This paper proposes a novel numerical scheme based on an improved charge simulation method for computing conformal mappings of bounded multiply connected domains. The core of the method reformulates the mapping problem into a constraint system constructed via charge simulation. This system is then solved efficiently using the symmetric successive over-relaxation incomplete Cholesky conjugate gradient method, which is particularly well-suited for handling the ill-conditioned systems inherent to such problems. Numerical experiments show that our method achieves significantly higher accuracy and improved convergence rates compared to the conventional Gauss-Seidel iteration. The results confirm the robustness and practical potential of the proposed framework, establishing it as an efficient and reliable tool for computing conformal mappings of domains with high connectivity and complex geometry.
Citation: Jiayao Zhang, Yibin Lu, Yue Shan, Yingzi Wang, Fuming Lai. A new result for numerical conformal mapping of bounded multiply connected domains[J]. Electronic Research Archive, 2025, 33(12): 7717-7735. doi: 10.3934/era.2025341
This paper proposes a novel numerical scheme based on an improved charge simulation method for computing conformal mappings of bounded multiply connected domains. The core of the method reformulates the mapping problem into a constraint system constructed via charge simulation. This system is then solved efficiently using the symmetric successive over-relaxation incomplete Cholesky conjugate gradient method, which is particularly well-suited for handling the ill-conditioned systems inherent to such problems. Numerical experiments show that our method achieves significantly higher accuracy and improved convergence rates compared to the conventional Gauss-Seidel iteration. The results confirm the robustness and practical potential of the proposed framework, establishing it as an efficient and reliable tool for computing conformal mappings of domains with high connectivity and complex geometry.
| [1] |
D. Crowdy, Conformal slit maps in applied mathematics, Anziam J., 53 (2012), 171–189. https://doi.org/10.1017/S1446181112000119 doi: 10.1017/S1446181112000119
|
| [2] |
K. He, J. Chang, D. Pang, B. Sun, Z. Yin, D. Li, Iterative algorithm for the conformal mapping function from the exterior of a roadway to the interior of a unit circle, Arch. Appl. Mech., 92 (2022), 971–991. https://doi.org/10.1007/s00419-021-02087-w doi: 10.1007/s00419-021-02087-w
|
| [3] |
D. Ntalampekos, Rigidity and continuous extension for conformal maps of circle domains, Trans. Am. Math. Soc., 376 (2023), 5221–5239. https://doi.org/10.1090/tran/8923 doi: 10.1090/tran/8923
|
| [4] |
T. Bergamaschi, W. I. Jay, P. R. Oare, Hadronic structure, conformal maps, and analytic continuation, Phys. Rev. D, 108 (2023), 074516, https://doi.org/10.1103/PhysRevD.108.074516 doi: 10.1103/PhysRevD.108.074516
|
| [5] |
G. T. Symm, An integral equation method in conformal mapping, Numer. Math., 9 (1966), 250–258. https://doi.org/10.1007/bf02162088 doi: 10.1007/bf02162088
|
| [6] |
G. T. Symm, Conformal mapping of doubly-connected domains, Numer. Math., 13 (1969), 448–457. https://doi.org/10.1007/bf02163272 doi: 10.1007/bf02163272
|
| [7] |
K. Amano, A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains, J. Comput. Appl. Math., 53 (1994), 353–370. https://doi.org/10.1016/0377-0427(94)90063-9 doi: 10.1016/0377-0427(94)90063-9
|
| [8] |
D. Okano, H. Ogata, K. Amano, M. Sugihara, Numerical conformal mappings of bounded multiply connected domains by the charge simulation method, J. Comput. Appl. Math., 159 (2003), 109–117. https://doi.org/10.1016/s0377-0427(03)00572-7 doi: 10.1016/s0377-0427(03)00572-7
|
| [9] |
K. Amano, D. Okano, A circular and radial slit mapping of unbounded multiply connected domains, JSIAM Lett., 2 (2010), 53–56. https://doi.org/10.14495/jsiaml.2.53 doi: 10.14495/jsiaml.2.53
|
| [10] |
K. Amano, D. Okano, H. Ogata, M. Sugihara, Numerical conformal mappings onto the linear slit domain, Jpn. J. Ind. Appl. Math., 29 (2012), 165–186. https://doi.org/10.1007/s13160-012-0058-0 doi: 10.1007/s13160-012-0058-0
|
| [11] |
M. Nasser, O. Rainio, A. Rasila, M. Vuorinen, T. Wallace, H. Yu, et al., Polycircular domains, numerical conformal mappings, and moduli of quadrilaterals, Adv. Comput. Math., 48 (2022), 58. https://doi.org/10.1007/s10444-022-09975-x doi: 10.1007/s10444-022-09975-x
|
| [12] |
M. M. S. Nasser, A boundary integral equation for conformal mapping of bounded multiply connected regions, Comput. Methods Funct. Theory, 9 (2009), 127–143. https://doi.org/10.1007/bf03321718 doi: 10.1007/bf03321718
|
| [13] |
D. Crowdy, The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains, Proc. R. Soc. A: Math. Phys. Eng. Sci., 461 (2005), 2653–2678. https://doi.org/10.1098/rspa.2005.1480 doi: 10.1098/rspa.2005.1480
|
| [14] |
D. Crowdy, J. Marshall, Conformal mappings between canonical multiply connected domains, Comput. Methods Funct. Theory, 6 (2006), 59–76. https://doi.org/10.1007/BF03321118 doi: 10.1007/BF03321118
|
| [15] |
X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, S. Yau, Genus zero surface conformal mapping and its application to brain surface mapping, IEEE Trans. Med. Imaging, 23 (2004), 949–958. https://doi.org/10.1109/TMI.2004.831226 doi: 10.1109/TMI.2004.831226
|
| [16] |
X. Gu, F. Luo, S. Yau, Computational conformal geometry behind modern technologies, Not. Am. Math. Soc., 67 (2020), 1509–1525. https://doi.org/10.1090/noti2164 doi: 10.1090/noti2164
|
| [17] |
H. Hakula, T. Quach, A. Rasila, The conjugate function method and conformal mappings in multiply connected domains, SIAM J. Sci. Comput., 41 (2019), 1753–1776. https://doi.org/10.1137/17M1124164 doi: 10.1137/17M1124164
|
| [18] |
H. Hakula, A. Rasila, Laplace-beltrami equation and numerical conformal mappings on surfaces, SIAM J. Sci. Comput., 47 (2025), 325–342. https://doi.org/10.1137/24M1656840 doi: 10.1137/24M1656840
|
| [19] |
M. M. S. Nasser, Numerical conformal mapping of multiply connected regions onto the fifth category of koebe's canonical slit regions, J. Math. Anal. Appl., 398 (2013), 729–743. https://doi.org/10.1016/j.jmaa.2012.09.020 doi: 10.1016/j.jmaa.2012.09.020
|
| [20] |
M. M. S. Nasser, Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of koebe's canonical slit domains, J. Math. Anal. Appl., 382 (2011), 47–56. https://doi.org/10.1016/j.jmaa.2011.04.030 doi: 10.1016/j.jmaa.2011.04.030
|
| [21] |
T. Wang, D. Huang, G. Ma, Z. Meng, Y. Li, Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data, Appl. Geophys., 14 (2017), 301–313. https://doi.org/10.1007/s11770-017-0625-x doi: 10.1007/s11770-017-0625-x
|
| [22] | C. Vuik, Krylov subspace solvers and preconditioners, in ESAIM: Proceedings and Surveys, 63 (2018), 1–43. https://doi.org/10.1051/proc/201863001 |
| [23] |
O. Axelsson, A generalized SSOR method, BIT Numer. Math., 12 (1972), 443–467. https://doi.org/10.1007/bf01932955 doi: 10.1007/bf01932955
|
| [24] | H. Hakula, A. Rasila, Y. Zheng, The conjugate function method for surfaces with elaborate topological types, preprint, arXiv: 2509.01978. |