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Abstract: This paper proposes a novel numerical scheme based on an improved charge simulation
method for computing conformal mappings of bounded multiply connected domains. The core of the
method reformulates the mapping problem into a constraint system constructed via charge simulation.
This system is then solved efficiently using the symmetric successive over-relaxation incomplete
Cholesky conjugate gradient method, which is particularly well-suited for handling the ill-conditioned
systems inherent to such problems. Numerical experiments show that our method achieves significantly
higher accuracy and improved convergence rates compared to the conventional Gauss-Seidel iteration.
The results confirm the robustness and practical potential of the proposed framework, establishing it
as an efficient and reliable tool for computing conformal mappings of domains with high connectivity
and complex geometry.
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1. Introduction

Conformal mapping, a crucial technique in complex analysis and geometric processing, has
various practical applications in engineering and science. These include hydrodynamics, engineering
applications, image processing, electromagnetic theory, optics, and quantum mechanics [1,2]. It is
well-known that a conformal mapping function w = f(z) can always be found from bounded multiply
connected domains in the z-plane to canonical slit domains in the w-plane. However, problems in
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practical applications tend to be more complex; we usually use numerical methods to approximate
conformal mapping functions. Various numerical computational methods and applications have been
proposed for conformal mapping functions on multiply connected domains [3, 4]. An integral
equation method for conformal mapping based on Fredholm theory was proposed by Symm [5, 6].
This method can map simply connected domains onto a unit disk, as well as map the exterior of
simply connected domains onto the exterior of a unit disk. Additionally, it can map doubly connected
domains onto concentric annuli. Symm’s method was simplified by Amano [7]. Amano [7] developed
a set of algorithms based on the charge simulation method. The method maps simply connected
domains onto unit disks and doubly connected regions onto concentric rings. Later, the algorithm also
implements conformal mapping of multiply connected regions onto a variety of canonical slit
domains applied to flow simulation problems [8—10]. Nasser et al. [11, 12] developed a unified
method to calculate the conformal mapping functions of five classical Koebe canonical slit domains.
This method, based on a boundary integral equation with a generalized Neumann kernel, is
particularly suitable for solving conformal mapping problems in complex multiply connected
domains. Crowdy [13] derived a generalized Schwarz-Christoffel mapping formula from bounded
multiply connected circular domains to bounded multiply connected polygonal domains. Crowdy and
Marshall [14] constructed explicit analytical formulas for conformal mappings from canonical
multiply connected circular domains to canonical multiply connected slit domains by employing the
Schottky-Klein prime function. Gu et al. [15] developed a universal framework for global conformal
parameterization based on the cohomological structure of holomorphic one-forms, applicable to both
bounded and unbounded surfaces. In subsequent work, Gu et al. [16] expanded their theoretical
framework through additional computational methodologies, including harmonic mapping, Hodge
decomposition, and meromorphic differential methods, with applications spanning computer graphics
and medical imaging domains. Hakula et al. [17] and Hakula and Rasila [18] generalized the
conjugate function method initially to multiply connected planar domains and subsequently to
Riemann surfaces [17, 18].

In Nasser’s approach, while the integral equation is well-conditioned, we typically prefer to avoid
calculating complex integrals [19,20]. Amano’s charge simulation method transforms the conformal
mapping problem into solving a two-dimensional Laplace boundary value problem [10]. First, a set of
charge points is placed outside the problem domain to construct a linear combination of complex
logarithmic functions approximating the conjugate harmonic function. Second, a corresponding
matching point is assigned to each charge point, forming a system of constrained equations satisfying
boundary conditions and regularization requirements. Solving this system determines the charge
distribution and transformation radius. Amano’s charge simulation method does not require the
computation of integrals and uses the maximum modulus principle to evaluate errors, which has the
advantages of short computation times, high computational accuracy, and avoidance of singular
integrals. However, the system of constraint equations constructed by this method is
ill-conditioned [9, 10]. Resolving these constraint equations is crucial for obtaining high accuracy
charges and conformal mapping radius. Wang et al. [21] developed a parallel PCG algorithm and
demonstrated its application to the 3D inversion of gravity-gradiometry data. Therefore, this paper
proposes a new computational algorithm based on the charge simulation method for conformal
mapping of bounded multiply connected domains to circular rings and disks with concentric arcs. The
core contribution of this paper lies in proposing an innovative numerical algorithm based on an
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improved charge simulation method for computing conformal mappings of bounded multiply
connected domains.  This novel algorithm not only stabilizes the solution process for the
ill-conditioned systems in such problems but also significantly enhances computational efficiency and
accuracy. Numerical experiments demonstrate that compared to the traditional Gauss-Seidel iteration
method, this algorithm generates more accurate conformal mappings while substantially reducing the
number of iterations required.

The rest of this paper is organized as follows: Section 2 describes the numerical conformal
mapping of bounded multiply connected domains based on the charge simulation method. In
Section 3, we propose a new algorithm based on the symmetric successive over-relaxation incomplete
Cholesky conjugate gradient (SSOR-ICCG) method for numerical conformal mapping of multiply
connected domains. Section 4 provides a method for configuring charge points and constraint points,
and gives some numerical examples to show the superiority of the developed method. Conclusions are
given in Section 5.

2. The charge simulation method for bounded multiply connected domains

In this section, we introduce the method of numerical conformal mapping from bounded multiply
connected domains onto bounded canonical slit domains [10].

As shown in Figure 1, a bounded multiply connected domain D is bounded by closed Jordan curves
C,Cy,...,C,, and Cy,...,C, are surrounded by C;. Without loss of generality, for the domain €,
assume the mapping function f(z) satisfies the normalizing condition f(v) = 1; for the domain €,,
assume the mapping function f(z) satisfies the normalizing condition f(x) = 0 and f(v) = 1, where
u and v are normalizing points. The curves §,5,,... ,S, are obtained after conformal mapping. The
conformal mapping function w = f(z) maps D to two types of bounded canonical slit domains where
circular slit is unique.

Figure 1. Conformal mappings from bounded multiply connected domains onto bounded
canonical slit domains, where z; and {; are the collection points and the charge points,
respectively.
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The mapping functions onto bounded canonical domains can be expressed as
f@ = (2~ u)e I, (2.1)

where ¥(z) and ¢(z) are conjugate harmonic functions. f(z) should satisfy the boundary condition
lf@l=ronC,l=1,2,...,N. r,r,...,ry are the radii of the circle and the circular slits. Based on
the charge simulation method, ¥/(z) and ¢(z) can be approximated by

N N
U@ +ip(2) ~ V(@) +i0@) = Qo + )| > Qylog(z - &), (2.2)
=1 j=1
where Q) 1s a constant, Q;(I = 1,2,....,N,j = 1,2,...,N;) are charges, and

gl = 1,2,...,N,j = 1,2,...,N;) are charge points taken outside the given domain D. More
precisely, ¢;;(I = 1,2,...,N,j = 1,2,...,N;) are arranged outside bounded by C; and inside the
domain bounded by C,,(m = 2,3,...,N) (see Figure 1).

The approximation of the harmonic function is used to satisfy the collocation boundary conditions:

Y(zm) = —1og |z — ul +1og R, (2.3)

where z,, € C,,,m = 1,2,...,n,k = 1,2,...,N,, and R{,R,,...,Ry are the approximations of
ri,ra,..., Iy, respectively.
From the requirement of single-valuedness of the mapping, we obtain a restriction on ¥(z):

n Ny
av@= 43} 0uurec=d)

Cr =1 j=1

. (2.4)
= ZHZ 0,;=0l=23,....n
j=1

We also require that the approximate mapping function F(z) should be invariant of scaling on the
coordinate system for the problem domain D. From the single-valuedness condition Eq (2.4), we have
N; N

N
Z Qlj =

=1 j=1 j=1

Qlj = —1. (25)

From the normalizing condition f(v) = 1, we have

N N

W) +i®W) = Qo+ Y > Oylog(v - &) = —log(v - u). 2.6)

=1 j=1

Replace Q, with Eq (2.2), therefore:

2= 4

v =4

. 2.7)

N N,
W(2) +id() = —log(v—u) + > " Qj;log

=1 j=1
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From Eq (2.3), we have

N i

N,
Z Z Qjlog

=1 j=1

Zmk — L)
V- 1j

Imk — U
v—u |

—logR,, = —log (2.8)

From Eqgs (2.4), (2.5), and (2.8), we can construct a linear system, called the constraint equations,
for numerical conformal mapping of bounded multiply connected domains based on the method of
simulated charges. Q;;i(l = 1,2,...,N,j=1,2,...,N)) and logR,(I = 1,2,...,N) can be obtained by
solving linear systems, then the approximate conformal mapping function can be expressed by

2= 4
v={j;

N N
F(z) = ¢ uexp Z Z Qjlog . (2.9)

v—u =1 j=1

3. SSOR-ICCG method for numerical conformal mapping of bounded multiply connected
domains

The location and number of charge points have a great influence on the coefficient matrix A of
the constraint equations. For complex multiply connected domains, the condition number cond(A) of
coeflicient matrices is often large. That is to say, the coefficient matrix A is ill-conditioned. Therefore,
it is important to find an effective method to solve the constraint equation to obtain high-precision
charge points and conformal mapping radius. From Eqgs (2.4), (2.5), and (2.8), the constraint equation
can be written as

Ax=b, (3.1

where A € RN**N+3) jg an asymmetric matrix, b € RN**! “and x € R®**! is an unknown for Q;;
and log R,.
Consider the following preconditioned linear equations:

ATAx = ATh. (3.2)

Since A is non-singular, perform incomplete Cholesky factorization on matrix A”A, yielding ATA =
LLT — R, where L is a lower triangular matrix, R is the residual matrix, and M = LLT serves as the
preconditioner matrix. Given that M = LLT ~ ATA, we obtain the preconditioned equivalent system
of equations

Fy=g, (3.3)
where F = L'ATAL™", y = LTx, and g = L™'ATh. The ICCG method proceeds as follows.

1) For ¥x, € R", calculate

ro = ATb — AT Ax,,
7o = L™'r,

po =L
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2) Fork=0,1,2,---, calculate

(P> Fre)
(ATApy, pr) ’
Xk+1 = Xk + Qg Pk,

Foor = 7 —aq L AT Apy.

ay =

3) Calculate

B, = (Fra1s Fr1)
=
(P> i)

Pres1 = L Fsr + Bpr.

B

In the system of Eq (3.3), since matrix AT A is symmetric positive definite and so is F, when M =
LLT approximates AT A more closely, F becomes closer to the identity matrix /. Consequently, the
condition number of F approaches its minimum value of 1, leading to faster convergence of the ICCG
method. In other words, the quality of the decomposition of the preconditioning matrix M directly
affects the convergence behavior of the corresponding ICCG method.

For a symmetric positive definite matrix AT A, we assume the matrix AT A can be decomposed into
ATA =D — Lyry — L%, ,. Then the SSOR preconditioned matrix M is given by

B M (3.4)

=LLT,

,_(D-wLayD? D™'*(D - wL}; ) 35)

V(2 — w) ’ Vw2 — w) ’ '
where D is the diagonal matrix containing the diagonal elements of ATA, L,r, is the strictly negative
lower triangular part of ATA, and w € (0, 2) is the relaxation parameter.

From Eq (25) of [22],
Vi) - 1\
e = xills < 2(%) 1t = xolla (3.6)

a small condition number of F leads to fast convergence, where «,(F') is the condition number of F with
respect to the 2-norm. By applying SSOR preconditioning with M = LL”, the condition number of the
transformed matrix F' becomes approximately equal to the square root of the condition number of the
original coefficient matrix ATA [23].

We integrate the SSOR decomposition method with the ICCG method by incorporating the
factorization results from Eq (3.5), thus obtaining the SSOR-ICCG method [21]. According to
previous analysis, the SSOR-ICCG method for numerical conformal mapping based on the charge
simulation method can be summarized as follows.

In Algorithm 3.1, the parameters xy, N, I[tMax, w, and € are respectively defined as the zero vector,
the number of charge points, the maximum number of iterations, relaxation factor, and error tolerance.
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Algorithm 3.1 The SSOR-ICCG method for numerical conformal mapping.

Require: A, b, xo, N, [tMax, w, €.
Ensure: the approximate conformal mapping function F(z).
1: Give the place of charge points {j; and constraint points z;;

2: Construct the constraint equations Ax = b, calculate ATAx = ATb;
3: Incomplete Cholesky factorization ATA = LLT — R;

4: Calculate L = (D — wLyr))D™'?/ Vw2 - w) , L' = D™*(D — wLl, )/ Vw2 - w);
5. Initialize ro = ATb - ATA.X(), 1’7() = L_ll"(), Po = L_Tf().

6: while k < ItMax and ||x;.; — x¢||, > e do

7. = (R, 7) (AT Apy, po);

8 Xkl = Xg t+ Qi Pis

9 T = F— LT AT Apy;

10: Br = (Faet> T 1)/ (Fis P15

1: prer = LT Fr + Bepis

12: end while

13: Construct the approximate conformal mapping function F(z);

14: return F(z).

4. Numerical examples

In this section, we present the method of numerical conformal mappings from bounded multiply
connected domains onto the bounded canonical slit domains. The experimental environment is
Windows 10, MATLAB R2019a. In the numerical examples, we compare Gauss-Seidel method with
our method. The conformal mapping error is estimated by

E = max ||F(le+1/2)| - Rz| , 4.1)

where z;;.1/2 € C; is the middle point between points z;; and 41, [ = 1,2,3,4,5.

example 4.1. The outer boundary is C; : Iﬁl + I%I = 1, and the inner boundaries are C; : |x — q;| =
dl, |y - bl| = dl, [ = 1,2,3,4,5.

The constraint points z;; on the diamond-shaped outer boundary C; are arranged by

7Y L iposin (&
~ alcos(N1)+1b1s1n(N1)

;= 4.2
! |cos (1’\,—’:)' + ‘sin (1jv_71r) 42

and the charge points are placed by
[ - a;cos (&) +ibjsin (&) w3

’cos (1]\/_7:)| + ‘sin (1’\,—’:)‘ ,
where j € [-Nj, N;]. For the inner boundaries C;(/ = 2, 3,4, 5), the constraint points are determined by

x; = dj,

1 —rye 4.4
Vi =d1(—rl( 1))- (4

1—1’]1\/[
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e
’ a - ’ 4.5)

é’l(%+l) = (QZ’ QZ),

The charge points are placed by

where i = 1,2,--- ,%. In numerical example 4.1, a; = 4, by = 2, a] = 425, b] = 2.2, a, = 0,
as = 165, as = —1.65, as = 121, b2 = b3 = b4 :b5 :0, q> = 43 = {4 = (s :0.99, P2 = p3 =

ps=ps=05,d,=0065d; =d;, =045,ds =025 u=0,v=23,e=107, ItMax = 1000, w = 1.5,
ry = )y = 5, 4 = ()95), and s = 1)),

Figure 2 shows the distribution of charge points, where N; = 64 charge points are placed outside
boundary C;; similarly, N, = N3 = Ny, = Ns = 64 points are placed inside boundaries C,, Cs,
C4, and Cs, respectively. The numerical results are shown in Figure 3 for various values of N =
Ni+Ny;+N3;+Ny+Ns,GS1,GS», GS3,GS 4, and GS 5 represent the error of the Gauss-Seidel method,
and SI,, S, SI;, S 1, and S I5 represent the error of the SSOR-ICCG method. From Figure 3, it is
evident that the conformal mapping error of the proposed method is smaller than that of the Gauss-
Seidel method, which means that this method can be constructed with higher precision approximate
conformal mapping functions F(z).

3+ +  charge points | 4
I I I I I I | | |
-4 -3 -2 -1 0 1 2 3 4

Figure 2. Place of charge points for example 4.1.

Some numerical results are listed in Table 1 for comparison. In Table 1, ItMaxG and ItMaxS are
respectively defined as the maximum number of iterations of the Gauss-Seidel method and the
maximum number of iterations of the SSOR-ICCG method. For N=320, the proposed algorithm
achieved an error of 6.61 x 10~* in 1000 iterations, demonstrating a substantial improvement over the
Gauss-Seidel method, which required 3000 iterations to attain an error of 1.45 x 107!, In Figure 4, the
thick solid lines represent the boundaries, and the thin lines represent the contour lines. By using the
SSOR-ICCG method to calculate the constraint equations to obtain charges Q;;, we then construct the
approximate conformal mapping function F(z). The function F(z) maps the domain of Figure 4 into
circular rings with concentric arcs shown in Figure 5. From Figure 5, the method used in this paper
demonstrates its effectiveness.
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error

10-3 | \‘\. 7

50 100 150 200 250 300 350
number of charge points

Figure 3. Error curves for example 4.1.

Table 1. Comparison of numerical conformal mapping error and iteration
number (example 4.1).

N GS, GS» GS3 GS4 GSs ItMaxG S/, Sk Sk S Sis ItMaxS

40 348x 107" 282x1072 477x102 477x10% 2.80x 1072 687 3.48x 1070 2.82x 1072 4.77x 1072 4.77x 1072 2.80x 1072 70
80 1.74x 107" 1.60x 1072 1.45x 1072 145x1072 1.00x 102 2180 1.74x 107 1.60x 1072 1.45%x 102 1.45x 1072 1.00x 1072 182
120 1.03x 107" 1.06x 1072 8.40x 1073 7.90x 107 6.80x 1073 3000 1.02x 107" 9.80x 1073 8.90x 10 8.90x 107> 6.60x 10> 347
160 6.10x 1072 8.00x 107 4.40x 107 4.10x 1073 5.90x 10 3000 6.12x 1072 6.30x 107 5.80x 107 5.80x 107 450x 1073 715
200 242x1072 1.00x 1072 225x102 141x102 1.00x 1072 3000 351x 1072 420x 1073 3.80x 107 3.40x 107 2.80x 107 1000
240 521x1072 1.58x 1072 349x 1072 298x 1072 1.73x 1072 3000 1.84x 1072 2.80x 107 220x 107 2.70x 1073 2.50x 107 1000
280 6.94x1072 1.93x 1072 439x1072 3.86x 102 2.26x 1072 3000 1.05x 1072 7.69x 10* 1.50x 107 1.50x 107> 9.68 x 10™* 1000
320 5.32x 107" 4.89x1072 2.08x107" 148x 107" 1.45x 107" 3000 6.10x 107 5.65x10™* 1.20x 107 1.10x 1073 6.61x107* 1000

3F ]
ot 4
1t 4
0 i
it T T |
2 s B 4
3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ]
-4 -3 2 1 0 1 2 3 4

Figure 4. The contour lines for example 4.1.
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-0.2 1

0.4

-0.6

-0.8

Figure 5. The image is mapped for example 4.1.

example 4.2. The outer boundary is C, : j—z +Z—Z = 1, and the inner boundaries are C; : {zl|z — zo/| = i},
1=2,3,4,5.

Consider the outer boundary of the ellipse, denoted as C;. The constraint points z;; are arranged by

Z1j = acos (%) + ibsin(%), (4.6)
&1; = 1.5acos (%) + igsin (%) 4.7)

For the inner boundaries C(I = 2,3, 4,5), the constraint points z;; and charge points {;; are determined
by Figure 6,

T /s
2 =200tV (cos (Jﬁ) + isin (JN)), 4.8)
and
i .. [T
&ij = zZoi + By (cos (]N) + 1sin (Jﬁ)) , 4.9)

where j € [-N,N], and 0 < 8 < 1 is a parameter for the charge placement for the inner boundaries
C(l=2,3,4,5).

In numerical example 4.2, a = 3.7, b = 1,8 = 0.5, z0o0 = 1, 203 = —0.8, 204 = 2.5, 205 = —2.5,
Yo=y4=06,y3=ys=05u=0,v=3,e=10"°, ItMax = 2000, and w = 1.5.

Figure 6 shows the distribution of charge points. The numerical results are shown in Figure 7. From
Figure 7, the error of the conformal mapping obtained by this method is significantly smaller than that
of the Gauss-Seidel method.

Electronic Research Archive Volume 33, Issue 12, 7717-7735.



7727

+++++++++H+H+H++H+ by,
iy
Hy

1 Ty

03

°
()
3
°

A

4ot
++. e
+++++++ bbb ++++++++

+  charge points
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error

90 120 150 180 210 240 270 300
number of charge points

Figure 7. Error curves for example 4.2.

In Table 2, for N=300, the error and iteration count for GS; were 2.90 x 10~ and 8000,
respectively, while those for SI; were 1.54 x 10~ and 1605. Our method yields both a significantly
smaller error and requires considerably fewer iterations than the Gauss-Seidel method. In Figure 8,
the thick solid lines represent the boundaries, and the thin lines represent the contour lines. By using
our method to calculate the constraint equations to obtain charges Q,;;, we then construct the
approximate conformal mapping function F(z). The function F(z) maps the domain of Figure 8 into
circular disks with concentric arcs shown in Figure 9. From Figure 9, the method proposed in this
paper validates its effectiveness.

example 4.3. The outer boundary is C; : x> + y* + ay = a+/x? + y*(a > 0), and the inner boundaries
are C; : {zllz — zol = y1}, [ = 2,3,4,5.
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Table 2. Comparison of numerical conformal mapping error and iteration number
(example 4.2).
N GS, GS, GS GS4 GS's ItMaxG SI Sh Sk SI, Sis ItMaxS
90 9.40x 1073 9.70x 107 2.10x 1072 2.50x 107 7.90x 1073 8000 5.80x 1073 1.28x10™* 3.67x10™* 4.52x107° 1.62x107> 2000
120 3.80x 107 9.00x 1073 2.08x1072 6.70x 1073 3.40x 103 8000 1.20x 1073 2.66x107* 6.17x10* 826x 107 3.17x10~° 1160
150 1.20x 1072 1.83x 1072 1.52x 1072 640x 107 1.06x 1072 8000 577x10™* 230x107* 3.68x10™* 523x10° 325x107° 1756
180 2.90x 107 1.29x1072 2.13x1072 570x 10 2.90x 1073 8000 2.81x10™* 256x10™* 5.64x10™* 456x107° 1.54x10° 1605
210 9.90x 107 1.06x 1072 244x 1072 1.06x 102 7.20x 1073 8000 1.38x 107 3.19x107* 4.98x10™* 842x107 8.98x10° 2000
240 220x 1072 2.16x 1072 3.49x 1072 2.07x 1072 1.62x 1072 8000 631x107° 2.60x10™* 573x10™%* 542x107° 326x10° 1837
270 1.33x 107" 6.09%x 1072 6.75%x1072 1.32x107" 1.19x 107! 8000 7.23x107° 2.73x10™* 5.83x10™* 4.86x107° 6.07x107° 1804
300 1.14x 107" 552x 1072 3.62x1072 1.27x107" 922x 102 8000 1.06x10™* 2.78x10™* 6.11x10™* 500x 10~ 7.65x 10~ 1896
25
2
15
-15
-2
-25
-3 2 -1 0 1 2 3
Figure 8. The contour lines for example 4.2.
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Figure 9.
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For the outer boundary, C; consists of a cardioid translated upwards along the y-axis by £ units,

where 8 = % | Ymax + Ymin |» Ymax> and ymin denote the maximum and minimum values of y, respectively.
The constraint points z;; are arranged by:

. .
x;=a (sin(%) - 0.5sin(%)),

. _ (4.10)
yi=a (COS(%) - cosz(%)) + a.
Charge points {;; are distributed over the outer boundary C;, and the position is determined by
. 2i . ;
2, = da (sin(%) - O.SSin(%)) N i(/la (cos(%) - cosz(%)) N a), @.11)

where j € [-N, N], and A > 1 is a parameter for the charge placement for the outer boundary C;.

For the inner boundaries C;( =2,3,4,5), the constraint points z;; and charge points (;; are
determined by Eqs (4.8) and (4.9).

In numerical example 4.3 , 1 = 1.5,a =13, =05,z00 =0, zo3 = 1.2, 204 = —1.2, 205 = —1,
Y2 =05, 73 =ys =5 =03, u=0,v=1.6846, € = 10°°, ItMax = 2000, and w = 1.5.

Similar to Figures 6 and 7, Figure 10 shows the distribution of charge points. The numerical
results are shown in Figure 11. From Figure 11, it is evident that the conformal mapping error of the
proposed method is smaller than that of the Gauss-Seidel method. By using the SSOR-ICCG method
to calculate the constraint equations to obtain the charges Q;;, we then construct the approximate
conformal mapping function F(z).

15F
1r + +
+ +
1 T
+ +
05r + +
+ +
+ F
+ +
0r + +
+ +
+ +
L+ +
050 T +
+ +
+ +
AF o+ +
+ +
+ +
+ +
1.5 + +
+ +
+, o
2 ty +
+++ 4t
257 " +—
+ +
‘ ‘ +++4+++4+++ ‘ charge points
2 - 0 1 2

Figure 10. Place of charge points for example 4.3.

In Table 3. The iteration numbers of the Gauss-Seidel method are larger than those of our method.
In Figure 12, the thick solid lines represent the boundaries, and the thin lines represent the contour
lines. The function F(z) maps the domain of Figure 12 into circular rings with concentric arcs shown
in Figure 13. From Figure 13, the method used in this paper demonstrates its effectiveness.
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error

90 120 150 180 210 240 270 300
number of charge points

Figure 11. Error curves for example 4.3.

Table 3. Comparison of numerical conformal mapping error and iteration number

(example 4.3).

N  GS, GS» GS; GS. GSs ItMaxG ST, Sh Sk S Sis ItMaxS
90 3.41x1072 6.70x 1073 840x 107 1.90x 1072 1.92x 1072 3000 3.63x 1072 7.74x107° 565x107° 4.04x107° 1.65x 107 1348
120 497x 1072 500x 1073 6.60x 1073 2.80x 10 243x 1072 3000 330x 1072 139x10™* 1.05x10™* 7.97x107° 4.04x107 611
150 3.44x 1072 500x 107 7.30x1073 7.20x107° 4.40x 107 3000 2,61 x1072 5.04x107° 298x 107 2.10x 1075 2.02x107° 1906
180 239%x 1072 520x107 540x1073 890x 10 1.11x 1072 3000 250x 1072 1.23x10* 470x 107 126x10™* 1.71 x 10™* 2000
210 1.72x 1072 4.40x1073 1.80x 107 4.80x 10 840x 1073 3000 1.50x 1072 9.12x 107 846x 10 535x 107 1.13x107* 2000
240 237x1072 370x 1073 430x 107 9.70x 10> 8.90x 103 3000 1.85x 1072 136x10™* 8.73x107° 1.69x10™* 226x10* 2000
270 1.69x 1072 320x 1073 440x 1073 540x 103 6.30x 107> 3000 1.20x 1072 1.36x10* 6.52x 107 1.18x10™* 1.80x 10™* 2000
300 2.88x 1072 3.90x 107 440x 1073 240x 107 3.18x 1072 3000 293x1072 1.08x10* 128x10™* 2.65x10™* 833x107 2000
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Figure 12. The contour lines for example 4.3.
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2/3

example 4.4. The outer boundary is C, : x** + y*/* = b*3(b > 0), and the inner boundaries are

Cl : {Z”Z _Z()Zl = '}’l}, l = 2’ 3949 5

This example has been considered for the outer boundary C; of tetracuspid. The constraint points
z;j are arranged by

x; = bsin’ (2L,
fj (4.12)

- = bcos > (=2),
y;j = bcos (N)

and the charge points are placed by
Gy =2 (sin’ G + cos' (D)), (4.13)

where j € [-N, N]. For the inner boundaries C,(I = 2, 3, 4,5), the constraint points z;; and charge points
{;j are determined by Eq (4.8) and (4.9).

In numerical example 4.4, 1 = 1.1,b =3,8=0.5,z0 = 1.1, 203 = —1.1, 204 = 1.1 X1, 295 = —1.1 X1,
Yo=Y3=v4=7v5=0.6,u=0,v=3, =107 ItMax = 2000, and w = 1.5.

Figure 14 shows the distribution of charge points. The numerical results for this example are
shown in Figure 15, and some numerical results are listed in Table 4 for comparison. As can be seen
from Figure 15, our method can achieve higher accuracy compared to the Gauss-Seidel method. In
Figure 16, the thick solid lines represent the boundaries, and the thin lines represent the contour lines.
In Figure 16 and Figure 17, F(z) maps C; onto the unit circle and maps C, and C; onto circular arc
slits of different sizes.
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Figure 16. The contour lines for for example 4.4.
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Figure 17. The image is mapped for example 4.4.

In Table 4, the iteration number of the Gauss-Seidel method is larger than that of our method. Using
the SSOR-ICCG method to solve the constraint equations, we obtain the charges Q;; and construct the
approximate conformal mapping function F(z). This function maps the domain of Figure 16 to circular
disks with concentric arcs. As shown in Figure 17, the method used in this paper is effective.

Table 4. Comparison of numerical conformal mapping error and iteration
number (example 4.4).

N GS, GS» GS3 GS4 GSs ItMaxG S/, Sk Sk S Sis ItMaxS

90 894x1072 1.74x 1072 1.00x 1072 2.12x 1072 7.04x 1072 8000 894x 1072 126x10™* 1.77x10™* 1.78x10™* 2.03x 107 2000
120 6.27x1072 3.06x 1072 6.46x 1072 4.57x 1072 7.15x 1072 8000 627x 1072 1.06x10™* 1.54x10™* 1.85x10™* 1.74x10™* 2000
150 4.11x1072 2.59x 1072 549x 1072 4.32x1072 7.13x 1072 8000 411x1072 1.58x10™* 1.69x10™* 1.88x10™* 2.13x10™* 2000
180 1.34x 107" 7.32x1072 2.85x1072 7.87x1072 1.63x 107" 8000 1.34x 107" 3.71x10™* 542x10™* 471x10™* 438x10™* 2000
210 6.37x1072 1.87x1072 428x1072 1.12x107" 1.32x 107" 8000 637x 1072 3.07x10™* 29x10™* 331x10™* 3.08x107* 2000
240 2.54x1077 1.71x 1070 1.99x 107" 3.13x 107" 1.85x 107" 8000 254x 1070 377x 107 2.92x10™* 3.34x10™* 3.53x10™* 2000
270 538x 107! 3.08x 107! 581x 107" 4.17x 107" 6.67x 107" 8000 538x 1077 2.07x10™* 1.95x10™* 236x10™* 236x 10 2000
300 1.06x 1072 2.10x 1072 220x 1072 1.30x 102 8.60x 107> 8000 1.06x 1072 247 x107* 2.14x10™* 2.52x10™* 2.16x10™* 2000

5. Conclusions

This paper presents an innovative numerical method based on an improved charge simulation
approach for computing conformal mappings of bounded multiply connected domains. At its core,
the method transforms the mapping problem into a constrained system of equations constructed via
the charge simulation method, which is then solved efficiently and stably using the SSOR-ICCG
method for handling ill-conditioned systems. Extensive numerical experiments validate the
superiority of the proposed method. Compared to the traditional Gauss-Seidel method, our algorithm
significantly reduces computational error and greatly improves convergence efficiency, demonstrating
its robustness and practical value. Looking ahead, while the proposed method is not applicable to
conformal mappings of canonical slit domains of the fifth type, identifying alternative effective
approaches to address this limitation represents an important direction for future research.
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Furthermore, more refined error metrics, such as the reciprocal error [24], will be introduced to enable
a comprehensive and rigorous evaluation of mapping accuracy.
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