ 1

0
| f2(α1) f3(α1) f4(α1)S 2(α1)T 2(α1)|dα1

≤27.77279(1 + η)
1
2 (1 + 12η)

1
4λk1 N−

1
2

1 B1C1U2
1V2

1 Lk1
1 .

Thus this proposition follows. □
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By (2.7), Propositions 3.1–3.3, we have

R(N1) ≥ R1(N1) − |R3(N1)| + O
(
N

47
36
1 Lk1−1

1

)
>

(
0.49805(1 + η)

1
2 − 27.77279(1 + η)

1
2 (1 + 12η)

1
4λk1

)
N−

1
2

1 B1C1U2
1V2

1 Lk1
1 .

Recall that λ = 0.83372 in Lemma 2.3, then R (N1) > 0 with k1 ≥ 23, which proves Theorem 1.1.

4. The proof of Theorem 1.2

Lemma 4.1. Let Ξ(N j, k2) = {n j ≥ 2 : n j = N j − 2v1 − 2v2 − · · · − 2vk2 , 4 ≤ v1, v2, . . . , vk2 ≤ L2} with
k2 ≥ 20. Then for N2 ≡ N3 ≡ 1 (mod 2), we have

∑
n2∈Ξ(N2,k2)
n3∈Ξ(N3,k2)

n2≡n3≡1 (mod 2)

S (n2)S (n3) ≥ 3.90624Lk2
2 .

Proof. Let q = 273, by (3.1), (3.2) and (3.8), we get∑
n2∈Ξ(N2,k2)
n3∈Ξ(N3,k2)

n2≡n3≡1 (mod 2)

S (n2)S (n3)

≥ (2C)2
∑

n2∈Ξ(N2,k2)
n3∈Ξ(N3,k2)

n2≡n3≡1 (mod 2)

∏
2≤ j≤3

∏
p j=3,7,13

(
1 + A

(
n j, p j

))

≥ (2C)2
∑

1≤h≤q

∑
n2∈Ξ(N2,k2)
n3∈Ξ(N3,k2)

n2≡n3≡1 (mod 2)
n2≡n3≡h (mod q)

∏
2≤ j≤3

∏
p j=3,7,13

(
1 + A

(
h, p j

))

≥ (2C)2
∑

1≤h≤q

∏
p=3,7,13

(1 + A(h, p))2
∑

n2∈Ξ(N2,k2)
n2≡1 (mod 2)
n2≡h (mod q)

1.

(4.1)

For the innermost sum at the right side of (4.1), by (3.10), we can get∑
n2∈Ξ(N2,k2)

n2≡1 (mod 2)
n2≡h (mod q)

1 ≥ 3.66205 × 10−3Lk2
2 .

From (4.1) and ∑
1≤h≤p

(1 + A(h, p))2 = p + 2
∑

1≤h≤p

A(h, p) +
∑

1≤h≤p

A2(h, p)

= p +
∑

1≤h≤p

A2(h, p)

≥ p,
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we have ∑
n2∈Ξ(N2,k2)
n3∈Ξ(N3,k2)

n2≡n3≡1 (mod 2)

S (n2)S (n3) ≥ 4 × 3.66205 × 10−3C2qLk2
2 ≥ 3.90624Lk2

2 ,

which completes the proof of this lemma. □

Proposition 4.1. Let R1(N2,N3) be defined as in (2.8). We have

R1(N2,N3) ≥ 0.24812(1 + η)N−
1
2

2 N−
1
2

3 B2B3C2C3U2
2U2

3V2
2 V2

3 Lk2
2 + O

(
N

47
36
2 N

47
36
3 Lk2−1

2

)
.

Proof. Let Ξ(N j, k2) be defined as in Lemma 4.1. We have

Gk2
2 (α2 + α3)e(−α2N2 − α3N3)

=
∑

4≤v1,v2,...,vk2≤L2

e((2v1 + 2v2 + · · · + 2vk2 )(α2 + α3))e(−α2N2 − α3N3)

=
∑

4≤v1,v2,...,vk2≤L2

e((2v1 + 2v2 + · · · + 2vk2 − N2)α2)e((2v1 + 2v2 + · · · + 2vk2 − N3)α3)

=
∑

n2∈Ξ(N2,k2)
n3∈Ξ(N3,k2)

n2≡n3≡1 (mod 2)

e(−n2α2)e(−n3α3).

This, in combination with Lemmas 2.1, 2.2 and 4.1, yields

R1(N2,N3) ≥
1

19442

∑
n2∈Ξ(N2,k2)
n3∈Ξ(N3,k2)

n2≡n3≡1 (mod 2)

(
S(n2)J(n2) + O

(
N

47
36
2 L−1

2

)) (
S(n3)J(n3) + O

(
N

47
36
3 L−1

2

))

≥
3.90624 × (489.952)2

19442 (1 + η)N−
1
2

2 N−
1
2

3 B2B3C2C3U2
2U2

3V2
2 V2

3 Lk2
2 + O

(
N

47
36
2 N

47
36
3 Lk2−1

2

)
≥0.24812(1 + η)N−

1
2

2 N−
1
2

3 B2B3C2C3U2
2U2

3V2
2 V2

3 Lk2
2 + O

(
N

47
36
2 N

47
36
3 Lk2−1

2

)
.

Thus this proposition follows. □

Proposition 4.2. Let R2(N2,N3) be defined as in (2.8). We have

R2(N2,N3) ≪ N
47
36
2 N

47
36
3 Lk2−1

2 .

Proof. By (2.2) and (2.3), we obtain

m
′ ⊂ {(α2, α3) : α2 ∈ m2, α3 ∈ [0, 1]} ∪ {(α2, α3) : α2 ∈ [0, 1], α3 ∈ m3} .
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From the trivial bound G2(α1 + α2) ≪ L2, we have

R2 (N2,N3) ≪Lk2
2


"

(α2,α3)∈m2×[0,1]
|G2(α2+α3)|≥λL2

+

"
(α2,α3)∈[0,1]×m3
|G2(α2+α3)|≥λL2


∣∣∣ f2(α2) f3(α2) f4(α2)S 2(α2)T 2(α2)

× f2(α3) f3(α3) f4(α3)S 2(α3)T 2(α3)
∣∣∣dα2dα3

=Lk2
2

( ∫ 1

0

∣∣∣ f2(α2) f3(α2) f4(α2)S 2(α2)T 2(α2)J1(α2)
∣∣∣ dα2

+

∫ 1

0

∣∣∣ f2(α3) f3(α3) f4(α3)S 2(α3)T 2(α3)J2(α3)
∣∣∣ dα3

)
,

(4.2)

where

J1(α2) =
∫
α3∈m3

|G2(α2+α3)|≥λL2

∣∣∣ f2(α3) f3(α3) f4(α3)S 2(α3)T 2(α3)
∣∣∣ dα3,

J2(α3) =
∫
α2∈m2

|G2(α2+α3)|≥λL2

∣∣∣ f2(α2) f3(α2) f4(α2)S 2(α2)T 2(α2)
∣∣∣ dα2.

We apply Hölder’s inequality, (2.13), (2.15), (2.16) and the periodicity of G2(α) and get

J1(α2) ≪
(∫
m2

| f
9
4

2 (α3) f
9
2

3 (α3)|dα3

) 2
9
(∫ 1

0
| f 2

2 (α3) f 4
4 (α3)|dα3

) 1
4

×

(∫ 1

0
|S 4(α3)T 4(α3)|dα3

) 1
2


∫
α3∈m3

|G2(α2+α3)|≥λL2

1dα3


1

36

≪N
47
36+

1
54+ϵ

3


∫

ω∈[α3,1+α3]
|G2(ω)|≥λL2

1 dω


1
36

,

(4.3)

where ω = α2 + α3. This combining with (1.8), (2.4), (2.14) and Lemma 2.3 gives∫ 1

0

∣∣∣ f2(α2) f3(α2) f4(α2)S 2(α2)T 2(α2)J1(α2)
∣∣∣ dα2

≪ N
47
36+

1
54+ϵ

3 (meas (E2λ))
1
36

∫ 1

0

∣∣∣ f2(α2) f3(α2) f4(α2)S 2(α2)T 2(α2)
∣∣∣ dα2

≪ N
47
36−10−22

2 N
47
36+ϵ

3 .

(4.4)

Arguing similarly we can also get∫ 1

0

∣∣∣ f2(α3) f3(α3) f4(α3)S 2(α3)T 2(α3)J2(α3)
∣∣∣ dα3 ≪N

47
36+ϵ

2 N
47
36−10−22

3 . (4.5)
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Inserting (4.4) and (4.5) into (4.2), we have

R2(N2,N3) ≪ Lk2
2

(
N

47
36−10−22

2 N
47
36+ϵ

3 + N
47
36+ϵ

2 N
47
36−10−22

3

)
≪ N

47
36
2 N

47
36
3 Lk2−1

2 .

(4.6)

Thus this proposition follows. □

Proposition 4.3. Let R3(N2,N3) be defined as in (2.8). We have

|R3(N2,N3)| ≤ 771.32787(1 + η)(1 + 12η)
1
2λk2 N−

1
2

2 N−
1
2

3 B2B3C2C3U2
2U2

3V2
2 V2

3 Lk2
2

with λ = 0.83372.

Proof. By (2.14) and the definition of E2λ, we get

|R3 (N2,N3) | ≤(λL2)k2

∫ 1

0

∣∣∣ f2(α2) f3(α2) f4(α2)S 2(α2)T 2(α2)
∣∣∣ dα2

×

∫ 1

0

∣∣∣ f2(α3) f3(α3) f4(α3)S 2(α3)T 2(α3)
∣∣∣ dα3

≤771.32787(1 + η)(1 + 12η)
1
2λk2 N−

1
2

2 N−
1
2

3 B2B3C2C3U2
2U2

3V2
2 V2

3 Lk2
2 .

Thus this proposition follows. □

By (2.8), Propositions 4.1–4.3, we have

R(N2,N3) ≥ R1(N2,N3) − |R3(N2,N3)| + O
(
N

47
36
2 N

47
36
3 Lk2−1

2

)
>

(
0.24812(1 + η) − 771.32787(1 + η)(1 + 12η)

1
2λk2

)
N−

1
2

2 N−
1
2

3 B2B3C2C3U2
2U2

3V2
2 V2

3 Lk2
2 .

Recall that λ = 0.83372 in Lemma 2.3, then R (N2,N3) > 0 with k2 ≥ 45, which proves Theorem 1.2.
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