Research article Special Issues

Stabilized leapfrog scheme preserving the maximum bound principle for the generalized Allen–Cahn equation

  • Published: 18 December 2025
  • This paper addresses the numerical method for the generalized Allen–Cahn equation featuring nonlinear mobility and a convection term. We propose a linear second–order finite difference scheme that adheres to the discrete maximum bound principle (MBP). The scheme is discretized using the leapfrog finite difference approach, incorporating a stabilized term in time, an upwind scheme for the convection term, and a central–difference scheme for the diffusion term. It is demonstrated that the discrete MBP holds under reasonable constraints on both the time step size and the coefficient of the stabilized term. Additionally, we provide an $ L^\infty\text{–error} $ estimate for our proposed scheme. Several numerical experiments are conducted to validate our theoretical findings.

    Citation: Chunjuan Hou, Baitong Ma. Stabilized leapfrog scheme preserving the maximum bound principle for the generalized Allen–Cahn equation[J]. Electronic Research Archive, 2025, 33(12): 7584-7599. doi: 10.3934/era.2025335

    Related Papers:

  • This paper addresses the numerical method for the generalized Allen–Cahn equation featuring nonlinear mobility and a convection term. We propose a linear second–order finite difference scheme that adheres to the discrete maximum bound principle (MBP). The scheme is discretized using the leapfrog finite difference approach, incorporating a stabilized term in time, an upwind scheme for the convection term, and a central–difference scheme for the diffusion term. It is demonstrated that the discrete MBP holds under reasonable constraints on both the time step size and the coefficient of the stabilized term. Additionally, we provide an $ L^\infty\text{–error} $ estimate for our proposed scheme. Several numerical experiments are conducted to validate our theoretical findings.



    加载中


    [1] X. Feng, A. Prohl, Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows, Numer. Math., 94 (2003), 33–65. https://doi.org/10.1007/s00211-002-0413-1 doi: 10.1007/s00211-002-0413-1
    [2] T. Ilmanen, Convergence of the Allen–Cahn equation to Brakke's motion by mean curvature, J. Differ. Geom., 38 (1993), 417–461. https://doi.org/10.4310/jdg/1214454300 doi: 10.4310/jdg/1214454300
    [3] M. Beneš, V. Chalupecký, K. Mikula, Geometrical image segmentation by the Allen–Cahn equation, Appl. Numer. Math., 51 (2004), 187–205. https://doi.org/10.1016/j.apnum.2004.05.001 doi: 10.1016/j.apnum.2004.05.001
    [4] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
    [5] J. Kim, Phase–field models for multi–component fluid flows, Commun. Comput. Phys., 12 (2012), 613–661. https://doi.org/10.4208/cicp.301110.040811a doi: 10.4208/cicp.301110.040811a
    [6] J. Shen, X. Yang, A phase–field model and its numerical approximation for two–phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32 (2010), 1159–1179. https://doi.org/10.1137/09075860x doi: 10.1137/09075860x
    [7] H. Gomez, T. J. R. Hughes, Provably unconditionally stable, second–order time–accurate, mixed variational methods for phase–field models, J. Comput. Phys., 230 (2011), 5310–5327. https://doi.org/10.1016/j.jcp.2011.03.033 doi: 10.1016/j.jcp.2011.03.033
    [8] Y. Xia, Y. Xu, C. Shu, Local discontinuous Galerkin methods for the Cahn–Hilliard type equations, J. Comput. Phys., 227 (2007), 472–491. https://doi.org/10.1016/j.jcp.2007.08.001 doi: 10.1016/j.jcp.2007.08.001
    [9] J. Shen, T. Tang, J. Yang, On the maximum principle preserving schemes for the generalized Allen–Cahn equation, Commun. Math. Sci., 14 (2016), 1517–1534. https://doi.org/10.4310/cms.2016.v14.n6.a3 doi: 10.4310/cms.2016.v14.n6.a3
    [10] T. Tang, J. Yang, Implicit–explicit scheme for the Allen–Cahn equation preserves the maximum principle, J. Comput. Math., 34 (2016), 451–461. https://doi.org/10.4208/jcm.1603-m2014-0017 doi: 10.4208/jcm.1603-m2014-0017
    [11] T. Hou, D. Xiu, W. Jiang, A new second–order maximum–principle preserving finite difference scheme for Allen–Cahn equations with periodic boundary conditions, Appl. Math. Lett., 104 (2020), 106265. https://doi.org/10.1016/j.aml.2020.106265 doi: 10.1016/j.aml.2020.106265
    [12] T. Hou, H. Leng, Numerical analysis of a stabilized Crank–Nicolson/Adams–Bashforth finite difference scheme for Allen–Cahn equations, Appl. Math. Lett., 102 (2020), 106150. https://doi.org/10.1016/j.aml.2019.106150 doi: 10.1016/j.aml.2019.106150
    [13] D. Hou, L. Ju, Z. Qiao, A linear doubly stabilized Crank–Nicolson scheme for the Allen–Cahn equation with a general mobility, Adv. Appl. Math. Mech., 16 (2024), 1009–1038. https://doi.org/10.4208/aamm.oa-2023-0067 doi: 10.4208/aamm.oa-2023-0067
    [14] X. Zhu, Y. Gong, Y. Wang, A maximum bound principle–preserving, second–order BDF scheme with variable steps for the generalized Allen–Cahn equation, Commun. Nonlinear Sci. Numer. Simul., 149 (2025), 108897. https://doi.org/10.1016/j.cnsns.2025.108897 doi: 10.1016/j.cnsns.2025.108897
    [15] Y. Ye, X. Feng, L. Qian, A second–order Strang splitting scheme for the generalized Allen–Cahn type phase–field crystal model with FCC ordering structure, Commun. Nonlinear Sci. Numer. Simul., 137 (2024), 108143. https://doi.org/10.1016/j.cnsns.2024.108143 doi: 10.1016/j.cnsns.2024.108143
    [16] J. Shen, X. Zhang, Discrete maximum principle of a high order finite difference scheme for a generalized Allen–Cahn equation, Commun. Math. Sci., 20 (2022), 1409–1436. https://doi.org/10.4310/cms.2022.v20.n5.a9 doi: 10.4310/cms.2022.v20.n5.a9
    [17] X. Yang, Error analysis of stabilized semi–implicit method of Allen–Cahn equation, Discrete Contin. Dyn. Syst. - B, 11 (2009), 1057–1070. https://doi.org/10.3934/dcdsb.2009.11.1057 doi: 10.3934/dcdsb.2009.11.1057
    [18] Y. Tang, The stabilized exponential–SAV approach for the Allen–Cahn equation with a general mobility, Appl. Math. Lett., 152 (2024), 109037. https://doi.org/10.1016/j.aml.2024.109037 doi: 10.1016/j.aml.2024.109037
    [19] D. Hou, T. Zhang, H. Zhu, A linear second order unconditionally maximum bound principle–preserving scheme for the Allen–Cahn equation with general mobility, Appl. Numer. Math., 207 (2025), 222–243. https://doi.org/10.1016/j.apnum.2024.09.005 doi: 10.1016/j.apnum.2024.09.005
    [20] H. Li, S. Xie, X. Zhang, A high order accurate bound–preserving compact finite difference scheme for scalar convection diffusion equations, SIAM J. Numer. Anal., 56 (2018), 3308–3345. https://doi.org/10.1137/18m1208551 doi: 10.1137/18m1208551
    [21] L. Ju, X. Li, Z. Qiao, Stabilized exponential–SAV schemes preserving energy dissipation law and maximum bound principle for the Allen–Cahn type equations, J. Sci. Comput., 92 (2022), 1–34. https://doi.org/10.1007/s10915-022-01921-9 doi: 10.1007/s10915-022-01921-9
    [22] J. Yang, Z. Yuan, Z. Zhou, Arbitrarily high–order maximum bound preserving schemes with cut–off postprocessing for Allen–Cahn equations, J. Sci. Comput., 90 (2022), 76. https://doi.org/10.1007/s10915-021-01746-y doi: 10.1007/s10915-021-01746-y
    [23] H. Zhang, J. Yan, X. Qian, S. Song, Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge–Kutta schemes for Allen–Cahn equation, Appl. Numer. Math., 161 (2020), 372–390. https://doi.org/10.1016/j.apnum.2020.11.022 doi: 10.1016/j.apnum.2020.11.022
    [24] H. Zhang, J. Yan, X. Qian, X. Chen, S. Song, Explicit third–order unconditionally structure–preserving schemes for conservative Allen–Cahn equations, J. Sci. Comput., 90 (2021), 8. https://doi.org/10.1007/s10915-021-01691-w doi: 10.1007/s10915-021-01691-w
    [25] J. Zhang, Q. Du, Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit, SIAM J. Sci. Comput., 31 (2009), 3042–3063. https://doi.org/10.1137/080738398 doi: 10.1137/080738398
    [26] C. Nan, H. Song, The high–order maximum–principle–preserving integrating factor Runge–Kutta methods for nonlocal Allen–Cahn equation, J. Comput. Phys., 456 (2022), 111028. https://doi.org/10.1016/j.jcp.2022.111028 doi: 10.1016/j.jcp.2022.111028
    [27] X. Yang, W. Zhao, W. Zhao, Optimal error estimates of a discontinuous Galerkin method for stochastic Allen–Cahn equation driven by multiplicative noise, Commun. Comput. Phys., 36 (2024), 133–159. https://doi.org/10.4208/cicp.oa-2023-0280 doi: 10.4208/cicp.oa-2023-0280
    [28] X. Xiao, R. He, X. Feng, Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations, Numer. Methods Partial Differ. Equ., 36 (2020), 418–438. https://doi.org/10.1002/num.22435 doi: 10.1002/num.22435
    [29] C. Li, Y. Huang, N. Yi, An unconditionally energy stable second order finite element method for solving the Allen–Cahn equation, J. Comput. Appl. Math., 353 (2018), 38–48. https://doi.org/10.1016/j.cam.2018.12.024 doi: 10.1016/j.cam.2018.12.024
    [30] J. Yang, N. Yi, H. Zhang, High–order, unconditionally maximum–principle preserving finite element method for the Allen–Cahn equation, Appl. Numer. Math., 188 (2023), 42–61. https://doi.org/10.1016/j.apnum.2023.03.002 doi: 10.1016/j.apnum.2023.03.002
    [31] F. Nudo, Two one–parameter families of nonconforming enrichments of the Crouzeix–Raviart finite element, Appl. Numer. Math., 203 (2024), 160–172. https://doi.org/10.1016/j.apnum.2024.05.023 doi: 10.1016/j.apnum.2024.05.023
    [32] F. Nudo, A general quadratic enrichment of the Crouzeix–Raviart finite element, J. Comput. Appl. Math., 451 (2024), 116112. https://doi.org/10.1016/j.cam.2024.116112 doi: 10.1016/j.cam.2024.116112
    [33] F. Dell'Accio, A. Guessab, F. Nudo, New quadratic and cubic polynomial enrichments of the Crouzeix–Raviart finite element, Comput. Math. Appl., 170 (2024), 204–212. https://doi.org/10.1016/j.camwa.2024.06.019 doi: 10.1016/j.camwa.2024.06.019
    [34] Z. Du, T. Hou, A linear second–order maximum bound principle preserving finite difference scheme for the generalized Allen–Cahn equation, Appl. Math. Lett., 158 (2024), 109250. https://doi.org/10.1016/J.AML.2024.109250 doi: 10.1016/J.AML.2024.109250
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(327) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog