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Abstract: This paper proposes a novel numerical scheme based on an improved charge simulation
method for computing conformal mappings of bounded multiply connected domains. The core of the
method reformulates the mapping problem into a constraint system constructed via charge simulation.
This system is then solved efficiently using the symmetric successive over-relaxation incomplete
Cholesky conjugate gradient method, which is particularly well-suited for handling the ill-conditioned
systems inherent to such problems. Numerical experiments show that our method achieves significantly
higher accuracy and improved convergence rates compared to the conventional Gauss-Seidel iteration.
The results confirm the robustness and practical potential of the proposed framework, establishing it
as an efficient and reliable tool for computing conformal mappings of domains with high connectivity
and complex geometry.
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1. Introduction

Conformal mapping, a crucial technique in complex analysis and geometric processing, has
various practical applications in engineering and science. These include hydrodynamics, engineering
applications, image processing, electromagnetic theory, optics, and quantum mechanics [1, 2]. It is
well-known that a conformal mapping function w = f (z) can always be found from bounded multiply
connected domains in the z-plane to canonical slit domains in the w-plane. However, problems in
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practical applications tend to be more complex; we usually use numerical methods to approximate
conformal mapping functions. Various numerical computational methods and applications have been
proposed for conformal mapping functions on multiply connected domains [3, 4]. An integral
equation method for conformal mapping based on Fredholm theory was proposed by Symm [5, 6].
This method can map simply connected domains onto a unit disk, as well as map the exterior of
simply connected domains onto the exterior of a unit disk. Additionally, it can map doubly connected
domains onto concentric annuli. Symm’s method was simplified by Amano [7]. Amano [7] developed
a set of algorithms based on the charge simulation method. The method maps simply connected
domains onto unit disks and doubly connected regions onto concentric rings. Later, the algorithm also
implements conformal mapping of multiply connected regions onto a variety of canonical slit
domains applied to flow simulation problems [8–10]. Nasser et al. [11, 12] developed a unified
method to calculate the conformal mapping functions of five classical Koebe canonical slit domains.
This method, based on a boundary integral equation with a generalized Neumann kernel, is
particularly suitable for solving conformal mapping problems in complex multiply connected
domains. Crowdy [13] derived a generalized Schwarz-Christoffel mapping formula from bounded
multiply connected circular domains to bounded multiply connected polygonal domains. Crowdy and
Marshall [14] constructed explicit analytical formulas for conformal mappings from canonical
multiply connected circular domains to canonical multiply connected slit domains by employing the
Schottky-Klein prime function. Gu et al. [15] developed a universal framework for global conformal
parameterization based on the cohomological structure of holomorphic one-forms, applicable to both
bounded and unbounded surfaces. In subsequent work, Gu et al. [16] expanded their theoretical
framework through additional computational methodologies, including harmonic mapping, Hodge
decomposition, and meromorphic differential methods, with applications spanning computer graphics
and medical imaging domains. Hakula et al. [17] and Hakula and Rasila [18] generalized the
conjugate function method initially to multiply connected planar domains and subsequently to
Riemann surfaces [17, 18].

In Nasser’s approach, while the integral equation is well-conditioned, we typically prefer to avoid
calculating complex integrals [19, 20]. Amano’s charge simulation method transforms the conformal
mapping problem into solving a two-dimensional Laplace boundary value problem [10]. First, a set of
charge points is placed outside the problem domain to construct a linear combination of complex
logarithmic functions approximating the conjugate harmonic function. Second, a corresponding
matching point is assigned to each charge point, forming a system of constrained equations satisfying
boundary conditions and regularization requirements. Solving this system determines the charge
distribution and transformation radius. Amano’s charge simulation method does not require the
computation of integrals and uses the maximum modulus principle to evaluate errors, which has the
advantages of short computation times, high computational accuracy, and avoidance of singular
integrals. However, the system of constraint equations constructed by this method is
ill-conditioned [9, 10]. Resolving these constraint equations is crucial for obtaining high accuracy
charges and conformal mapping radius. Wang et al. [21] developed a parallel PCG algorithm and
demonstrated its application to the 3D inversion of gravity-gradiometry data. Therefore, this paper
proposes a new computational algorithm based on the charge simulation method for conformal
mapping of bounded multiply connected domains to circular rings and disks with concentric arcs. The
core contribution of this paper lies in proposing an innovative numerical algorithm based on an
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improved charge simulation method for computing conformal mappings of bounded multiply
connected domains. This novel algorithm not only stabilizes the solution process for the
ill-conditioned systems in such problems but also significantly enhances computational efficiency and
accuracy. Numerical experiments demonstrate that compared to the traditional Gauss-Seidel iteration
method, this algorithm generates more accurate conformal mappings while substantially reducing the
number of iterations required.

The rest of this paper is organized as follows: Section 2 describes the numerical conformal
mapping of bounded multiply connected domains based on the charge simulation method. In
Section 3, we propose a new algorithm based on the symmetric successive over-relaxation incomplete
Cholesky conjugate gradient (SSOR-ICCG) method for numerical conformal mapping of multiply
connected domains. Section 4 provides a method for configuring charge points and constraint points,
and gives some numerical examples to show the superiority of the developed method. Conclusions are
given in Section 5.

2. The charge simulation method for bounded multiply connected domains

In this section, we introduce the method of numerical conformal mapping from bounded multiply
connected domains onto bounded canonical slit domains [10].

As shown in Figure 1, a bounded multiply connected domain D is bounded by closed Jordan curves
C1,C2, . . . ,Cn, and C2, . . . ,Cn are surrounded by C1. Without loss of generality, for the domain Ω1,
assume the mapping function f (z) satisfies the normalizing condition f (v) = 1; for the domain Ω2,
assume the mapping function f (z) satisfies the normalizing condition f (u) = 0 and f (v) = 1, where
u and v are normalizing points. The curves S 1,S 2,... ,S n are obtained after conformal mapping. The
conformal mapping function w = f (z) maps D to two types of bounded canonical slit domains where
circular slit is unique.

Figure 1. Conformal mappings from bounded multiply connected domains onto bounded
canonical slit domains, where z j and ζ j are the collection points and the charge points,
respectively.
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The mapping functions onto bounded canonical domains can be expressed as

f (z) = (z − u)e(ψ(z)+iϕ(z)), (2.1)

where ψ(z) and ϕ(z) are conjugate harmonic functions. f (z) should satisfy the boundary condition
| f (z)| = rl on Cl, l = 1, 2, . . . ,N. r1, r2, . . . , rN are the radii of the circle and the circular slits. Based on
the charge simulation method, ψ(z) and ϕ(z) can be approximated by

ψ(z) + iϕ(z) ∼ Ψ(z) + iΦ(z) = Q0 +

N∑
l=1

Nl∑
j=1

Ql j log(z − ζl j), (2.2)

where Q0 is a constant, Ql j(l = 1, 2, . . . ,N, j = 1, 2, . . . ,Nl) are charges, and
ζl j(l = 1, 2, . . . ,N, j = 1, 2, . . . ,Nl) are charge points taken outside the given domain D. More
precisely, ζl j(l = 1, 2, . . . ,N, j = 1, 2, . . . ,Nl) are arranged outside bounded by C1 and inside the
domain bounded by Cm(m = 2, 3, . . . ,N) (see Figure 1).

The approximation of the harmonic function is used to satisfy the collocation boundary conditions:

Ψ(zmk) = − log |zmk − u| + log Rm, (2.3)

where zmk ∈ Cm,m = 1, 2, . . . , n, k = 1, 2, . . . ,Nm, and R1,R2, . . . ,RN are the approximations of
r1, r2, . . . , rN , respectively.

From the requirement of single-valuedness of the mapping, we obtain a restriction on Ψ(z):∫
Cl

dΨ(z) =
∫

Cl

d
n∑

m=1

Nm∑
j=1

Qm arg(z − ζm j)

= 2π
Nl∑
j=1

Ql j = 0.l = 2, 3, . . . , n.

(2.4)

We also require that the approximate mapping function F(z) should be invariant of scaling on the
coordinate system for the problem domain D. From the single-valuedness condition Eq (2.4), we have

N∑
l=1

Nl∑
j=1

Ql j =

N1∑
j=1

Q1 j = −1. (2.5)

From the normalizing condition f (v) = 1, we have

Ψ(v) + iΦ(v) = Q0 +

N∑
l=1

Nl∑
j=1

Ql j log(v − ζl j) = − log(v − u). (2.6)

Replace Q0 with Eq (2.2), therefore:

Ψ(z) + iΦ(z) = − log(v − u) +
N∑

l=1

Nl∑
j=1

Ql j log

∣∣∣∣∣∣ z − ζl j

v − ζl j

∣∣∣∣∣∣ . (2.7)
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From Eq (2.3), we have

N∑
l=1

Nl∑
j=1

Ql j log

∣∣∣∣∣∣zmk − ζl j

v − ζl j

∣∣∣∣∣∣ − log Rm = − log
∣∣∣∣∣zmk − u

v − u

∣∣∣∣∣ . (2.8)

From Eqs (2.4), (2.5), and (2.8), we can construct a linear system, called the constraint equations,
for numerical conformal mapping of bounded multiply connected domains based on the method of
simulated charges. Ql j(l = 1, 2, . . . ,N, j = 1, 2, . . . ,Nl) and log Rl(l = 1, 2, . . . ,N) can be obtained by
solving linear systems, then the approximate conformal mapping function can be expressed by

F(z) =
z − u
v − u

exp
N∑

l=1

Nl∑
j=1

Ql j log

∣∣∣∣∣∣ z − ζl j

v − ζl j

∣∣∣∣∣∣ . (2.9)

3. SSOR-ICCG method for numerical conformal mapping of bounded multiply connected
domains

The location and number of charge points have a great influence on the coefficient matrix A of
the constraint equations. For complex multiply connected domains, the condition number cond(A) of
coefficient matrices is often large. That is to say, the coefficient matrix A is ill-conditioned. Therefore,
it is important to find an effective method to solve the constraint equation to obtain high-precision
charge points and conformal mapping radius. From Eqs (2.4), (2.5), and (2.8), the constraint equation
can be written as

Ax = b, (3.1)

where A ∈ R(N+5)×(N+5) is an asymmetric matrix, b ∈ R(N+5)×1, and x ∈ R(N+5)×1 is an unknown for Ql j

and log Rl.
Consider the following preconditioned linear equations:

AT Ax = AT b. (3.2)

Since A is non-singular, perform incomplete Cholesky factorization on matrix AT A, yielding AT A =
LLT − R, where L is a lower triangular matrix, R is the residual matrix, and M = LLT serves as the
preconditioner matrix. Given that M = LLT ≈ AT A, we obtain the preconditioned equivalent system
of equations

Fy = g, (3.3)

where F = L−1AT AL−T , y = LT x, and g = L−1AT b. The ICCG method proceeds as follows.

1) For ∀x0 ∈ R
n, calculate

r0 = AT b − AT Ax0,

r̃0 = L−1r0,

p0 = L−T r̃0.
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2) For k = 0, 1, 2, · · · , calculate

αk =
(r̃k, r̃k)

(AT Apk, pk)
,

xk+1 = xk + αk pk,

r̃k+1 = r̃k − αkL−1AT Apk.

3) Calculate

βk =
(r̃k+1, r̃k+1)

(r̃k, r̃k)
,

pk+1 = L−T r̃k+1 + βk pk.

In the system of Eq (3.3), since matrix AT A is symmetric positive definite and so is F, when M =
LLT approximates AT A more closely, F becomes closer to the identity matrix I. Consequently, the
condition number of F approaches its minimum value of 1, leading to faster convergence of the ICCG
method. In other words, the quality of the decomposition of the preconditioning matrix M directly
affects the convergence behavior of the corresponding ICCG method.

For a symmetric positive definite matrix AT A, we assume the matrix AT A can be decomposed into
AT A = D − LAT A − LT

AT A. Then the SSOR preconditioned matrix M is given by

M =
1

ω(2 − ω)
(D − ωLAT A)D−1(D − ωLT

AT A)

= LLT ,

(3.4)

L =
(D − ωLAT A)D−1/2

√
ω(2 − ω)

, LT =
D−1/2(D − ωLT

AT A)
√
ω(2 − ω)

, (3.5)

where D is the diagonal matrix containing the diagonal elements of AT A, LAT A is the strictly negative
lower triangular part of AT A, and ω ∈ (0, 2) is the relaxation parameter.

From Eq (25) of [22],

∥x − xk∥A ≤ 2
( √

κ2(F) − 1
√
κ2(F) + 1

)k

∥x − x0∥A, (3.6)

a small condition number of F leads to fast convergence, where κ2(F) is the condition number of F with
respect to the 2-norm. By applying SSOR preconditioning with M = LLT , the condition number of the
transformed matrix F becomes approximately equal to the square root of the condition number of the
original coefficient matrix AT A [23].

We integrate the SSOR decomposition method with the ICCG method by incorporating the
factorization results from Eq (3.5), thus obtaining the SSOR-ICCG method [21]. According to
previous analysis, the SSOR-ICCG method for numerical conformal mapping based on the charge
simulation method can be summarized as follows.

In Algorithm 3.1, the parameters x0, N, ItMax, ω, and ϵ are respectively defined as the zero vector,
the number of charge points, the maximum number of iterations, relaxation factor, and error tolerance.
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Algorithm 3.1 The SSOR-ICCG method for numerical conformal mapping.
Require: A, b, x0, N, ItMax, ω, ϵ.
Ensure: the approximate conformal mapping function F(z).

1: Give the place of charge points ζli and constraint points zli;
2: Construct the constraint equations Ax = b, calculate AT Ax = AT b;
3: Incomplete Cholesky factorization AT A = LLT − R;
4: Calculate L = (D − ωLAT A)D−1/2/

√
ω(2 − ω) , LT = D−1/2(D − ωLT

AT A)/
√
ω(2 − ω);

5: Initialize r0 = AT b − AT Ax0, r̃0 = L−1r0, p0 = L−T r̃0.
6: while k < ItMax and ∥xk+1 − xk∥2 > ϵ do
7: αk = (r̃k, r̃k)/(AT Apk, pk);
8: xk+1 = xk + αk pk;
9: r̃k+1 = r̃k − αkL−1AT Apk;

10: βk = (r̃k+1, r̃k+1)/(r̃k, r̃k);
11: pk+1 = L−T r̃k+1 + βk pk;
12: end while
13: Construct the approximate conformal mapping function F(z);
14: return F(z).

4. Numerical examples

In this section, we present the method of numerical conformal mappings from bounded multiply
connected domains onto the bounded canonical slit domains. The experimental environment is
Windows 10, MATLAB R2019a. In the numerical examples, we compare Gauss-Seidel method with
our method. The conformal mapping error is estimated by

El = max
j

∣∣∣|F(zl j+1/2)| − Rl

∣∣∣ , (4.1)

where zl j+1/2 ∈ Cl is the middle point between points zl j and zl j+1, l = 1, 2, 3, 4, 5.

example 4.1. The outer boundary is C1 : | x
a1
| + |

y
b1
| = 1, and the inner boundaries are Cl : |x − al| =

dl, |y − bl| = dl, l = 1, 2, 3, 4, 5.

The constraint points z1 j on the diamond-shaped outer boundary C1 are arranged by

z1 j =
a1cos

(
jπ
N1

)
+ ib1sin

(
jπ
N1

)∣∣∣∣cos
(

jπ
N1

)∣∣∣∣ + ∣∣∣∣sin
(

jπ
N1

)∣∣∣∣ , (4.2)

and the charge points are placed by

ζ1 j =
a∗1cos

(
jπ
N1

)
+ ib∗1sin

(
jπ
N1

)∣∣∣∣cos
(

jπ
N1

)∣∣∣∣ + ∣∣∣∣sin
(

jπ
N1

)∣∣∣∣ , (4.3)

where j ∈ [−N1,N1]. For the inner boundaries Cl(l = 2, 3, 4, 5), the constraint points are determined by
xli = dl,

yli = dl

(
1 − rl(i−1)

1 − rlNl

)
.

(4.4)
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The charge points are placed by 
ζli =

(
1 −

pl

ql

) dl

1 − ri−1
l

1 − rNl
l

 + pl,

ζl( Nl
8 +1) = (ql, ql),

(4.5)

where i = 1, 2, · · · , Nl
8 . In numerical example 4.1, a1 = 4, b1 = 2, a∗1 = 4.25, b∗1 = 2.2, a2 = 0,

a3 = 1.65, a4 = −1.65, a5 = 1.2i, b2 = b3 = b4 = b5 = 0, q2 = q3 = q4 = q5 = 0.99, p2 = p3 =

p4 = p5 = 0.5, d2 = 0.65, d3 = d4 = 0.45, d5 = 0.25, u = 0, v = 3, ϵ = 10−6, ItMax = 1000, ω = 1.5,

r2 = ( 1
2 )

(
8

N2−8

)
, r3 = (1

2 )
(

8
N3−8

)
, r4 = ( 1

2 )
(

8
N4−8

)
, and r5 = ( 1

2 )
(

8
N5−8

)
.

Figure 2 shows the distribution of charge points, where N1 = 64 charge points are placed outside
boundary C1; similarly, N2 = N3 = N4 = N5 = 64 points are placed inside boundaries C2, C3,
C4, and C5, respectively. The numerical results are shown in Figure 3 for various values of N =
N1+N2+N3+N4+N5, GS 1, GS 2, GS 3, GS 4, and GS 5 represent the error of the Gauss-Seidel method,
and S I1, S I2, S I3, S I4, and S I5 represent the error of the SSOR-ICCG method. From Figure 3, it is
evident that the conformal mapping error of the proposed method is smaller than that of the Gauss-
Seidel method, which means that this method can be constructed with higher precision approximate
conformal mapping functions F(z).

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

charge points

Figure 2. Place of charge points for example 4.1.

Some numerical results are listed in Table 1 for comparison. In Table 1, ItMaxG and ItMaxS are
respectively defined as the maximum number of iterations of the Gauss-Seidel method and the
maximum number of iterations of the SSOR-ICCG method. For N=320, the proposed algorithm
achieved an error of 6.61 × 10−4 in 1000 iterations, demonstrating a substantial improvement over the
Gauss-Seidel method, which required 3000 iterations to attain an error of 1.45 × 10−1. In Figure 4, the
thick solid lines represent the boundaries, and the thin lines represent the contour lines. By using the
SSOR-ICCG method to calculate the constraint equations to obtain charges Ql j, we then construct the
approximate conformal mapping function F(z). The function F(z) maps the domain of Figure 4 into
circular rings with concentric arcs shown in Figure 5. From Figure 5, the method used in this paper
demonstrates its effectiveness.
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Figure 3. Error curves for example 4.1.

Table 1. Comparison of numerical conformal mapping error and iteration
number (example 4.1).

N GS 1 GS 2 GS 3 GS 4 GS 5 ItMaxG S I1 S I2 S I3 S I4 S I5 ItMaxS

40 3.48 × 10−1 2.82 × 10−2 4.77 × 10−2 4.77 × 10−2 2.80 × 10−2 687 3.48 × 10−1 2.82 × 10−2 4.77 × 10−2 4.77 × 10−2 2.80 × 10−2 70
80 1.74 × 10−1 1.60 × 10−2 1.45 × 10−2 1.45 × 10−2 1.00 × 10−2 2180 1.74 × 10−1 1.60 × 10−2 1.45 × 10−2 1.45 × 10−2 1.00 × 10−2 182
120 1.03 × 10−1 1.06 × 10−2 8.40 × 10−3 7.90 × 10−3 6.80 × 10−3 3000 1.02 × 10−1 9.80 × 10−3 8.90 × 10−3 8.90 × 10−3 6.60 × 10−3 347
160 6.10 × 10−2 8.00 × 10−3 4.40 × 10−3 4.10 × 10−3 5.90 × 10−3 3000 6.12 × 10−2 6.30 × 10−3 5.80 × 10−3 5.80 × 10−3 4.50 × 10−3 715
200 2.42 × 10−2 1.00 × 10−2 2.25 × 10−2 1.41 × 10−2 1.00 × 10−2 3000 3.51 × 10−2 4.20 × 10−3 3.80 × 10−3 3.40 × 10−3 2.80 × 10−3 1000
240 5.21 × 10−2 1.58 × 10−2 3.49 × 10−2 2.98 × 10−2 1.73 × 10−2 3000 1.84 × 10−2 2.80 × 10−3 2.20 × 10−3 2.70 × 10−3 2.50 × 10−3 1000
280 6.94 × 10−2 1.93 × 10−2 4.39 × 10−2 3.86 × 10−2 2.26 × 10−2 3000 1.05 × 10−2 7.69 × 10−4 1.50 × 10−3 1.50 × 10−3 9.68 × 10−4 1000
320 5.32 × 10−1 4.89 × 10−2 2.08 × 10−1 1.48 × 10−1 1.45 × 10−1 3000 6.10 × 10−3 5.65 × 10−4 1.20 × 10−3 1.10 × 10−3 6.61 × 10−4 1000

-4 -3 -2 -1 0 1 2 3 4
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0

1

2

3

Figure 4. The contour lines for example 4.1.
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Figure 5. The image is mapped for example 4.1.

example 4.2. The outer boundary is C1 : x2

a2 +
y2

b2 = 1, and the inner boundaries are Cl : {z||z − z0l| = γl},
l = 2, 3, 4, 5.

Consider the outer boundary of the ellipse, denoted as C1. The constraint points z1 j are arranged by

z1 j = acos
( jπ

N

)
+ ibsin

( jπ
N

)
, (4.6)

ζ1 j = 1.5acos
( jπ

N

)
+ i

5
3

sin
( jπ

N

)
. (4.7)

For the inner boundaries Cl(l = 2, 3, 4, 5), the constraint points zl j and charge points ζl j are determined
by Figure 6,

zl j = z0l + γl

(
cos

( jπ
N

)
+ isin

( jπ
N

))
, (4.8)

and

ζl j = z0l + βγl

(
cos

( jπ
N

)
+ isin

( jπ
N

))
, (4.9)

where j ∈ [−N,N], and 0 < β < 1 is a parameter for the charge placement for the inner boundaries
Cl(l = 2, 3, 4, 5).

In numerical example 4.2, a = 3.7, b = 1, β = 0.5, z02 = 1, z03 = −0.8, z04 = 2.5, z05 = −2.5,
γ2 = γ4 = 0.6, γ3 = γ5 = 0.5, u = 0, v = 3, ϵ = 10−6, ItMax = 2000, and ω = 1.5.

Figure 6 shows the distribution of charge points. The numerical results are shown in Figure 7. From
Figure 7, the error of the conformal mapping obtained by this method is significantly smaller than that
of the Gauss-Seidel method.
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Figure 6. Place of charge points for example 4.2.
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Figure 7. Error curves for example 4.2.

In Table 2, for N=300, the error and iteration count for GS 1 were 2.90 × 10−3 and 8000,
respectively, while those for S I1 were 1.54 × 10−5 and 1605. Our method yields both a significantly
smaller error and requires considerably fewer iterations than the Gauss-Seidel method. In Figure 8,
the thick solid lines represent the boundaries, and the thin lines represent the contour lines. By using
our method to calculate the constraint equations to obtain charges Ql j, we then construct the
approximate conformal mapping function F(z). The function F(z) maps the domain of Figure 8 into
circular disks with concentric arcs shown in Figure 9. From Figure 9, the method proposed in this
paper validates its effectiveness.

example 4.3. The outer boundary is C1 : x2 + y2 + ay = a
√

x2 + y2(a > 0), and the inner boundaries
are Cl : {z||z − z0l| = γl}, l = 2, 3, 4, 5.
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Table 2. Comparison of numerical conformal mapping error and iteration number
(example 4.2).

N GS 1 GS 2 GS 3 GS 4 GS 5 ItMaxG S I1 S I2 S I3 S I4 S I5 ItMaxS

90 9.40 × 10−3 9.70 × 10−3 2.10 × 10−2 2.50 × 10−3 7.90 × 10−3 8000 5.80 × 10−3 1.28 × 10−4 3.67 × 10−4 4.52 × 10−5 1.62 × 10−5 2000
120 3.80 × 10−3 9.00 × 10−3 2.08 × 10−2 6.70 × 10−3 3.40 × 10−3 8000 1.20 × 10−3 2.66 × 10−4 6.17 × 10−4 8.26 × 10−5 3.17 × 10−5 1160
150 1.20 × 10−2 1.83 × 10−2 1.52 × 10−2 6.40 × 10−3 1.06 × 10−2 8000 5.77 × 10−4 2.30 × 10−4 3.68 × 10−4 5.23 × 10−5 3.25 × 10−5 1756
180 2.90 × 10−3 1.29 × 10−2 2.13 × 10−2 5.70 × 10−3 2.90 × 10−3 8000 2.81 × 10−4 2.56 × 10−4 5.64 × 10−4 4.56 × 10−5 1.54 × 10−5 1605
210 9.90 × 10−3 1.06 × 10−2 2.44 × 10−2 1.06 × 10−2 7.20 × 10−3 8000 1.38 × 10−4 3.19 × 10−4 4.98 × 10−4 8.42 × 10−5 8.98 × 10−5 2000
240 2.20 × 10−2 2.16 × 10−2 3.49 × 10−2 2.07 × 10−2 1.62 × 10−2 8000 6.31 × 10−5 2.60 × 10−4 5.73 × 10−4 5.42 × 10−5 3.26 × 10−5 1837
270 1.33 × 10−1 6.09 × 10−2 6.75 × 10−2 1.32 × 10−1 1.19 × 10−1 8000 7.23 × 10−5 2.73 × 10−4 5.83 × 10−4 4.86 × 10−5 6.07 × 10−5 1804
300 1.14 × 10−1 5.52 × 10−2 3.62 × 10−2 1.27 × 10−1 9.22 × 10−2 8000 1.06 × 10−4 2.78 × 10−4 6.11 × 10−4 5.00 × 10−5 7.65 × 10−5 1896

Figure 8. The contour lines for example 4.2.

Figure 9. The image is mapped for example 4.2.
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For the outer boundary, C1 consists of a cardioid translated upwards along the y-axis by β units,
where β = 1

2 | ymax + ymin |, ymax, and ymin denote the maximum and minimum values of y, respectively.
The constraint points z1 j are arranged by:

x j = a
(
sin(

jπ
N

) − 0.5sin(
2 jπ
N

)
)
,

y j = a
(
cos(

jπ
N

) − cos2(
jπ
N

)
)
+ α.

(4.10)

Charge points ζ1 j are distributed over the outer boundary C1, and the position is determined by

ζ1 j = λa
(
sin(

jπ
N

) − 0.5sin(
2 jπ
N

)
)
+ i

(
λa

(
cos(

jπ
N

) − cos2(
jπ
N

)
)
+ α

)
, (4.11)

where j ∈ [−N,N], and λ > 1 is a parameter for the charge placement for the outer boundary C1.
For the inner boundaries Cl(l = 2, 3, 4, 5), the constraint points zl j and charge points ζl j are

determined by Eqs (4.8) and (4.9).
In numerical example 4.3 , λ = 1.5, a = 1.3, β = 0.5, z02 = 0, z03 = 1.2, z04 = −1.2, z05 = −i,

γ2 = 0.5, γ3 = γ4 = γ5 = 0.3, u = 0, v = 1.6846, ϵ = 10−6, ItMax = 2000, and ω = 1.5.
Similar to Figures 6 and 7, Figure 10 shows the distribution of charge points. The numerical

results are shown in Figure 11. From Figure 11, it is evident that the conformal mapping error of the
proposed method is smaller than that of the Gauss-Seidel method. By using the SSOR-ICCG method
to calculate the constraint equations to obtain the charges Ql j, we then construct the approximate
conformal mapping function F(z).

-2 -1 0 1 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

charge points

Figure 10. Place of charge points for example 4.3.

In Table 3. The iteration numbers of the Gauss-Seidel method are larger than those of our method.
In Figure 12, the thick solid lines represent the boundaries, and the thin lines represent the contour
lines. The function F(z) maps the domain of Figure 12 into circular rings with concentric arcs shown
in Figure 13. From Figure 13, the method used in this paper demonstrates its effectiveness.
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Figure 11. Error curves for example 4.3.

Table 3. Comparison of numerical conformal mapping error and iteration number
(example 4.3).

N GS 1 GS 2 GS 3 GS 4 GS 5 ItMaxG S I1 S I2 S I3 S I4 S I5 ItMaxS

90 3.41 × 10−2 6.70 × 10−3 8.40 × 10−3 1.90 × 10−2 1.92 × 10−2 3000 3.63 × 10−2 7.74 × 10−5 5.65 × 10−5 4.04 × 10−5 1.65 × 10−5 1348
120 4.97 × 10−2 5.00 × 10−3 6.60 × 10−3 2.80 × 10−3 2.43 × 10−2 3000 3.30 × 10−2 1.39 × 10−4 1.05 × 10−4 7.97 × 10−5 4.04 × 10−5 611
150 3.44 × 10−2 5.00 × 10−3 7.30 × 10−3 7.20 × 10−3 4.40 × 10−3 3000 2.61 × 10−2 5.04 × 10−5 2.98 × 10−5 2.10 × 10−5 2.02 × 10−5 1906
180 2.39 × 10−2 5.20 × 10−3 5.40 × 10−3 8.90 × 10−3 1.11 × 10−2 3000 2.50 × 10−2 1.23 × 10−4 4.70 × 10−5 1.26 × 10−4 1.71 × 10−4 2000
210 1.72 × 10−2 4.40 × 10−3 1.80 × 10−3 4.80 × 10−3 8.40 × 10−3 3000 1.50 × 10−2 9.12 × 10−5 8.46 × 10−5 5.35 × 10−5 1.13 × 10−4 2000
240 2.37 × 10−2 3.70 × 10−3 4.30 × 10−3 9.70 × 10−3 8.90 × 10−3 3000 1.85 × 10−2 1.36 × 10−4 8.73 × 10−5 1.69 × 10−4 2.26 × 10−4 2000
270 1.69 × 10−2 3.20 × 10−3 4.40 × 10−3 5.40 × 10−3 6.30 × 10−3 3000 1.20 × 10−2 1.36 × 10−4 6.52 × 10−5 1.18 × 10−4 1.80 × 10−4 2000
300 2.88 × 10−2 3.90 × 10−3 4.40 × 10−3 2.40 × 10−3 3.18 × 10−2 3000 2.93 × 10−2 1.08 × 10−4 1.28 × 10−4 2.65 × 10−4 8.33 × 10−5 2000

Figure 12. The contour lines for example 4.3.
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Figure 13. The image is mapped for example 4.3.

example 4.4. The outer boundary is C1 : x2/3 + y2/3 = b2/3(b > 0), and the inner boundaries are
Cl : {z||z − z0l| = γl}, l = 2, 3, 4, 5.

This example has been considered for the outer boundary C1 of tetracuspid. The constraint points
z1 j are arranged by 

x j = bsin3(
π j
N

),

y j = bcos3(
π j
N

),
(4.12)

and the charge points are placed by

ζ1 j = λb
(
sin3(

π j
N

) + cos3(
π j
N

)
)
, (4.13)

where j ∈ [−N,N]. For the inner boundaries Cl(l = 2, 3, 4, 5), the constraint points zl j and charge points
ζl j are determined by Eq (4.8) and (4.9).

In numerical example 4.4, λ = 1.1, b = 3, β = 0.5, z02 = 1.1, z03 = −1.1, z04 = 1.1× i, z05 = −1.1× i,
γ2 = γ3 = γ4 = γ5 = 0.6, u = 0, v = 3, ϵ = 10−6, ItMax = 2000, and ω = 1.5.

Figure 14 shows the distribution of charge points. The numerical results for this example are
shown in Figure 15, and some numerical results are listed in Table 4 for comparison. As can be seen
from Figure 15, our method can achieve higher accuracy compared to the Gauss-Seidel method. In
Figure 16, the thick solid lines represent the boundaries, and the thin lines represent the contour lines.
In Figure 16 and Figure 17, F(z) maps C1 onto the unit circle and maps C2 and C3 onto circular arc
slits of different sizes.
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Figure 14. Place of charge points for example 4.4.
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Figure 15. Error curves for example 4.4.
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Figure 16. The contour lines for for example 4.4.
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Figure 17. The image is mapped for example 4.4.

In Table 4, the iteration number of the Gauss-Seidel method is larger than that of our method. Using
the SSOR-ICCG method to solve the constraint equations, we obtain the charges Ql j and construct the
approximate conformal mapping function F(z). This function maps the domain of Figure 16 to circular
disks with concentric arcs. As shown in Figure 17, the method used in this paper is effective.

Table 4. Comparison of numerical conformal mapping error and iteration
number (example 4.4).

N GS 1 GS 2 GS 3 GS 4 GS 5 ItMaxG S I1 S I2 S I3 S I4 S I5 ItMaxS

90 8.94 × 10−2 1.74 × 10−2 1.00 × 10−2 2.12 × 10−2 7.04 × 10−2 8000 8.94 × 10−2 1.26 × 10−4 1.77 × 10−4 1.78 × 10−4 2.03 × 10−4 2000
120 6.27 × 10−2 3.06 × 10−2 6.46 × 10−2 4.57 × 10−2 7.15 × 10−2 8000 6.27 × 10−2 1.06 × 10−4 1.54 × 10−4 1.85 × 10−4 1.74 × 10−4 2000
150 4.11 × 10−2 2.59 × 10−2 5.49 × 10−2 4.32 × 10−2 7.13 × 10−2 8000 4.11 × 10−2 1.58 × 10−4 1.69 × 10−4 1.88 × 10−4 2.13 × 10−4 2000
180 1.34 × 10−1 7.32 × 10−2 2.85 × 10−2 7.87 × 10−2 1.63 × 10−1 8000 1.34 × 10−1 3.71 × 10−4 5.42 × 10−4 4.71 × 10−4 4.38 × 10−4 2000
210 6.37 × 10−2 1.87 × 10−2 4.28 × 10−2 1.12 × 10−1 1.32 × 10−1 8000 6.37 × 10−2 3.07 × 10−4 2.9 × 10−4 3.31 × 10−4 3.08 × 10−4 2000
240 2.54 × 10−1 1.71 × 10−1 1.99 × 10−1 3.13 × 10−1 1.85 × 10−1 8000 2.54 × 10−1 3.77 × 10−4 2.92 × 10−4 3.34 × 10−4 3.53 × 10−4 2000
270 5.38 × 10−1 3.08 × 10−1 5.81 × 10−1 4.17 × 10−1 6.67 × 10−1 8000 5.38 × 10−1 2.07 × 10−4 1.95 × 10−4 2.36 × 10−4 2.36 × 10−4 2000
300 1.06 × 10−2 2.10 × 10−2 2.20 × 10−2 1.30 × 10−2 8.60 × 10−3 8000 1.06 × 10−2 2.47 × 10−4 2.14 × 10−4 2.52 × 10−4 2.16 × 10−4 2000

5. Conclusions

This paper presents an innovative numerical method based on an improved charge simulation
approach for computing conformal mappings of bounded multiply connected domains. At its core,
the method transforms the mapping problem into a constrained system of equations constructed via
the charge simulation method, which is then solved efficiently and stably using the SSOR-ICCG
method for handling ill-conditioned systems. Extensive numerical experiments validate the
superiority of the proposed method. Compared to the traditional Gauss-Seidel method, our algorithm
significantly reduces computational error and greatly improves convergence efficiency, demonstrating
its robustness and practical value. Looking ahead, while the proposed method is not applicable to
conformal mappings of canonical slit domains of the fifth type, identifying alternative effective
approaches to address this limitation represents an important direction for future research.
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Furthermore, more refined error metrics, such as the reciprocal error [24], will be introduced to enable
a comprehensive and rigorous evaluation of mapping accuracy.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 12461079) and
the Kunming University of Science and Technology Interdisciplinary Research Project (No. KUST-
xk202025016).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. D. Crowdy, Conformal slit maps in applied mathematics, Anziam J., 53 (2012), 171–189.
https://doi.org/10.1017/S1446181112000119

2. K. He, J. Chang, D. Pang, B. Sun, Z. Yin, D. Li, Iterative algorithm for the conformal mapping
function from the exterior of a roadway to the interior of a unit circle, Arch. Appl. Mech., 92
(2022), 971–991. https://doi.org/10.1007/s00419-021-02087-w

3. D. Ntalampekos, Rigidity and continuous extension for conformal maps of circle domains, Trans.
Am. Math. Soc., 376 (2023), 5221–5239. https://doi.org/10.1090/tran/8923

4. T. Bergamaschi, W. I. Jay, P. R. Oare, Hadronic structure, conformal maps, and analytic
continuation, Phys. Rev. D , 108 (2023), 074516, https://doi.org/10.1103/PhysRevD.108.074516

5. G. T. Symm, An integral equation method in conformal mapping, Numer. Math., 9 (1966), 250–
258. https://doi.org/10.1007/bf02162088

6. G. T. Symm, Conformal mapping of doubly-connected domains, Numer. Math., 13 (1969), 448–
457. https://doi.org/10.1007/bf02163272

7. K. Amano, A charge simulation method for the numerical conformal mapping of interior,
exterior and doubly-connected domains, J. Comput. Appl. Math., 53 (1994), 353–370.
https://doi.org/10.1016/0377-0427(94)90063-9

8. D. Okano, H. Ogata, K. Amano, M. Sugihara, Numerical conformal mappings of bounded
multiply connected domains by the charge simulation method, J. Comput. Appl. Math., 159 (2003),
109–117. https://doi.org/10.1016/s0377-0427(03)00572-7

9. K. Amano, D. Okano, A circular and radial slit mapping of unbounded multiply connected
domains, JSIAM Lett., 2 (2010), 53–56. https://doi.org/10.14495/jsiaml.2.53

10. K. Amano, D. Okano, H. Ogata, M. Sugihara, Numerical conformal mappings onto the linear slit
domain, Jpn. J. Ind. Appl. Math., 29 (2012), 165–186. https://doi.org/10.1007/s13160-012-0058-0

Electronic Research Archive Volume 33, Issue 12, 7717–7735.

https://dx.doi.org/https://doi.org/10.1017/S1446181112000119
https://dx.doi.org/https://doi.org/10.1007/s00419-021-02087-w
https://dx.doi.org/https://doi.org/10.1090/tran/8923
https://dx.doi.org/https://doi.org/10.1103/PhysRevD.108.074516
https://dx.doi.org/https://doi.org/10.1007/bf02162088
https://dx.doi.org/https://doi.org/10.1007/bf02163272
https://dx.doi.org/https://doi.org/10.1016/0377-0427(94)90063-9
https://dx.doi.org/https://doi.org/10.1016/s0377-0427(03)00572-7
https://dx.doi.org/https://doi.org/10.14495/jsiaml.2.53
https://dx.doi.org/https://doi.org/10.1007/s13160-012-0058-0


7735

11. M. Nasser, O. Rainio, A. Rasila, M. Vuorinen, T. Wallace, H. Yu, et al., Polycircular domains,
numerical conformal mappings, and moduli of quadrilaterals, Adv. Comput. Math., 48 (2022), 58.
https://doi.org/10.1007/s10444-022-09975-x

12. M. M. S. Nasser, A boundary integral equation for conformal mapping of bounded
multiply connected regions, Comput. Methods Funct. Theory, 9 (2009), 127–143.
https://doi.org/10.1007/bf03321718

13. D. Crowdy, The Schwarz-Christoffel mapping to bounded multiply connected
polygonal domains, Proc. R. Soc. A: Math. Phys. Eng. Sci., 461 (2005), 2653–2678.
https://doi.org/10.1098/rspa.2005.1480

14. D. Crowdy, J. Marshall, Conformal mappings between canonical multiply connected domains,
Comput. Methods Funct. Theory, 6 (2006), 59–76. https://doi.org/10.1007/BF03321118

15. X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, S. Yau, Genus zero surface conformal mapping
and its application to brain surface mapping, IEEE Trans. Med. Imaging, 23 (2004), 949–958.
https://doi.org/10.1109/TMI.2004.831226

16. X. Gu, F. Luo, S. Yau, Computational conformal geometry behind modern technologies, Not. Am.
Math. Soc., 67 (2020), 1509–1525. https://doi.org/10.1090/noti2164

17. H. Hakula, T. Quach, A. Rasila, The conjugate function method and conformal
mappings in multiply connected domains, SIAM J. Sci. Comput., 41 (2019), 1753–1776.
https://doi.org/10.1137/17M1124164

18. H. Hakula, A. Rasila, Laplace-beltrami equation and numerical conformal mappings on surfaces,
SIAM J. Sci. Comput., 47 (2025), 325–342. https://doi.org/10.1137/24M1656840

19. M. M. S. Nasser, Numerical conformal mapping of multiply connected regions onto the
fifth category of koebe’s canonical slit regions, J. Math. Anal. Appl., 398 (2013), 729–743.
https://doi.org/10.1016/j.jmaa.2012.09.020

20. M. M. S. Nasser, Numerical conformal mapping of multiply connected regions onto the second,
third and fourth categories of koebe’s canonical slit domains, J. Math. Anal. Appl., 382 (2011),
47–56. https://doi.org/10.1016/j.jmaa.2011.04.030

21. T. Wang, D. Huang, G. Ma, Z. Meng, Y. Li, Improved preconditioned conjugate gradient algorithm
and application in 3D inversion of gravity-gradiometry data, Appl. Geophys., 14 (2017), 301–313.
https://doi.org/10.1007/s11770-017-0625-x

22. C. Vuik, Krylov subspace solvers and preconditioners, in ESAIM: Proceedings and Surveys, 63
(2018), 1–43. https://doi.org/10.1051/proc/201863001

23. O. Axelsson, A generalized SSOR method, BIT Numer. Math., 12 (1972), 443–467.
https://doi.org/10.1007/bf01932955

24. H. Hakula, A. Rasila, Y. Zheng, The conjugate function method for surfaces with elaborate
topological types, preprint, arXiv:2509.01978.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 12, 7717–7735.

https://dx.doi.org/https://doi.org/10.1007/s10444-022-09975-x
https://dx.doi.org/https://doi.org/10.1007/bf03321718
https://dx.doi.org/https://doi.org/10.1098/rspa.2005.1480
https://dx.doi.org/https://doi.org/10.1007/BF03321118
https://dx.doi.org/https://doi.org/10.1109/TMI.2004.831226
https://dx.doi.org/https://doi.org/10.1090/noti2164
https://dx.doi.org/https://doi.org/10.1137/17M1124164
https://dx.doi.org/https://doi.org/10.1137/24M1656840
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2012.09.020
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2011.04.030
https://dx.doi.org/https://doi.org/10.1007/s11770-017-0625-x
https://dx.doi.org/https://doi.org/10.1051/proc/201863001
https://dx.doi.org/https://doi.org/10.1007/bf01932955
https://creativecommons.org/licenses/by/4.0

	Introduction
	The charge simulation method for bounded multiply connected domains
	SSOR-ICCG method for numerical conformal mapping of bounded multiply connected domains
	Numerical examples
	Conclusions

