Research article

Global solutions for inhomogeneous micropolar equations with density-dependent coefficients and large data

  • Published: 18 December 2025
  • In this paper, we consider the Dirichlet problem of three-dimensional inhomogeneous incompressible micropolar equations with density-dependent viscosity. Under the assumption that the coefficients are power functions of the density, we establish the global existence of strong solutions as long as the initial density is linearly equivalent to a large constant state. There is no restriction on the size of the initial velocity and micro-rotational velocity. As a byproduct, we prove the exponential decay for the solution.

    Citation: Peng Lu, Yuanyuan Qiao. Global solutions for inhomogeneous micropolar equations with density-dependent coefficients and large data[J]. Electronic Research Archive, 2025, 33(12): 7600-7618. doi: 10.3934/era.2025336

    Related Papers:

  • In this paper, we consider the Dirichlet problem of three-dimensional inhomogeneous incompressible micropolar equations with density-dependent viscosity. Under the assumption that the coefficients are power functions of the density, we establish the global existence of strong solutions as long as the initial density is linearly equivalent to a large constant state. There is no restriction on the size of the initial velocity and micro-rotational velocity. As a byproduct, we prove the exponential decay for the solution.



    加载中


    [1] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. https://doi.org/10.1512/iumj.1967.16.16001
    [2] P. Kalita, G. Łukaszewicz, Micropolar meets Newtonian in 3D. The Rayleigh-Bénard problem for large Prandtl numbers, Nonlinearity, 33 (2020), 5686–5732. https://doi.org/10.1088/1361-6544/ab9729 doi: 10.1088/1361-6544/ab9729
    [3] P. Kalita, J. A. Langa, G. Łukaszewicz, Micropolar meets Newtonian. The Rayleigh-Bénard problem, Phys. D, 392 (2019), 57–80. https://doi.org/10.1016/j.physd.2018.12.004 doi: 10.1016/j.physd.2018.12.004
    [4] G. Łukaszewicz, Micropolar Fluids: Theory and Applications, Birkhäuser Boston, MA, 1999. https://doi.org/10.1007/978-1-4612-0641-5
    [5] P. Zhang, M. Zhu, Global regularity of 3D nonhomogeneous incompressible micropolar fluids, Acta Appl. Math., 161 (2019), 13–34. https://doi.org/10.1007/s10440-018-0202-1 doi: 10.1007/s10440-018-0202-1
    [6] C. Qian, H. Chen, T. Zhang, Global existence of weak solutions for 3D incompressible inhomogeneous asymmetric fluids, Math. Ann., 386 (2023), 1555–1593. https://doi.org/10.1007/s00208-022-02427-3 doi: 10.1007/s00208-022-02427-3
    [7] C. Qian, Y. Qu, Global well-posedness for 3D incompressible inhomogeneous asymmetric fluids with density-dependent viscosity, J. Differ. Equations, 306 (2022), 333–402. https://doi.org/10.1016/j.jde.2021.10.045 doi: 10.1016/j.jde.2021.10.045
    [8] X. Zhong, Global well-posedness for 3D nonhomogeneous micropolar fluids with density-dependent viscosity, Bull. Malays. Math. Sci. Soc., 46 (2023), 23. https://doi.org/10.1007/s40840-022-01399-6 doi: 10.1007/s40840-022-01399-6
    [9] L. Zhou, C. L. Tang, Global well-posedness to the 3D Cauchy problem of nonhomogeneous micropolar fluids involving density-dependent viscosity with large initial velocity and micro-rotational velocity, Dyn. Partial Differ. Equations, 21 (2024), 77–96. https://doi.org/10.4310/DPDE.2024.v21.n1.a4 doi: 10.4310/DPDE.2024.v21.n1.a4
    [10] L. Liu, X. Zhong, Global existence and exponential decay of strong solutions for 2D nonhomogeneous micropolar fluids with density-dependent viscosity, J. Math. Phys., 62 (2021), 061508. https://doi.org/10.1063/5.0055689 doi: 10.1063/5.0055689
    [11] C. Qian, B. He, T. Zhang, Global well-posedness for 2D inhomogeneous asymmetric fluids with large initial data, Sci. China Math., 67 (2024), 527–556. https://doi.org/10.1007/s11425-022-2099-1 doi: 10.1007/s11425-022-2099-1
    [12] X. Zhong, A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4603–4615. https://doi.org/10.3934/dcdsb.2020115 doi: 10.3934/dcdsb.2020115
    [13] X. Zhong, Strong solutions to the Cauchy problem of two-dimensional nonhomogeneous micropolar fluid equations with nonnegative density, Dyn. Partial Differ. Equations, 18 (2021), 49–69. 10.4310/DPDE.2021.v18.n1.a4 doi: 10.4310/DPDE.2021.v18.n1.a4
    [14] X. Zhong, Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 5805–5820. https://doi.org/10.3934/dcdsb.2021296 doi: 10.3934/dcdsb.2021296
    [15] H. J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differ. Equations, 28 (2003), 1183–1201. https://doi.org/10.1081/PDE-120021191 doi: 10.1081/PDE-120021191
    [16] P. Germain, Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system, J. Anal. Math., 105 (2008), 169–196. https://doi.org/10.1007/s11854-008-0034-4 doi: 10.1007/s11854-008-0034-4
    [17] W. Craig, X. Huang, Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747–758. https://doi.org/10.1007/s00021-013-0133-6 doi: 10.1007/s00021-013-0133-6
    [18] D. Chen, Z. Zhang, W. Zhao, Fujita-Kato theorem for the 3-D inhomogeneous Navier-Stokes equations, J. Differ. Equations, 261 (2016), 738–761. https://doi.org/10.1016/j.jde.2016.03.024 doi: 10.1016/j.jde.2016.03.024
    [19] Z. Guo, Y. Wang, C. Xie, Global strong solutions to the inhomogeneous incompressible Navier-Stokes system in the exterior of a cylinde, SIAM J. Math. Anal., 53 (2021), 6804–6821. https://doi.org/10.1137/20M1384439 doi: 10.1137/20M1384439
    [20] X. Huang, Y. Wang, Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771–1788. https://doi.org/10.1137/120894865 doi: 10.1137/120894865
    [21] Z. Liang, Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids, J. Differ. Equations, 258 (2015), 2633–2654. https://doi.org/10.1016/j.jde.2014.12.015 doi: 10.1016/j.jde.2014.12.015
    [22] X. Huang, Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differ. Equations, 259 (2015), 1606–1627. https://doi.org/10.1016/j.jde.2015.03.008 doi: 10.1016/j.jde.2015.03.008
    [23] J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differ. Equations, 259 (2015), 1722–1742. https://doi.org/10.1016/j.jde.2015.03.011 doi: 10.1016/j.jde.2015.03.011
    [24] H. Abidi, G. Gui, P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832–881. https://doi.org/10.1002/cpa.20351 doi: 10.1002/cpa.20351
    [25] R. Danchin, P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458–1480. https://doi.org/10.1002/cpa.21409 doi: 10.1002/cpa.21409
    [26] R. Danchin, S. Wang, Global unique solutions for the inhomogeneous Navier-Stokes equations with only bounded density, in critical regularity spaces, Comm. Math. Phys., 399 (2023), 1647–1688. https://doi.org/10.1007/s00220-022-04592-7 doi: 10.1007/s00220-022-04592-7
    [27] M. Paicu, P. Zhang, Striated regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity, Comm. Math. Phys., 376 (2020), 385–439. https://doi.org/10.1007/s00220-019-03446-z doi: 10.1007/s00220-019-03446-z
    [28] P. Zhang, Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system, Adv. Math., 363 (2020), 107007. https://doi.org/10.1016/j.aim.2020.107007 doi: 10.1016/j.aim.2020.107007
    [29] X. Huang, J. Li, R. Zhang, Global large strong solution of the 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, preprint, arXiv: 2408.00333. https://doi.org/10.48550/arXiv.2408.00333
    [30] Y. Cho, H. Kim, Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465–489. https://doi.org/10.1016/j.na.2004.07.020 doi: 10.1016/j.na.2004.07.020
    [31] G. Seregin, Lecture Notes on Regularity Theory for the Navier-Stokes Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
    [32] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Uralćprime ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, 1968.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(282) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog