In this paper, we defined and classified the algebraic Schouten solitons that are associated with the perturbed Bott connection on three-dimensional Lorentzian Lie groups possessing three distinct distributions. By transforming equations of perturbed Bott algebraic Schouten solitons into algebraic equations, we found that $ G_3, G_5, G_6 $, and $ G_7 $ have perturbed Bott algebraic Schouten solitons under the first distribution. $ G_3, G_6 $, and $ G_7 $ have such solitons under the second distribution. Additionally, $ G_2, G_3, G_4, G_5, G_6 $, and $ G_7 $ have such solitons under the third distribution.
Citation: Xinrui Li, Jiajing Miao, Haiming Liu. Perturbed Bott algebraic Schouten solitons on 3D Lorentzian Lie groups[J]. Electronic Research Archive, 2025, 33(12): 7676-7698. doi: 10.3934/era.2025339
In this paper, we defined and classified the algebraic Schouten solitons that are associated with the perturbed Bott connection on three-dimensional Lorentzian Lie groups possessing three distinct distributions. By transforming equations of perturbed Bott algebraic Schouten solitons into algebraic equations, we found that $ G_3, G_5, G_6 $, and $ G_7 $ have perturbed Bott algebraic Schouten solitons under the first distribution. $ G_3, G_6 $, and $ G_7 $ have such solitons under the second distribution. Additionally, $ G_2, G_3, G_4, G_5, G_6 $, and $ G_7 $ have such solitons under the third distribution.
| [1] |
R. S. Hamilton, The ricci flow on surfaces, mathematics and general relativity, Contemp. Math., 71 (1988), 237–261. https://doi.org/10.1090/conm/071/954419 doi: 10.1090/conm/071/954419
|
| [2] |
Y. Wang, Curvature of multiply warped products with an affine connection, Bull. Korean Math. Soc., 50 (2013), 1567–1586. https://doi.org/10.4134/BKMS.2013.50.5.1567 doi: 10.4134/BKMS.2013.50.5.1567
|
| [3] |
Y. Wang, Canonical connections and algebraic ricci solitons of three-dimensional lorentzian lie groups, Chin. Ann. Math. Ser. B, 43 (2022), 443–458. https://doi.org/10.1007/s11401-022-0334-5 doi: 10.1007/s11401-022-0334-5
|
| [4] |
S. Azami, Generalized ricci solitons of three-dimensional lorentzian lie groups associated canonical connections and kobayashi-nomizu connections, J. Nonlinear Math. Phys., 30 (2023), 1–33. https://doi.org/10.1007/s44198-022-00069-2 doi: 10.1007/s44198-022-00069-2
|
| [5] |
Y. Wang, T. Wu, Affine ricci solitons associated to the bott connection on three-dimensional lorentzian lie groups, Turk. J. Math., 45 (2021), 2773–2816. https://doi.org/10.3906/mat-2105-49 doi: 10.3906/mat-2105-49
|
| [6] |
Y. Wang, Affine ricci soliton of three-dimensional lorentzian lie groups, J. Nonlinear Math. Phys., 28 (2021), 277–291. https://doi.org/10.2991/jnmp.k.210203.001 doi: 10.2991/jnmp.k.210203.001
|
| [7] |
E. Calvino-Louzao, L. Hervella, J. Seoane-Bascoy, R. Vázquez-Lorenzo, Homogeneous cotton solitons, J. Phys. A: Math. Theor., 46 (2013), 285204. https://doi.org/10.1088/1751-8113/46/28/285204 doi: 10.1088/1751-8113/46/28/285204
|
| [8] |
S. Azami, Generalized ricci solitons of three-dimensional lorentzian lie groups associated canonical connections and kobayashi-nomizu connections, J. Nonlinear Math. Phys., 30 (2023), 1–33. https://doi.org/10.1007/s44198-022-00069-2 doi: 10.1007/s44198-022-00069-2
|
| [9] |
T. H. Wears, On algebraic solitons for geometric evolution equations on three-dimensional lie groups, Tbilisi Math. J., 9 (2015), 33–58. https://doi.org/10.1515/tmj-2016-0018 doi: 10.1515/tmj-2016-0018
|
| [10] |
S. Liu, Algebraic schouten solitons of three-dimensional lorentzian lie groups, Symmetry, 15 (2023), 866. https://doi.org/10.3390/sym15040866 doi: 10.3390/sym15040866
|
| [11] |
U. C. De, A. Sardar, F. Mofarreh, Relativistic spacetimes admitting almost schouten solitons, Int. J. Geom. Methods Mod. Phys., 20 (2023), 2350147. https://doi.org/10.1142/S0219887823501475 doi: 10.1142/S0219887823501475
|
| [12] |
J. Yang, J. Miao, Algebraic schouten solitons of lorentzian lie groups with Yano connections, Commun. Anal. Mech., 15 (2023), 763–791. https://doi.org/10.3934/cam.2023037 doi: 10.3934/cam.2023037
|
| [13] |
J. Jiang, Algebraic schouten solitons associated to the bott connection on three-dimensional lorentzian lie groups, Electron. Res. Arch., 33 (2025), 327–352. https://doi.org/10.3934/era.2025017 doi: 10.3934/era.2025017
|
| [14] |
S. Rahmani, Métriques de lorentz sur les groupes de lie unimodulaires, de dimension trois, J. Geom. Phys., 9 (1992), 295–302. https://doi.org/10.1016/0393-0440(92)90033-W doi: 10.1016/0393-0440(92)90033-W
|
| [15] |
G. Calvaruso, Homogeneous structures on three-dimensional lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279–1291. https://doi.org/10.1016/j.geomphys.2006.10.005 doi: 10.1016/j.geomphys.2006.10.005
|
| [16] | L. A. Cordero, P. Parker, Left-invariant lorentzian metrics on 3-dimensional lie groups, Rend. Mat. Appl., VII. Ser., 17 (1997), 129–155. |
| [17] |
W. Batat, K. Onda, Algebraic ricci solitons of three-dimensional lorentzian lie groups, J. Geom. Phys., 114 (2017), 138–152. https://doi.org/10.1016/j.geomphys.2016.11.018 doi: 10.1016/j.geomphys.2016.11.018
|
| [18] | H. Moghaddam, On the geometry of some para-hypercomplex lie groups, Arch. Math., 45 (2009), 159–170. |
| [19] |
G. F. Ramandi, S. Azami, V. Pirhadi, Generalized lorentzian ricci solitons on 3-dimensional lie groups associated to the bott connection, AUT J. Math. Comput., 5 (2024), 305–319. https://doi.org/10.22060/AJMC.2023.22329.1153 doi: 10.22060/AJMC.2023.22329.1153
|
| [20] |
R. Bakhshandeh-Chamazkoti, Lorentz ricci solitons of four-dimensional non-abelian nilpotent lie groups, Mediterr. J. Math., 19 (2022), 111, https://doi.org/10.1007/s00009-022-02024-3 doi: 10.1007/s00009-022-02024-3
|
| [21] |
S. Azami, G. Fasihi-Ramandi, V. Pirhadi, Generalized ricci solitons on non-reductive four-dimensional homogeneous spaces, J. Nonlinear Math. Phys., 30 (2023), 1069–1093. https://doi.org/10.1007/s44198-023-00116-6 doi: 10.1007/s44198-023-00116-6
|