In this paper, the problem of finite-time control for a group of quadrotor aircraft with an unknown input-saturation structure is investigated. Based on backstepping design, finite-time formation control algorithm is designed. Within the multi-agent systems, leaders are tasked with achieving formation consensus with an external leader. Concurrently, for the followers, a leader-follower consensus controller incorporating the dynamic leader's input is developed utilizing adaptive strategies and low-gain techniques. Thus, a hierarchical formation is achieved where leaders track the exogenous leader, followers maintain consensus with their leaders, accomplishing complex multi-unmanned aerial vehicle formation tasks.
Citation: Wenjie Li, Xiangyong Chen, Ling Ji, Jinming Song, Shuo Li. Finite-time formation control for multi-agent systems with dynamic leader and input saturation[J]. Electronic Research Archive, 2025, 33(12): 7699-7716. doi: 10.3934/era.2025340
In this paper, the problem of finite-time control for a group of quadrotor aircraft with an unknown input-saturation structure is investigated. Based on backstepping design, finite-time formation control algorithm is designed. Within the multi-agent systems, leaders are tasked with achieving formation consensus with an external leader. Concurrently, for the followers, a leader-follower consensus controller incorporating the dynamic leader's input is developed utilizing adaptive strategies and low-gain techniques. Thus, a hierarchical formation is achieved where leaders track the exogenous leader, followers maintain consensus with their leaders, accomplishing complex multi-unmanned aerial vehicle formation tasks.
| [1] |
S. P. Bhat, D. S. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Autom. Control, 43 (1998), 678–682. https://doi.org/10.1109/9.668834 doi: 10.1109/9.668834
|
| [2] |
Y. Tang, Terminal sliding mode control for rigid robots, Automatica, 34 (1998), 51–56. https://doi.org/10.1016/S0005-1098(97)00174-X doi: 10.1016/S0005-1098(97)00174-X
|
| [3] |
S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41 (2005), 1957–1964. https://doi.org/10.1016/j.automatica.2005.07.001 doi: 10.1016/j.automatica.2005.07.001
|
| [4] |
Y. Feng, X. Yu, F. Han, On nonsingular terminal sliding-mode control of nonlinear systems, Automatica, 49 (2013), 1715–1722. https://doi.org/10.1016/j.automatica.2013.01.051 doi: 10.1016/j.automatica.2013.01.051
|
| [5] |
J. A. V. Trejo, J. Ponsart, M. Adam-Medina, G. Valencia-Palomo, Fault-tolerant observer-based leader-following consensus control for LPV multi-agent systems using virtual actuators, Int. J. Syst. Sci., 56 (2025), 1816–1833. https://doi.org/10.1080/00207721.2024.2434895 doi: 10.1080/00207721.2024.2434895
|
| [6] |
Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I Regul. Pap., 57 (2009), 213–224. https://doi.org/10.1109/TCSI.2009.2013929 doi: 10.1109/TCSI.2009.2013929
|
| [7] |
C. Wang, C. Wen, L. Guo, Adaptive consensus control for nonlinear multiagent systems with unknown control directions and time-varying actuator faults, IEEE Trans. Autom. Control, 66 (2021), 4222–4229. https://doi.org/10.1109/TAC.2020.3034209 doi: 10.1109/TAC.2020.3034209
|
| [8] |
S. N. Campos-Martínez, O. Hernández-González, M. E. Guerrero-Sánchez, G. Valencia-Palomo, B. Targui, F. López-Estrada, Consensus tracking control of multiple unmanned aerial vehicles subject to distinct unknown delays, Machines, 12 (2024), 337. https://doi.org/10.3390/machines12050337 doi: 10.3390/machines12050337
|
| [9] | J. A. V. Trejo, J. C. Ponsart, M. Adam-Medina, G. Valencia-Palomo, D. Theilliol, Distributed observer-based leader-following consensus control for LPV multi-agent systems: Application to multiple VTOL-UAVs formation control, in 2023 International Conference on Unmanned Aircraft Systems, Warsaw, Poland, (2023), 1316–1323. https://doi.org/10.1109/ICUAS57906.2023.10156012 |
| [10] |
F. Jia, J. Liu, C. L. P. Chen, Z. Wu, Z. Liu, Distributed adaptive consensus for nonlinear multi-agent systems under event-triggered communication using a polynomial approach, J. Franklin Inst., 361 (2024), 106656. https://doi.org/10.1016/j.jfranklin.2024.106656 doi: 10.1016/j.jfranklin.2024.106656
|
| [11] |
M. Wu, L. B. Wu, G. F. Cui, Event-triggered adaptive control for consensus tracking of multi-agent systems with input saturations and full-state constraints, J. Math. Anal. Appl., 540 (2024), 128572. https://doi.org/10.1016/j.jmaa.2024.128572 doi: 10.1016/j.jmaa.2024.128572
|
| [12] |
X. Jiang, R. Jiao, B. Li, X. Zhang, H. Yan, Finite-time consensus of second-order multiagent systems with input saturation via hybrid sliding-mode control, IEEE Trans. Autom. Sci. Eng., 22 (2025), 14623–14632. https://doi.org/10.1109/TASE.2025.3559947 doi: 10.1109/TASE.2025.3559947
|
| [13] |
H. Ye, M. Li, C. Yang, W. Gui, Finite-time stabilization of the double integrator subject to input saturation and input delay, IEEE/CAA J. Autom. Sin., 5 (2018), 1017–1024. https://doi.org/10.1109/JAS.2018.7511177 doi: 10.1109/JAS.2018.7511177
|
| [14] |
Z. Zuo, J. Ji, Z. Zhang, Y. Wang, W. Zhang, Consensus of multi-agent systems with asymmetric input saturation over directed graph, IEEE Trans. Circuits Syst. Ⅱ Express Briefs, 70 (2023), 1515–1519. https://doi.org/10.1109/TCSII.2022.3221763 doi: 10.1109/TCSII.2022.3221763
|
| [15] |
J. Wu, L. Huang, Global stabilization of linear systems subject to input saturation and time delays, J. Franklin Inst., 358 (2021), 633–649. https://doi.org/10.1016/j.jfranklin.2020.10.040 doi: 10.1016/j.jfranklin.2020.10.040
|
| [16] |
W. Bai, H. Dong, Z. Zhang, Y. Li, Coordinated time-varying low gain feedback control of high-speed trains under a delayed communication network, IEEE Trans. Intell. Transp. Syst., 23 (2022), 4331–4341. https://doi.org/10.1109/TITS.2020.3043577 doi: 10.1109/TITS.2020.3043577
|
| [17] |
S. Su, Y. Wei, Z. Lin, Stabilization of discrete-time linear systems with an unknown time-varying delay by switched low-gain feedback, IEEE Trans. Autom. Control, 64 (2019), 2069–2076. https://doi.org/10.1109/TAC.2018.2864134 doi: 10.1109/TAC.2018.2864134
|
| [18] |
B. Zhou, Z. Lin, G. R. Duan, $L_{\infty}$ and $L_{2}$ low-gain feedback: Their properties, characterizations and applications in constrained control, IEEE Trans. Autom. Control, 56 (2011), 1030–1045. https://doi.org/10.1109/TAC.2010.2073970 doi: 10.1109/TAC.2010.2073970
|
| [19] |
Z. Li, X. Liu, W. Ren, L. Xie, Distributed tracking control for linear multiagent systems with a leader of bounded unknown input, IEEE Trans. Autom. Control, 58 (2012), 518–523. https://doi.org/10.1109/TAC.2012.2208295 doi: 10.1109/TAC.2012.2208295
|
| [20] |
Z. Wang, M. Chadli, S. X. Ding, A dynamic event-triggered approach for observer-based formation control of multi-agent systems with designable inter-event time, Syst. Control Lett., 195 (2025), 105970. https://doi.org/10.1016/j.sysconle.2024.105970 doi: 10.1016/j.sysconle.2024.105970
|
| [21] |
G. Wang, G. Cheng, W. Wang, L. Xu, Distributed event-based lag consensus formation control for connected and autonomous vehicles, Chaos, Solitons Fractals, 202 (2026), 117446. https://doi.org/10.1016/j.chaos.2025.117446 doi: 10.1016/j.chaos.2025.117446
|
| [22] |
O. A. Ángeles-Ramírez, G. Fernández-Anaya, E. G. Hernández-Martínez, J. González-Sierra, M. Ramírez-Neria, Decentralized formation of multi-agent conformable fractional nonlinear robot systems, Asian J. Control, 26 (2024), 831–844. https://doi.org/10.1002/asjc.3242 doi: 10.1002/asjc.3242
|
| [23] |
C. Li, X. Wang, C. Wei, F. Ren, X. Zong, Z. Zeng, et al., Model-free group formation control of heterogeneous nonlinear multi-agent systems, Sci. China Inf. Sci., 68 (2025), 210209. https://doi.org/10.1007/s11432-025-4587-1 doi: 10.1007/s11432-025-4587-1
|
| [24] |
M. K. Lu, M. F. Ge, Z. C. Yan, T. F. Ding, Z. W. Liu, An integrated decision-execution framework of cooperative control for multi-agent systems via reinforcement learning, Syst. Control Lett., 193 (2024), 105949. https://doi.org/10.1016/j.sysconle.2024.105949 doi: 10.1016/j.sysconle.2024.105949
|
| [25] |
T. F. Ding, S. Gong, M. F. Ge, Z. W. Liu, Z. M. Fang, Performance-guaranteed prescribed-time bipartite consensus of networked Lagrangian agents with bounded inputs and signed digraphs, J. Franklin Inst., 361 (2024), 107217. https://doi.org/10.1016/j.jfranklin.2024.107217 doi: 10.1016/j.jfranklin.2024.107217
|
| [26] |
N. Yang, J. Li, Distributed robust adaptive learning coordination control for high-order nonlinear multi-agent systems with input saturation, IEEE Access, 8 (2020), 9953–9964. https://doi.org/10.1109/ACCESS.2019.2961745 doi: 10.1109/ACCESS.2019.2961745
|
| [27] |
S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358
|
| [28] |
H. Du, W. Zhu, G. Wen, D. Wu, Finite-time formation control for a group of quadrotor aircraft, Aerosp. Sci. Technol., 69 (2017), 609–616. https://doi.org/10.1016/j.ast.2017.07.012 doi: 10.1016/j.ast.2017.07.012
|
| [29] |
J. Sun, Z. Geng, Y. Lv, Z. Li, Z. Ding, Distributed adaptive consensus disturbance rejection for multi-agent systems on directed graphs, IEEE Trans. Control Network Syst., 5 (2016), 629–639. https://doi.org/10.1109/TCNS.2016.2633804 doi: 10.1109/TCNS.2016.2633804
|
| [30] | Z. Lin, Low Gain Feedback, Springer, London, 1999. https://doi.org/10.1007/978-1-4471-0869-3 |
| [31] |
Y. Lv, Z. Li, Z. Duan, J. Chen, Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input, Automatica, 74 (2016), 308–314. https://doi.org/10.1016/j.automatica.2016.08.008 doi: 10.1016/j.automatica.2016.08.008
|