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Abstract: In this paper, the problem of finite-time control for a group of quadrotor aircraft with
an unknown input-saturation structure is investigated. Based on backstepping design, finite-time
formation control algorithm is designed. Within the multi-agent systems, leaders are tasked with
achieving formation consensus with an external leader. Concurrently, for the followers, a leader-follower
consensus controller incorporating the dynamic leader’s input is developed utilizing adaptive strategies
and low-gain techniques. Thus, a hierarchical formation is achieved where leaders track the exogenous
leader, followers maintain consensus with their leaders, accomplishing complex multi-unmanned aerial
vehicle formation tasks.
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1. Introduction

In recent years, the formation control of unmanned aerial vehicles (UAVs) has attracted significant
research interest, driven by their extensive applicability in both civilian and military domains. In
mission-critical environments, it is often imperative to establish a hierarchical architecture where leader
UAVs maintain a formation relative to an exogenous leader, while follower UAVs track these leaders to
facilitate distributed task execution. Prominent applications include cooperative aerial transport of heavy
payloads, which resquires collaborative load distribution, and coordinated strikes against high-value
targets, which require redundancy for effective saturation attacks. From a control-theoretic perspective,
such systems impose substantial challenges.

Up to now, most existing results on formation control for a group of quadrotor aircraft have concern
for asymptotic stability. From the viewpoint of convergence rate, it is desirable for the quadrotors to
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converge as rapidly as possible. In this context, the finite-time control technique introduced in [1],
Bhat and Bernstein lay the theoretical groundwork for continuous finite-time stabilization. Furthermore,
sources [2–4], applied terminal sliding mode control and continuous finite-time controller to rigid
robots, demonstrating its finite-time convergence. In [5], a composite strategy with an observer is
proposed to achieve rejection of perturbations. However, finite-time formation control for multi-agent
systems(MASs) remains underexplored, as the inherent high dimensionality and strong nonlinear
coupling significantly complicate controller synthesis and stability analysis.

The consensus tracking problem has been extensively explored in diverse scenarios. For instance,
[6, 7] examined asymptotic consensus in heterogeneous MASs with unknown gains. Furthermore,
considering practical constraints, [8] addressed the consensus tracking for multiple UAVs subject to
distinct unknown time-varying delays, while [9] proposed a distributed observer-based approach to
mitigate external disturbances and measurement sensor noise. A common limitation in these works,
however, is the premise of an autonomous leader with zero control input. This assumption often fails to
hold in practical applications, such as cooperative tracking of maneuvering targets where leader inputs
are inherently nonzero and time-varying. Therefore, addressing consensus tracking for MASs that is
subject to active leader inputs is imperative.

Input saturation constitutes a ubiquitous constraint in physical control systems, stemming inevitably
from the finite capacity of the controller. Consequently, the consensus problem for MASs subject to
saturation has been extensively investigated [10–14]. Among the proposed methodologies, low-gain
feedback has emerged as a predominant strategy for preserving stability under constraints [15–18].
Alternatively, [19] employed anti-windup compensation to counteract saturation effects, provided that
specific convexity conditions are met. Despite these advancements, the formation control problem for
MASs which is simultaneously subject to input saturation and unknown, nonzero leader inputs remains
an open challenge.

This work investigates formation consensus tracking for linear MASs subject to dynamic leadership
and input saturation. The core challenge lies in achieving finite-time formation for dynamic leaders
under controller saturation constraints. The primary contributions are summarized as follows:

• Distinguished from the asymptotically stable formation protocols studied in [20–23], the dis-
tributed formation control strategy proposed in this paper guarantees that cluster leaders achieve
formation consensus with the exogenous leader in a finite time.
• This study broadens the scope of consensus tracking by addressing the challenging scenario of

dynamic leaders with nonzero and unknown control inputs. Unlike standard approaches that rely
on the restrictive assumption of a pre-determined trajectory leader, we introduce a robust adaptive
compensation mechanism to reject the influence of the leader’s maneuvering dynamics.
• Relative to [24–26], this paper ensures that control commands remain within feasible bounds

while maintaining system stability, thereby bridging the gap between theoretical formation control
and practical engineering implementation.

The remainder of this paper is organized as follows. Section 2 introduces preliminaries and the
quadrotor model. Section 3 presents the design of the finite-time formation controller. In Section 4,
two adaptive consensus tracking protocols are proposed. Section 5 provides a simulation example of
finite-time formation control for a group of quadrotor aircraft. Finally, Section 6 concludes the paper.
Notations: Throughout this paper,ℜn andℜn×n refer to the real vector space of dimension n and the
space of n × n real matrices, respectively. |·| denotes the absolute value and ∥ · ∥ the Euclidean norm of a
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vector, the notation ⊗ is used for the Kronecker product, and abs(·) implies the absolute values of matrix
entries. 1N stands for the N × 1 vector with all elements being 1, and diag{·} signifies a diagonal matrix.
λmin(M̃) and λmax(M̃) represent the minimal and maximal eigenvalues of matrix M̃, tr(X) represents the
trace of a square matrix X respectively.

2. Graph theory and model formulation

2.1. Graph theory

This work employs an undirected graph model to characterize the communication topology of a linear
MAS. The graph is defined as G = (V,E,A), where the node setV = {1, . . . ,N} comprises all agents
in the system, the edge set E = V×V = {(i, j) : i, j ∈ V} describes connectivity between nodes, and the
adjacency matrix isA = [ai j] ∈ RN×N . If (i, j) ∈ E, the ai j = 1 otherwise, ai j = a ji = 0. The Laplacian
matrix L = [li j] ∈ RN×N is shown as lii =

∑N
j=1,i, j ai j, li j = −ai j. The overall undirected topology G

decomposes into M disjoint subgraphs Gs = (Vs,Es,As) for s ∈ (1, 2, . . . ,M), each representing a
cluster within a hierarchical communication framework. The node set V partitions into non-empty
subsets {V1,V2, . . . ,VM}. Each cluster contains exactly one designated leader node while remaining
agents serve as followers. Intra-cluster communication is restricted to adjacent followers, whereas
inter-cluster communication is exclusively managed by leaders.

The undirected graph ḠM+1 with its Laplacian matrix LḠM+1
is used to denote the interaction among

M leaders and the exogenous leader. The system additionally incorporates an exogenous leader l0

with unknown inputs. The communication between leaders and the exogenous dynamic leader for
the M leaders is defined as bi. Specifically, bi = 1 if the i-th leader receives information from the
exogenous dynamic leader; otherwise, bi = 0. Consequently, the leader adjacency matrix is given by
Bc = diag{b1, · · ·, bn}, culminating in the augmented Laplacian L̄ḠM+1

= LḠM+1
+ Bc. As same as above,

the Laplacian matrix consisting of all followers within the subgraph Gs is defined as LGs . A leader
adjacency matrix is defined for each cluster Gs by Bs. Then, its corresponding augmented Laplacian
matrix is LGs = LGs + Bs.

Figure 1. Clustered network.

Figure 1 illustrates a representative configuration comprising three clusters and one exogenous
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dynamic leader, where yellow, red, and blue nodes denote followers, cluster leaders, and the exogenous
leader, respectively. Figure 2 illustrates a common formation pattern between the exogenous leader and
the cluster leaders.

Figure 2. The communication topology graph and the formation pattern.

Assumption 2.1. The communication topology among the M leaders is connected, and there exists at
least one directed path from the leader to the external leader.

2.2. System model

This paper investigates the formation control problem for leaders and the exogenous leader and the
velocity consensus problem for leaders and followers. The position of the aircraft’s center of mass
relative to the inertial coordinate system is represented by (xĩ, yĩ, zĩ)T ∈ R3, ĩ ∈ (l1, . . . , lM, 1, . . . ,N). By
accounting for external aerodynamic effects, the position dynamics of each quadrotor aircraft can be
described by the following equations:


ẍĩ

ÿĩ

z̈ĩ

 = −Kĩ

mĩ


ẋĩ

ẏĩ

żĩ

 +


T ĩ
mĩ

(cos ϕĩ sin θĩ cosψĩ + sin ϕĩ sinψĩ)
T ĩ
mĩ

(cos ϕĩ sin θĩ sinψĩ − sin ϕĩ cosψĩ)
T ĩ
mĩ

cos ϕĩ cos θĩ − g

 . (2.1)

In the dynamical model, the parameter mi corresponds to the aircraft mass, the g represents the
constant gravitational acceleration, the terms Kĩ ∈ R

+ quantify the aerodynamic damping characteristics,
and ϕĩ, θĩ, ψĩ represents the three Euler angles.

2.3. Control objectives

The desired geometric configuration in three-dimensional space is specified by vectors ∆i j ∈ R
3

for i, j ∈ (l1, . . . , lM) where ∆i j = ∆i − ∆ j = [∆i,x,∆i,y,∆i,z]T − [∆ j,x,∆ j,y,∆ j,z]T . One of the objectives
is to devise a distributed control law to achieve finite-time formation control between the leaders and
an exogenous leader. The finite-time formation requirements stipulate that both the desired formation
pattern and the prescribed formation trajectory must be attained within a finite time T ∗ such that for any
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i, j ∈ (l1, . . . , lM)

lim
t→T ∗


xi(t) − x j(t)
yi(t) − y j(t)
zi(t) − z j(t)

 ≡ ∆i j, ∀t ≥ T ∗, (2.2)

and

lim
t→T ∗

1
m

m∑
i=1

[xi(t), yi(t), zi(t)]T ≡ (xd, yd, zd)T , ∀t ≥ T ∗. (2.3)

Another objective of this paper is to design a controller u f (t) for followers f ∈ (1, . . . ,N) that ensures
their states track the leader’s state, satisfying the condition

lim
t→∞
∥x f (t) − xl(t)∥ ≤ h, (2.4)

where h is an arbitrary positive constant, xl is the leader’s position of the corresponding cluster. The
realizability of these control objectives is guaranteed by the following assumptions and lemmas.

2.4. Related definitions and lemmas

This subsection introduces essential definitions and lemmas.

Definition 2.1. Define a saturation function as follows

satα(x) =

sign(x), for |x| > 1,
sigα(x), for |x| ≤ 1,

(2.5)

where α > 0, x ∈ R and the function sigα(x) = sign(x)|x|α, sign(·) denotes the standard signum function.
For followers f ∈ (1, . . . ,N), sat(u f ) = sign(u f )min(|u f |,Υ) where Υ > 0 is the input saturation
threshold for all followers.

Definition 2.2. [27] Consider a system described by ẋ = f (x), where f : U0 → R
n is a continuous

vector field defined on an open neighborhood U0 of the origin, with f (0) = 0. Let R = (r1, r2, . . . , rn)
and a dilation tuple with rq̂ > 0 for q̂ = 1, . . . , n. The vector field f (x) = ( f1(x), . . . , fn(x))⊤ is said to be
homogeneous of degree k with respect to the dilation R if for any ε > 0 and each component fq̂, the
following scaling relation holds: fq̂(εr1 x1, ε

r2 x2, . . . , ε
rn xn) = εk+rq̂ fq̂(x1, x2, . . . , xn), where the degree k

satisfies k > −min{r1, r2, . . . , rn}.

Lemma 2.1. [28] Consider the system ẋ = f (x) + g(x), x ∈ Rm, where f (x) is a continuous
homogeneous vector field of degree k < 0 with respect to the dilation (r1, · · · , rn), and f̂ (x) satisfies
f̂ (0) = 0. Suppose x = 0 is an asymptotically stable equilibrium of the nominal system ẋ = f (x), and
for all x , 0, the perturbation term g(x) satisfies the limit condition:

gp̂(εr1 x1, · · · , ε
rm xm)

εr p̂+k = 0, p̂ = 1, 2, · · · , n. (2.6)

Then x = 0 is locally finite-time stable for the perturbed system. If the system is globally asymptotically
stable in addition to being locally finite-time stable, then it is globally finite-time stable.
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Lemma 2.2. [29] Under Assumption 2.1, for each non-singular M-matrix L̄Gq̂ with q̂ = 1, . . . ,M + 1,
there exists a positive definite diagonal matrix Wq̂ > 0 such that Wq̂L̄Gq̂+L̄

T
Gq̂

Wq̂ > 0. Specifically, for q̂ =
1, . . . ,M, the weighting matrix is given by Wq̂ = diag{wsq̂−1+1, . . . ,wsq̂−1+Nq̂} and [wsq−1+1, . . . ,wsq̂−1+Nq̂]

T =

(L̄T
Gq̂

)−11Nq̂ .

Lemma 2.3. [30] Assume the pair (A, B) is stabilizable and matrix A has no eigenvalues in the open
right-half plane. Then for any ι ∈ (0, 1] and constant ζ > 0, there exists a unique positive definite
solution Q > 0 to the algebraic Riccati equation AT Q + QA − ζQBBT Q + ιIn = 0n×n. Furthermore, this
solution satisfies limε→0+ Q = 0n×n.

Lemma 2.4. [31] Let Z(t) be a real function which satisfies the differential inequality Ż(t) ≤ −p̃Z(t)+ q̃
for all t ≥ 0, with constants p̃ > 0 and q̃ > 0. Then the following bound holds: Z(t) ≤

(
Z(0) − q̃

p̃

)
e− p̃t +

q̃
p̃ ,∀t ≥ 0.

3. Finite-time formation controller design

This section proposes the finite-time formation control algorithm, which includes two steps.

3.1. Controller design

For the purpose of designing the controller, let the dynamical equation be denoted as:
ui,x

ui,y

ui,z

 = Ti

mi


cos ϕi sin θi cosψi + sin ϕi sinψi

cos ϕi sin θi sinψi − sin ϕi cosψi

cos ϕi cos θi

 −

0
0
g

 . (3.1)

Using this notation, the position dynamics of the i-th quadrotor can be reformulated as:
ẍi

ÿi

z̈i

 = −Ki

mi


ẋi

ẏi

żi

 +

ui,x

ui,y

ui,z

 (3.2)

Theorem 3.1. For the position dynamic model (3.2), if the virtual control inputs are designed as follows:

ui,p∗ = −
∑
j∈Ni

ai j

[
k1satα1(p∗i − p∗j − ∆i j,p∗) + k2satα2(vi,p∗ − v j,p∗)

]
− bi

[
k1satα1

p∗i − p∗d − ∆i,p∗ +
1
M

M∑
i=1

∆i,p∗

 + k2satα2(vi,p∗ − vd
p∗)

]
+

Ki

mi
vd

p∗ + v̇d
p∗ , (3.3)

where ẋd = vd
x, ẏ

d = vd
y , ż

d = vd
z , and p∗ denote the position component along the three coordinate axes

(x, y, z). The set of neighbors of node i is denoted by Ni = { j : (vi, v j) ∈ V}. The formation control
objective is achieved within a finite time under the conditions that k1 > 0, k2 > 0, 0 < α1 < 1, and
α2 = 2α1/(1 + α1).
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Proof. Without loss of generality, the proof focuses on the x-axis dynamics. Accordingly, the coordinate
transformation for the i-th quadrotor is defined as

ei,xp = xi − ∆i,x − xd +

∑n
i=1 ∆i,x

n
,ei,xv = vi,x − vd

x, i ∈ (l1, . . . , lM) (3.4)

The subsequent analysis will demonstrate that the multi-agent system (3.4) is globally finite-time stable,
with the proof proceeding in two main steps.

The first step is to prove the asymptotic stability of the system. A candidate Lyapunov function for
system (3.4) is constructed as

V =
M∑

i=1

M∑
j=1

ai jk1

∫ ei,xp−e j,xp

0
satα1(ε)dε +

M∑
i=1

e2
i,xv +

M∑
i=1

∫ ei,xp

0
2bik1satα1(ε)dε, (3.5)

where i, j ∈ (1, 2, ...,M), j , i. Given 0 < α1 < 1, V = 0 if and only if the error vector (e1,xp, · · · , en,xp) =
0, thus V ≥ 0. The time derivative of V along the trajectories of system (3.4) is given by

V̇ = −2
M∑

i=1

ei,xv

 M∑
j=1

ai j[k1satα1(∆̃p) + k2satα2(∆̃v)] + bi[k1satα1(ei,xp) + k2satα2(ei,xv)] +
Ki

mi
ei,xv

)

+ k1

M∑
i=1

 M∑
j=1

ai j∆̃vsatα1(∆̃p) + 2bi[satα1(ei,xp)]ei,xv

 (3.6)

= −

M∑
i=1

 M∑
j=1

ai j∆̃v[k1satα1(∆̃p) + k2satα2(∆̃v)] + 2biei,xv[k1satα1(ei,xp) + k2satα2(ei,xp)]

 − 2
M∑

i=1

Ki

mi
e2

i,xv

+ k1

M∑
i=1

 M∑
j=1

ai j∆̃vk1[satα1(∆̃p)] + 2bik2satα1(ei,xp)ei,xv

 ,
where ∆̃v = ei,xv − e j,xv, ∆̃p = ei,xp − e j,xp. The time derivative of V along the system (3.1) is obtained as

V̇ = −k2

M∑
i=1

 M∑
j=1

ai j∆̃vsatα2(∆̃v) + 2biei,xvsatα2(ei,xv)

 − 2
M∑

i=1

Ki,1

mi
e2

i,xv, (3.7)

where ai j ≥ 0, bi ≥ 0; then it can be concluded that V̇ ≤ 0. Above all, the system (3.4) is globally
asymptotically stable.

Building upon global asymptotic stability, the second step is to prove that the system achieves
finite-time stability. Given the global asymptotic stability of the system (3.4), the states of the system
(ei,xp, ei,xv) will converge to the regionΩ =

{
(ei,xp, ei,xv) : |ei,xp| ≤ 1, |ei,xv| ≤ 1, i ∈ (1, 2, ...M)

}
within finite

time and remain there. After then, the system (3.4) can be rewrite as

ėi,xp = ei,xv

ėi,xv = −
∑
j∈Ni

ai j

[
k1signα1(∆̃p) + k2signα2(∆̃v)

]
− bi

[
k1signα1(ei,xp) + k2signα2(ei,xv)

]
− g(ei,xv), (3.8)
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where g(ei,xv) = Kiei,xv/mi. For any (ei,xp, ei,xv) , 0, we have

lim
ξ→0

(ξr2ei,xv)
ξr2+k = lim

ξ→0
−

Ki
mi
ξr2ei,xv

ξr2+k = lim
ξ→0
−

Ki

mi
ξ−kei,xv = 0. (3.9)

Therefore, the linear damping term g(ei,xv) is the perturbation that fulfills the criteria specified in
Lemma 2.1. Choose the Lyapunov function as

V̄ =
M∑

i=1

e2
i,xv +

M∑
i=1

M∑
j=1

ai jk1

∫ ∆̃p

0
sigα1(ε)dε + 2k1

M∑
i=1

bi

∫ ei,xp

0
sigα1(ε)dε. (3.10)

After excluding the linear damping term g(ei,xv) based on the requirements of Lemma 2.1 the time
derivative of V̄ is

˙̄V = −k2

M∑
i=1

M∑
j=1

ai j∆̃vsigα2(∆̃v) − k2

M∑
i=1

2biei,xvsigα2(ei,xv) ≤ 0. (3.11)

According to Definition 2.2, system (3.8) can be verified to be homogeneous of degree k = (α1−1)/2 < 0
with respect to the dilation. Based on Lemma 2.1, system (3.8) is global finite-time stability. Thus,
there exists a time T ∗ such that

lim
t→T ∗

(ei,xp(t), ei,xv(t)) ≡ 0, t ≥ T ∗. (3.12)

Based on the coordinate transformations defined in (3.4), it follows that for any i, j ∈ (1, 2, · · · ,M)
limt→T ∗[xi(t) − x j(t)] = ∆i,x − ∆ j,x = ∆i j,x, and limt→T ∗

1
n

∑n
i=1 xi(t) = xd. For t ≥ T ∗ [xi(t) − x j(t)] =

∆i,x − ∆ j,x ≡ ∆i j,x. Therefore, the formation control objective between leaders and exogenous leader can
be achieved within finite time. □

Remark 3.1. It is worth noting that the proposed finite-time control strategy degenerates into a classical
PD controller when the fractional power parameters are set to α1 = α2 = 1. To demonstrate the
superiority of the finite-time technique, a comparative analysis of the system performance under both
control schemes is presented in the simulation section.

4. Consensus tracking analysis between leaders and followers

Under operational scenarios requiring redundant saturation attacks or heavy-load transportation,
followers often share co-located initial positions with the leaders. Under such conditions, to reduce
communication overhead and control effort, the follower’s controller should be designed based primarily
on its own velocity, enabling it to maintain velocity consistency with the leader even in the presence of
exogenous acceleration inputs to the leader. Assuming the dynamics of follower is given by

v̇ f (t) = Av f (t) + B sat(u f ), (4.1)

define e f ,l = v f − vl as the tracking error between the leader of the corresponding cluster and the
followers. And the time derivative of e f ,l is

ė f ,l = Ae f ,l + B sat(u f ) − Bul, f ∈ {1, ...,N}. (4.2)
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We present the following distributed adaptive control law for follower F:

u f = uTC
f + uLI

f , (4.3)

where uTC
f is the consensus tracking controller designed by ignoring the leader’s input, and uLI

f is the
robust adaptive compensator introduced to restrain the influence of ul. Specifically, uTC

f is constructed as

uTC
f = α f Kη f

α̇ f = (Γ−1
f )T Ke f ,lη

T
f KT − ϑ fα f ,

(4.4)

where η f =
∑FN

j=F1
a f j(v f − v j) + d f ,l(v f − vl), ϑ f > 0, α f ∈ R

m×m represents the adaptive coupling
weight with α f (0) > 0, K = −BT Q ∈ Rm×n is the control gain matrix, and Γ f ∈ R

m×m > 0 adjusts the
convergence rate of α f . To deal with the unknown leader’s input ul, uLI

f is designed as

uLI
f =

β f Ke f ,l

χ f + ∥Ke f ,l∥
,

β̇ f = θ f (1 − β f ) + ϱ f ∥Ke f ,l∥,

(4.5)

where β f (0) > 1 represents the adaptive coupling weight and χ f , θ f , ϱ f are nonnegative constants.
Note that β f (0) ≥ 1 and β̇ f ≥ 0 when β f = 1 in (4.5); it directly follows that β f (t) ≥ 1. According to
Lemma 2.3, it is easy to see that limε→0+ Q = 0n×n holds. Combing this with (4.3)–(4.5), we can choose
an appropriate ι such that Q is sufficiently small, thereby satisfying the inequality as below:

∥∥∥uTC
f + uLI

f

∥∥∥ ≤ √mΥ. (4.6)

Then, ė f ,l can be rewritten as

ė f ,l = Ae f ,l + B(α f Kη f + uLI
f − ul). (4.7)

Theorem 4.1. Suppose provided the Assumptions hold, the fully distributed control law (4.3)–(4.5)
guarantees that the tracking errors e f ,l and adaptive gains α f , β f ( f ∈ V f ) are UUB for the leader-
follower subsystem.

Proof. We choose the Lyapunov function candidate as

Ṽ1 =

FN∑
f=F1

(
w f

ϱ f
β̃2

f + w f eT
f ,lQe f ,l) + tr

 FN∑
f=F1

w f α̃
T
f Γ f α̃ f

 , (4.8)
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where w f is defined in Lemma 2.2, α̃ f = α f − δ1Im, and β̃ f = β f − δ2 with δ1, δ2 > 0. Taking the
derivative of

∑FN
f=F1

w f eT
f ,lQe f ,l in (4.8) along the trajectories of (4.7) yields

2
FN∑

f=F1

w f eT
f ,lQė f ,l = 2

FN∑
f=F1

w f eT
f ,lQ(Ae f ,l + Bu f − Bul)

= 2
lN∑

f=F1

w f eT
f ,lQAe f ,l + 2

FN∑
f=F1

w f eT
f ,lQBu f − 2

FN∑
f=F1

w f eT
f ,lQBul

= −2eT
l (WN+11N ⊗ QB) ul + 2eT

l (WN+1 ⊗ QA) el − 2
FN∑

f=F1

w f eT
f ,lK

T (α f Kη f + uLI
f )

≤ eT
l

[
WN+1 ⊗

(
QA + AT Q

)]
el − 2

FN∑
f=F1

w f eT
f ,lK

T (α f Kη f + uLI
f ) + 2ūl

FN∑
f=F1

w f ∥Ke f ,l∥,

(4.9)
where el = [eT

F1,l
, . . . , eT

FN ,l
]T . The derivative of tr

(∑FN
f=F1

w f α̃
T
f Γ f α̃ f

)
can be computed as

2tr

 FN∑
f=F1

w f ˙̃αT
f Γ f α̃ f

 = 2tr

 FN∑
f=F1

w f ˙̃αT
f Γ fα f

 − 2δ1tr

 FN∑
f=F1

w f ˙̃αT
f Γ f


= 2tr

 FN∑
f=F1

w f

(
Kη f eT

f ,lK
Tα f − ϑ fα

T
f Γ fα f

) − 2δ1tr

 FN∑
f=F1

w f

(
Kη f eT

f ,lK
T − ϑ fα

T
f Γ f

) .
(4.10)

Because KT Kη f = Ψ
∑FN

j=F1
[a f j(e f ,l − e j,l) + d f ,le f ,l], one has

2tr

 FN∑
f=F1

w f Kη f eT
f ,lK

Tα f

 − 2δ1tr

 FN∑
f=F1

w f Kη f eT
f ,lK

T


= 2

FN∑
f=F1

w f eT
f ,lK

Tα f Kη f − 2δ1

FN∑
f=F1

w f eT
f ,lΨ

 FN∑
j=F1

a f j(e f ,l − e j,l) + d f ,le f ,l


= 2

FN∑
f=F1

w f eT
f ,lK

Tα f Kη f − 2δ1

FN∑
f=F1

FN∑
j=F1

l̄ f jw f eT
f ,lΨe j,l,

(4.11)

where l̄ f j is the element of matrix L̄GM+1 , and Ψ = QBBT Q. Because −α̃T
f Γ f α̃ f =

−
(
αT

f Γ fα f − α
T
f Γ fδ1 − δ1Γ fα f + δ

2
1Γ f

)
, we have

− 2tr

 FN∑
f=F1

w fϑ fα
T
f Γ f (α f − δ1Im)

 ≤ −tr

 FN∑
f=F1

w fϑ f α̃
T
f Γ f α̃ f

 + δ2
1tr

 FN∑
f=F1

w fϑ fΓ f

 . (4.12)

Substituting (4.11) and (4.12) into (4.10) yields:

2tr

 FN∑
f=F1

w f ˙̃αT
f Γ f α̃ f

 ≤ 2
FN∑

f=F1

w f eT
f ,lK

Tα f Kη f − 2δ1

FN∑
f=F1

FN∑
j=F1

l̄ f jw f eT
f ,lΨe j,l

− tr

 FN∑
f=F1

w fϑ f

(
α̃T

f Γ f α̃ f − δ
2
1Γ f

) .
(4.13)
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Taking the time derivative of
∑FN

f=F1

w f

ϱ f
β̃2

f , we obtain

FN∑
f=F1

2w f

ϱ f
β̃ f β̇ f = 2

FN∑
f=F1

w f (β f − δ2)∥Ke f ,l∥ − 2
FN∑

f=F1

w f θ f

ϱ f
β̃ fβ f + 2

FN∑
f=F1

w f θ f

ϱ f
β̃ f . (4.14)

By using Young’s inequality we have −2β̃ f (β f−1) ≤ −1
2 β̃

2
f−

1
2 (β f−1)2+(δ2−1)2. And −2

∑FN
f=F1

w f θ f

ϱ f
β̃ fβ f+

2
∑FN

f=F1

w f θ f

ϱ f
β̃ f = −2

∑FN
f=F1

w f θ f

ϱ f
β̃ f (β f − 1), we can get

−2
FN∑

f=F1

w f θ f

ϱ f
β̃ f (β f − 1) ≤ −

FN∑
f=F1

w f θ f

2ϱ f
β̃2

f +

FN∑
f=F1

w f θ f

ϱ f
(δ2 − 1)2 −

FN∑
f=F1

w f θ f

2ϱ f
(β f − 1)2

≤ −

FN∑
f=F1

w f θ f

ϱ f

(
1
2
β̃2

f +
1
4
β2

f

)
+

FN∑
f=F1

w f θ f

ϱ f
(δ2 − 1)2 +

FN∑
f=F1

w f θ f

2ϱ f
.

(4.15)

Substituting (4.9), (4.13), (4.14), and (4.15) yields the time derivative of Ṽ1 as:

˜̇V1 ≤eT
l

[
WN+1 ⊗

(
QA + AT Q

)]
el − 2

FN∑
f=F1

w f eT
f ,lK

T uLI
f + 2ūl

FN∑
f=F1

w f ∥Ke f ,l∥ −

FN∑
f=F1

w f θ f

2ϱ f
β̃2

f

− 2δ1

FN∑
f=F1

FN∑
j=F1

l̄ f jw f eT
f ,lΨe j,l + 2

FN∑
f=F1

w fβ f ∥Ke f ,l∥ − 2δ2

FN∑
f=F1

w f ∥Kei,l∥ −

FN∑
f=F1

w f θ f

4ϱ f
β2

f

+

FN∑
f=F1

w f θ f

2ϱ f
− tr

 FN∑
f=F1

w fϑ f α̃
T
f Γ f α̃ f

 + δ2
1tr

 FN∑
f=F1

w fϑ fΓ f

 + FN∑
f=F1

w f θ f

ϱ f
(δ2 − 1)2.

(4.16)

According to (4.5), one obtains

2
FN∑

f=F1

w fβ f ∥Ke f ,l∥ − 2
FN∑

f=F1

w f eT
f ,lK

T uLI
f −

FN∑
f=F1

w f θ f

4ϱ f
β2

f

= −2
FN∑

f=F1

w fβ f (∥Ke f ,l∥ + χ f ) + 4
FN∑

f=F1

w fβ f
∥Ke f ,l∥χ f

∥Ke f ,l∥ + χ f

+ 2
FN∑

f=F1

w fβ f

χ2
f

∥Ke f ,l∥ + χ f
+ 2

FN∑
f=F1

w fβ f ∥Ke f ,l∥ −

FN∑
f=F1

w f θ f

4ϱ f
β2

f

≤ −

FN∑
f=F1

w fβ f

(
θ f

4ϱ f
− 4χ f

)
.

(4.17)

Substituting (4.17) into (4.16) and setting δ2 > ūl,
θ f

ϱ f χ f
≥ 16 and δ1 ≥

2w̄
λmin(WN+1,LQ,N+1+L

T
Q,N+1)WN+1) yields

˜̇V1 ≤eT
l

[
WN+1 ⊗

(
QA + AT Q − 2Ψ

)]
el − tr

 FN∑
f=F1

w fϑ f α̃
T
f Γ f α̃ f

 − FN∑
f=F1

w f θ f

2ϱ f
β̃2

f + ∆, (4.18)
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where ∆ = δ2
1tr

(∑FN
f=F1

w fϑ fΓ f

)
+

∑FN
f=F1

w f θ f

ϱ f
[(δ2 − 1)2 + 1

2] and w = max{wF1 , . . . ,wFN }. Based on
Lemma 2.3, we rewrite (4.18) into

˜̇V1 ≤ − ιeT
l (WN+1 ⊗ In) el −

FN∑
f=F1

w f θ f

2ϱ f
β̃2

f − tr

 FN∑
f=F1

w fϑ f α̃
T
f Γ f α̃ f

 + ∆
≤ −

FN∑
f=F1

(ι − ρ1λmax(Q))w f eT
f ,le f ,l − tr

 FN∑
f=F1

(ϑ f − ρ1)w f α̃
T
f Γ f α̃ f


−

FN∑
f=F1

(
θ f

2
− ρ1

)
w f

ϱ f
β̃2

f + ∆ − ρ1V1,

(4.19)

where ρ1 = min{ ε
2λmax(Q) , ϑ f ,

θ f

2 }. Based on this definition, we can conclude that

˜̇V1 ≤ −
ιw
2
∥el∥

2 − ρ1Ṽ1 + ∆ ≤ −ρ1Ṽ1 + ∆, (4.20)

where w = min{wF1 , . . . ,wFN }. In light of Lemma 2.4, we can deduce from (4.20) that Ṽ1 exponentially
converges to the residual set

Ṽ1 ≤
∆

ρ1
+

(
Ṽ1(0) −

∆

ρ1

)
e−ρ1t. (4.21)

Let ϱ̄ = max{ϱF1 , . . . , ϱFN }. Given the lower bound Ṽ1 ≥ wλmin(Q)∥el∥
2 +

w
ϱ̄

∑lM
f=F1

β̃2
f +

wtr
(∑FN

f=F1
α̃T

f Γ f α̃ f

)
, implies that e f ,l, α f and β f are UUB. Moreover, whenever ∥el∥

2 ≥ 2
ιw∆, the first

inequality in (4.20) yields ˜̇V1 ≤ −ρ1Ṽ1. Consequently, the tracking error el exhibits exponential
convergence to the residual setD = {el : ∥el∥

2 ≤ 2
ιw∆} with a decay rate exceeding e−ρ1t. □

Remark 4.1. The proposed controller (3.3) incorporates the saturation constraint, thereby defining the
bound for the controller as:

(k1 + k2)

∑
j∈Ni

ai j + bi

 + Ki,3

mi
|vd| + |v̇d|. (4.22)

Furthermore, the followers controller satisfies sat(u f ) = sign(u f )min(|u f |,Υ). Consequently, the
controllers for both the leader and the followers are bounded.

5. Numerical simulation

In this section, an example is provided to demonstrate the efficacy of the theoretical results given
in the previous section. This example considers a hierarchical cluster network as shown in Figure 1.
Specifically, the agent labeled l0 is the exogenous dynamic leader; agents labeled l1, l2 and l3 are the
leaders of cluster 1, cluster 2 and cluster 3, respectively. The communication topology among the
quadrotor aircraft is described by an undirected graph as depicted in Figure 2. The edge weights are
assigned as follows: a12 = a21 = 1, a23 = a32 = 1, and b1 = 1. A regular triangle formation in the X-Z
plane is chosen as the desired formation pattern. The relative position deviations are specified as

∆12 = ∆1 − ∆2 =
(
[0, 0, 1]T − [cos(5π/6), 0, sin(−π/6)]T

)
,
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∆13 = ∆1 − ∆3 =
(
[0, 0, 1]T − [cos(−π/6), 0, sin(−π/6)]T

)
,

∆23 = ∆2 − ∆3 =
(
[cos(5π/6), 0, sin(−π/6)]T − [cos(−π/6), 0, sin(−π/6)]T

)
.

The desired formation trajectory is generated by (xd, yd, zd)T = (2 cos(0.3t), 3.1 cos(0.2t) +
0.9 cos(0.15t), 0.2t)T . The initial conditions for each quadrotor are xl0 = [2; 0; 0], xl1 = [0.8; 0.6;−1.0],
xl2 = [0; 0.8; 1.0], xl3 = [−0.5; 0.8; 0]. The initial conditions of followers are consistent with the leaders
of their respective clusters.

Some necessary parameters are chosen as ϑ f = 0.1, Γ f = 5, χ f = 0.01, θ f = 0.1, ϱ f = 0.5 , Υ f = 2
for f = 1, . . . , 7. From Lemma 4.3, by choosing ζ = 2 and ι = 0.2, we can obtain that Q = 0.1409I3, K
= -0.1409I3. Let α = [0.2, 0.1; 0.1, 0.2], β = 1.1, and γ(0) = 1.1. The control gains for the distributed
formation controller are selected as k1 = 3.5, k2 = 4.2, α1 = 0.8, α2 = 0.88. The physical parameters of
the quadrotor aircraft are selected as mi = 0.468, l = 0.3, Ki = 0.1. To evaluate the robustness of the
proposed finite-time controller against perturbations, the following external disturbances are introduced:
d(t) = [0.001 ∗ sin(2t), 0.003 ∗ sin(3t), 0.004 ∗ cos(5t)]T .

(a) (b)

Figure 3. Velocity states and position states of exogenous leader and leaders.

(a) (b)

Figure 4. Velocity states and position states of followers and leaders.
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The results of numerical simulation are presented in Figures 3–6. Figure 3(a) illustrates the formation
tracking performance between the exogenous leader and the cluster leaders in the absence of disturbances,
where the leaders effectively track the exogenous leader to establish the formation with observed rapid
convergence. Figure 3(b) depicts the tracking performance under external disturbances, demonstrating
that the leaders maintain the pre-set formation despite perturbations. Furthermore, Figure 4(a),(b)
illustrate the velocity and position states of both followers and leaders in the absence and presence
of external disturbances, respectively, indicating that velocity consensus is well-maintained. Figure 5
presents the 3D spatial trajectories of the exogenous leader and the leaders, demonstrating a well-
established formation. For comparative analysis, the linear PD controller described in Remark 3.1 was
implemented. The results reveal that the proposed finite-time control achieves steady-state convergence
in 6.63 s, whereas the PD controller requires 10.03 s. This shows that the proposed strategy yields a
significantly faster convergence rate and superior disturbance rejection capabilities.

Figure 5. 3D spatial trajectories of the exogenous leader and the leaders.

To rigorously validate the proposed scheme, a high-fidelity simulation platform is used integrating
Q Ground Control (QGC), ROS, PX4, and Gazebo. QGC facilitates real-time state monitoring and
command transmission, while ROS executes the high-level formation controller to generate attitude
setpoints. These references are tracked by the PX4 Autopilot via robust proportional-integral-derivative
(PID) loops within the Gazebo physics environment, ensuring a realistic verification of the control
performance. The physics engine uses the open dynamics engine solver with a fixed step size of 0.001
s to ensure numerical stability. The state information exchange between agents is handled via the
MAVLink protocol, incorporating realistic signal discretization. Figure 6 presents a Gazebo simulation
implemented on the high-fidelity PX4 platform, demonstrating that the actual formation closely aligns
with theoretical expectations.
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Figure 6. High-fidelity PX4 platform simulation.

6. Conclusions

This work investigates the finite-time formation control problem for a group of quadrotor aircraft
subject to dynamic leadership and input saturation. Rigorous theoretical analysis confirms that the
proposed distributed control algorithm guarantees finite-time convergence for both the formation
pattern and trajectory tracking. The efficacy of this strategy is further corroborated through numerical
simulations. However, the impact of complex network constraints, such as communication delays and
packet dropouts, remains to be fully addressed. Therefore, future work will focus on enhancing the
robustness of the system against external disturbances and distinct unknown communication delays.
Additionally, we aim to generalize the proposed framework to a broader class of high-order nonlinear
systems and heterogeneous multi-agent systems to expand its applicability.
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