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Abstract: In this paper, we consider the Dirichlet problem of three-dimensional inhomogeneous
incompressible micropolar equations with density-dependent viscosity. Under the assumption that the
coefficients are power functions of the density, we establish the global existence of strong solutions
as long as the initial density is linearly equivalent to a large constant state. There is no restriction on
the size of the initial velocity and micro-rotational velocity. As a byproduct, we prove the exponential
decay for the solution.
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1. Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary. In this paper, we are concerned with an
initial boundary-value problem of three-dimensional (3D for short) inhomogeneous micropolar fluid
equations with density-dependent viscosity in Ω × R+:

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) + ∇P − 2div((µ(ρ) + ξ(ρ))D(u)) = 2ξ(ρ)∇ × w,
(ρw)t + div(ρu ⊗ w) + 4ξ(ρ)w − div (2η(ρ)D(w)) − ∇(λ(ρ)divw) = 2ξ(ρ)∇ × u,
divu = 0,

(1.1)

where t ≥ 0 and x = (x1, x2, x3) ∈ Ω are time and space variables, respectively. ρ, u = (u1, u2, u3),
w = (w1,w2,w3), and P represent the density, velocity, micro-rotational velocity, and the pressure of

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2025336


7601

the fluid, respectively.

D(u) =
1
2

(
∇u + (∇u)⊤

)
, D(w) =

1
2

(
∇w + (∇w)⊤

)
, (1.2)

is the deformation tensor relying on u and w. µ(ρ) stands for the viscosity and is a function of the
density, satisfying

µ(ρ) = µ̄ρα, µ̄ > 0, α ≥ 0. (1.3)

The coefficients ξ(ρ), η(ρ), and λ(ρ) are assumed to satisfy

η(ρ) = η̄ρα, λ(ρ) = λ̄ρα, ξ(ρ) = ξ̄ρβ, ξ̄ > 0, η̄ > 0, 2η̄ + 3λ̄ ≥ 0, β ≥ 0. (1.4)

In this paper, we study the initial boundary value problem to the system (1.1)–(1.4) with the
following initial data and Dirichlet boundary condition:

(ρ, u,w)(x, 0) = (ρ0(x), u0(x),w0(x)), in Ω,
u(x, t) = 0, w(x, t) = 0, on ∂Ω × [0,T ].

(1.5)

The micropolar equations were first proposed by Eringen [1] in 1966, which can describe many
phenomena that appear in a large number of complex fluids such as suspensions, animal blood, and
liquid crystals. For more background on micropolar fluids, we refer to [2–4] and the references
therein. Because of their physical applications and mathematical significance, the well-posedness
problem of the micropolar equations has attracted considerable attention in recent years. In 2019,
Zhang and Zhu [5] considered the 3D Cauchy problem with constant viscosity, and proved the global
well-posedness of strong and classical solutions under the condition that µ̄ is large enough or the
initial data is sufficiently small. In 2023, Qian et al. [6] studied the global existence of weak and
strong solutions. When initial velocities are sufficiently small in the critical Besov space and the
initial density has positive lower and upper bounds, global Fujita-Kato-type solutions are obtained.
When the viscosity depends on the density, Qian and Qu [7] studied the 3D Cauchy problem. By the
assumption of the smallness of initial velocity in the critical Besov space, the authors obtained the
local and global well-posedness of the system. Zhong [8] studied the 3D initial-boundary-value
problem, and established the global well-posedness of strong solutions when the initial energy is
sufficiently small. Moreover, the velocity and the micro-rotational velocity converge exponentially to
zero in H2 as time goes to infinity. Zhou and Tang [9] proved the global well-posedness of strong
solutions to the 3D Cauchy problem, provided that the initial mass is sufficiently small. Moreover, the
gradients of velocity and micro-rotational velocity converge exponentially to zero in H1 as time goes
to infinity. For more related results in the two-dimensional case, we refer to [10–14].

If there is no microstructure (ξ = 0 and w = 0), system (1.1) reduces to inhomogeneous
incompressible Navier–Stokes equations. When the viscosity is constant, Choe and Kim [15] proved
the well-posedness of local strong solutions to the Cauchy problem or the initial boundary value
problem. In 2008, Germain [16] proved weak-strong uniqueness to the Cauchy problem. In 2013,
Craig et al. [17] established the global well-posedness of strong solutions for initial data with small
Ḣ

1
2 -norm. In 2016, Chen et al. [18] proved the global well-posedness of solution under the condition

that the initial density is bounded and bounded away from zero, and the initial velocity is small
enough in H s for some s > 1/2. In 2021, Guo et al. [19] established global strong axisymmetric
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solutions in the exterior of a cylinder subject to the Dirichlet boundary conditions, where the vacuum
is allowed. When the viscosity depends on the density, Huang and Wang [20] studied the 2D initial
boundary value problem in bounded domains, and proved that strong solutions exist globally when
∥∇µ(ρ0)∥Lp is sufficiently small, even in the presence of vacuum. In 2015, Liang [21] established the
local well-posedness of strong solution for the 2D Cauchy problem, Huang and Wang [22] and
Zhang [23] proved that the 3D initial boundary value problem admits unique strong solutions
provided that ∥∇u0∥L2 is sufficiently small. For more related results in critical Besov spaces, we refer
to [24–28] and the references therein.

Recently, Huang et al. [29] studied the Dirichlet problem of 3D inhomogeneous Navier-Stokes
equations with density-dependent viscosity, and proved that the system admits a unique global strong
solution as long as the initial density is sufficiently large. This is the first result concerning the
existence of large strong solutions for the inhomogeneous Navier-Stokes equations in three
dimensions. Motivated by [29], we consider the global well-posedness problem of the inhomogeneous
incompressible micropolar equations with density-dependent viscosity and large initial data.

Before stating the main results, we explain the notation and conventions used throughout this paper.
For a given function f (x) or f (x, t), we denote∫

f dx =
∫
Ω

f dx,

For a positive integer k and p ≥ 1, we denote the standard Lebesgue and Sobolev spaces as follows:

∥ f ∥Lp = ∥ f ∥Lp(Ω), ∥ f ∥Wk,p = ∥ f ∥Wk,p(Ω), ∥ f ∥Hk = ∥ f ∥Wk,2(Ω),

C∞0,σ = { f ∈ C∞0 (Ω) : div f = 0}, H1
0 = C∞0 ,

H1
0,σ = C∞0,σ, closure in the norm of H1.

Our main result can be stated as follows.

Theorem 1.1. Let Ω be a bounded smooth domain in R3. Assume that

α > 1, 0 < β ≤
α + 1

2
. (1.6)

Given the constants ρ̄ > 1 and C0 > 1, suppose that the initial data (ρ0, u0,w0) satisfies

ρ̄ ≤ ρ0 ≤ C0ρ̄, ρ0 ∈ W1,q, 3 < q < 6, u0 ∈ H1
0,σ ∩ H2, w0 ∈ H1

0 ∩ H2. (1.7)

Then, there exists a positive constant M depending only on C0, µ̄, ξ̄, η̄, λ̄, α, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2 , and
Ω such that if

ρ̄ ≥ M(Ω,C0, µ̄, ξ̄, η̄, λ̄, α, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2), (1.8)

then the problem (1.1)–(1.5) admits a unique global strong solution (ρ, u,w, P) in Ω× (0,∞) satisfying
ρ ∈ C([0,∞); W1,q), ρt ∈ C([0,∞); Lq),
∇u, P ∈ C([0,∞); H1) ∩ L2((0,∞); W1,q), ∇w ∈ C([0,∞); H1),
(ut,wt) ∈ L∞(0,∞; L2) ∩ L2(0,∞; H1

0).
(1.9)

Moreover, there exist a positive constant κ(ρ̄) depending on ρ̄, C0, µ̄, ξ̄, η̄, λ̄, α, ∥∇ρ0∥Lq , ∥u0∥H2 ,
∥w0∥H2 , and Ω such that

∥u∥2H1 + ∥w∥2H1 ≤ Ceκ(ρ̄)t. (1.10)
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Remark 1.1. As was pointed out by [29], Theorem 1.1 implies that the flow is globally stable when
the initial Reynolds number is sufficiently small.

Remark 1.2. Theorem 1.1 can also be applied to the periodic case. Moreover, after slight
modifications, we can also treat the case α > 1 and β = 0.

Let us briefly sketch the proof. To extend the local solution to a global one, we need to establish
uniform a priori estimates on solutions in suitable higher-order norms, where some basic ideas are
borrowed from [29]. However, due to the strong coupling between the velocity u and the micro-
rotational velocity w, the proof of Theorem 1.1 is much more complicated. Compared with the case of
Navier-Stokes equations, the main difficulty is caused by the extra terms ξ(ρ)∇ × w and ξ(ρ)∇ × u on
the right-hand side of (1.1)2 and (1.1)3, there are extra linear terms ρ̄β−α∥∇u∥Lq and ρ̄β−α∥∇ × w∥Lq in
the high-order estimates of u and w (see Lemma 3.3), which makes it impossible for us to follow the
idea of [29] to prove the time-weighted estimates (3.18)–(3.19). Inspired by [8], we find that in the L2-
estimates of u and w, all the terms on the right-hand side can be absorbed into the left-hand side with
the help of Poincaré inequality. This leads to the exponential decay of ∥(u,w)∥L2 and the integrability of
eκt(∥∇u∥2L2 + ∥∇w∥2L2) on [0,T ] for some κ(ρ̄) > 0, with an order of ρ̄1−α (see (3.9)). With (3.9) at hand,
we are able to derive a eκt-weighted estimate of ∇u and ∇w, which leads to the H1-exponential decay
of u and w. The time-weighted estimates are essential in establishing the uniform bound of ∥∇u∥L1

t L∞x ,
while the control of ∥∇u∥L1

t L∞x leads to uniform estimates for other higher-order norms. As a result, we
are able to extend the local strong solutions by a standard bootstrap argument.

The rest of the paper is organized as follows. In Section 2, we collect some elementary facts and
inequalities which will be needed in later analysis. Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminaries

First, the following local existence theory, where the initial density is strictly away from vacuum,
can be shown by similar arguments as in Cho and Kim [30].

Lemma 2.1. Assume that the initial data (ρ0, u0,w0) satisfies the regularity condition (1.7). Then,
there exists a small time T0 and a unique strong solution (ρ, u, P) to the initial boundary value problem
(1.1)–(1.5) such that

ρ ∈ C([0,T0]; W1,q), ρt ∈ C([0,T0]; Lq),
∇u, P ∈ C([0,T0]; H1) ∩ L2(0,T0; W1,q), ∇w ∈ C([0,T0]; H1),
(
√
ρut,
√
ρwt) ∈ L∞(0,T0; L2), (ut,wt) ∈ L2(0,T0; H1

0).
(2.1)

Furthermore, if T ∗ is the maximal existence time of the local strong solution (ρ, u), then either T ∗ =
∞ or

sup
0≤t≤T ∗

(∥∇ρ∥Lq + ∥∇u∥L2 + ∥∇w∥L2) = ∞. (2.2)

In this paper, we will employ Bovosgii’s theory which can be found in [31].

Lemma 2.2. Let Ω be a bounded domain with Lipschitz boundary, 1 < p < ∞, and b(x) ∈ Lp(Ω) with∫
Ω

b(x)dx = 0. Then, there exists v(x) ∈ W1,p
0 (Ω) satisfying:

divv = b, in Ω,
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and
∥∇v∥Lp(Ω) ≤ C(p)∥b∥Lp(Ω). (2.3)

Also, the well-known Gagliardo-Nirenberg inequality [32] will be frequently used in this paper.

Lemma 2.3. Assume thatΩ is a bounded Lipschitz domain in R3. Let 1 ≤ q ≤ ∞ be a positive extended
real quantity. Let j and m be non-negative integers such that j < m. Furthermore, let 1 ≤ r ≤ ∞ be a
positive extended real quantity, p ≥ 1 be real and θ ∈ [0, 1] such that the relations

1
p
=

j
n
+ θ

(
1
r
−

m
n

)
+

1 − θ
q
,

j
m
≤ θ ≤ 1 (2.4)

hold. Then,
∥∇ ju∥Lp(Ω) ≤ C∥∇mu∥θLr(Ω)∥u∥

1−θ
Lq(Ω) +C1∥u∥Lq(Ω) (2.5)

where u ∈ Lq(Ω) such that ∇mu ∈ Lr(Ω). Moreover, if q > 1 and r > 3,

∥u∥C(Ω̄) ≤ C∥u∥q(r−3)/(3r+q(r−3))
Lq ∥∇u∥3r/(3r+q(r−3))

Lr +C2∥u∥Lq . (2.6)

where u ∈ Lq(Ω) such that ∇u ∈ Lr(Ω). In any case, the constant C > 0 depends on the parameters
j, m, n, q, r, and θ on the domain Ω, but not on u. In addition, if u · n|∂Ω = 0 or

∫
Ω

udx = 0, we can
choose C1 = C2 = 0.

High-order a priori estimates rely on the following regularity results for density-dependent Stokes
equations. The proof can be found in [29].

Lemma 2.4. Assume that ρ ∈ W1,q, α > 1, 3 < q < 6, and ρ̄ ≤ ρ ≤ C0ρ̄. Let (u, P) ∈ H1
0,σ × L2 be the

unique weak solution to the boundary value problem
−div(2µ̄ραD(u)) + ∇P = F,
divu = 0,∫

P
ρα

dx = 0.
(2.7)

Then, we have the following regularity results:
(1) If F ∈ L2, then (u, P) ∈ H2 × H1 and

∥u∥H2 +

∥∥∥∥∥ P
ρα

∥∥∥∥∥
H1
≤ C(ρ̄−α + ρ̄−α−

q
q−3 ∥∇ρ∥

q
q−3

Lq )∥F∥L2; (2.8)

(2) If F ∈ Lq for some q ∈ (3, 6), then (u, P) ∈ W2,q ×W1,q and

∥u∥W2,q +

∥∥∥∥∥ P
ρα

∥∥∥∥∥
W1,q
≤ C(ρ̄−α + ρ̄−α−

5q−6
2(q−3) ∥∇ρ∥

5q−6
2(q−3)

Lq )∥F∥Lq , (2.9)

where the constant C in (2.8) and (2.9) depends on Ω, q.

Proof. The proof of (2.8) can be found in [29]. Below, we prove (2.9). Similarly, rewrite (2.7)1 as

−µ∆u + ∇
(

P
ρα

)
=

F
ρα
+ 2µαρ−1∇ρ · d + αρ−1∇ρ

(
P
ρα

)
.
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The Lp-estimate yields that

∥∇2u∥Lq +
∥∥∥∥∇( P
ρα

)∥∥∥∥
Lq

≤ Cρ̄−α∥F∥Lq +Cρ̄−1∥∇ρ∥Lq

(
∥∇u∥

2q−6
5q−6

Lq ∥∇
2u∥

3q
5q−6

Lq + ∥
P
ρα
∥

2q−6
5q−6

Lq

∥∥∥∥∇( P
ρα

)∥∥∥∥ 3q
5q−6

Lq

)
≤

1
4

(
∥∇2u∥Lq +

∥∥∥∥∇( P
ρα

)∥∥∥∥
Lq

)
+Cρ̄−α∥F∥Lq +Cρ̄−

5q−6
2q−6 ∥∇ρ∥

5q−6
2q−6

Lq

(
∥∇u∥L2 +

∥∥∥∥ P
ρα

∥∥∥∥
L2

)
.

Moreover, from (2.8), we have

∥u∥W2,q +
∥∥∥∥ P
ρα

∥∥∥∥
W1,q
≤ C

(
ρ̄−α + ρ̄−α−

5q−6
2(q−3) ∥∇ρ∥

5q−6
2(q−3)

Lq

)
∥F∥Lq .

This completes the proof. □

3. A priori estimates

For any fixed time T > 0, (ρ, u,w, P) is the unique local strong solution to (1.1)–(1.5) on Ω × (0,T ]
with initial data (ρ0, u0,w0) satisfying (1.7), which is guaranteed by Lemma 2.1. Define

Eρ(T ) := sup
t∈[0,T ]

∥∇ρ∥Lq , (3.1)

Ew(T ) := ρ̄α sup
t∈[0,T ]

∥∇w∥2L2 +

∫ T

0
∥
√
ρwt∥

2
L2dt, (3.2)

Eu(T ) := ρ̄α sup
t∈[0,T ]

∥∇u∥2L2 +

∫ T

0
∥
√
ρut∥

2
L2dt. (3.3)

We have the following key proposition.

Proposition 3.1. Let α > 1 and 0 < β ≤ α+1
2 . Under the conditions of Theorem 1.1, there exists

positive constants K and M depending on C0, µ̄, ξ̄, η̄, λ̄, α, β, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2 , and Ω such that if
(ρ, u,w, P) is a smooth solution to the problem (1.1)–(1.5) on Ω × (0,T ] satisfying

Eρ(T ) ≤ 3Eρ(0), Eu(T ) + Ew(T ) ≤ 3Kρ̄α, (3.4)

then the following estimates hold:

Eρ(T ) ≤ 2Eρ(0), Eu(T ) + Ew(T ) ≤ 2Kρ̄α, (3.5)

provided
ρ̄ ≥ M(Ω,C0, µ̄, ξ̄, η̄, λ̄, α, β, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2). (3.6)

First, since the density satisfies the transport equation (1.1)1, and using (1.1)4, one has the
following lemma.

Lemma 3.1. Under the conditions of Proposition 3.1, it holds that

ρ̄ ≤ ρ ≤ C0ρ̄, (x, t) ∈ Ω × [0,T ]. (3.7)
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Next, we establish the basic energy inequality of (1.1).

Lemma 3.2. Under the conditions of Proposition 3.1, there exists a positive constant M1 such that

sup
0≤t≤T
ρ̄
(
∥u∥2L2 + ∥w∥2L2

)
+ ρ̄α

∫ T

0

(
∥∇u∥2L2 + ∥∇w∥2L2

)
dt ≤ Cρ̄, (3.8)

and

sup
0≤t≤T
ρ̄eκ(ρ̄)t

(
∥u∥2L2 + ∥w∥2L2

)
+ ρ̄α

∫ T

0
eκ(ρ̄)t

(
∥∇u∥2L2 + ∥∇w∥2L2

)
dt ≤ Cρ̄, (3.9)

provided ρ̄ ≥ M1(Ω,C0, µ̄, ξ̄, η̄, λ̄, α, β, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2), where κ(ρ̄) = κ̄ρ̄α−1 for some constant
κ̄ independent of ρ̄.

Proof. Making the L2-inner product of (1.1)2–(1.1)3 by (u,w)⊤, we obtain after integration by parts that

1
2

d
dt

(
∥
√
ρu∥2L2 + ∥

√
ρw∥2L2

)
+

∫
(µ̄ρα + ξ̄ρβ)|D(u)|2dx

+ 2η̄
∫
ρα|D(w)|2dx + 4ξ̄

∫
ρβ|w|2dx + λ̄

∫
ρα(divw)2dx

= 2ξ̄
∫ (
ρβw · (∇ × u) + w · ∇ × (ρβu)

)
dx

≤ Cρ̄β
(
∥u∥H1∥w∥H1 + ∥u∥

L
2q

q−1
∥w∥

L
2q

q−1
∥∇ρ∥Lq

)
≤ Cρ̄β

(
∥∇u∥2L2 + ∥∇w∥2L2

)
, (3.10)

where we have used (3.4), Poincaré’s inequality, and the fact 2q
q−1 ∈ (2, 3).

Integrating the above inequality over (0,T ] and taking M1 large enough, such that

4Cρ̄β
(
∥∇u∥2L2 + ∥∇w∥2L2

)
≤ µ̄ρ̄α

∫
|D(u)|2dx + 2η̄ρ̄α

∫
|D(w)|2dx,

we obtain

sup
0≤t≤T
ρ̄
(
∥u∥2L2 + ∥w∥2L2

)
+ ρ̄α

∫ T

0

(
∥∇u∥2L2 + ∥∇w∥2L2

)
dt ≤ Cρ̄

(
∥u0∥

2
L2 + ∥w0∥

2
L2

)
≤ Cρ̄. (3.11)

Multiplying (3.10) by eκt and using Poincaré’s inequality, we obtain

1
2

d
dt

(
eκt

(
∥
√
ρu∥2L2 + ∥

√
ρw∥2L2

))
+ eκt

∫
(µ̄ρα + ξ̄ρβ)|D(u)|2dx

+ 2η̄eκt
∫
ρα|D(w)|2dx + 4ξ̄eκt

∫
ρβ|w|2dx + λ̄eκt

∫
ρα(divw)2dx

≤ Cρ̄βeκt
(
∥∇u∥2L2 + ∥∇w∥2L2

)
+
κ

2
eκt

(
∥
√
ρu∥2L2 + ∥

√
ρw∥2L2

)
≤ Cρ̄βeκt

(
∥∇u∥2L2 + ∥∇w∥2L2

)
+

C0κ̄

2
ρ̄αeκt

(
∥∇u∥2L2 + ∥∇w∥2L2

)
. (3.12)

Integrating the above inequality over (0,T ] and taking κ̄ sufficiently small, such that

4C0κ̄ρ̄
α
(
∥∇u∥2L2 + ∥∇w∥2L2

)
≤ µ̄ρ̄α

∫
|D(u)|2dx + 2η̄ρ̄α

∫
|D(w)|2dx,

we complete the proof of Lemma 3.2. □
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Next, we have the following high-order estimate of the velocities, which will be used frequently.

Lemma 3.3. Under the conditions of Proposition 3.1, it holds that

∥u∥H2 ≤ C
(
ρ̄

1
2−α∥
√
ρut∥L2 + ρ̄2−2α∥∇u∥3L2 + ρ̄

β−α∥∇ × w∥L2

)
, (3.13)

∥w∥H2 ≤ C
(
ρ̄

1
2−α∥
√
ρwt∥L2 + ρ̄2−2α∥∇u∥2L2∥∇w∥L2 + ρ̄β−α∥∇u∥L2

)
, (3.14)

∥u∥W2,q ≤ C
(
ρ̄−α∥ρut∥Lq + ρ̄(1−α) 5q−6

q ∥∇u∥
6(q−1)

q

L2 + ρ̄β−α∥∇ × w∥Lq

)
, (3.15)

and
∥w∥W2,q ≤ C

(
ρ̄−α∥ρwt∥Lq + ρ̄(1−α) 5q−6

q ∥∇u∥
5q−6

q

L2 ∥∇w∥L2 + ρ̄β−α∥∇u∥Lq

)
. (3.16)

Proof. Let F = −ρut−ρ(u·∇)u+2ξ(ρ)∇×w in Lemma 2.4. Then, the proof of (3.15) is similar to that of
(3.29) in [29], and we sketch it here for completeness. From (2.9), (3.4), and the Gagliardo-Nirenberg
inequality, we have

∥u∥W2,q ≤ C(ρ̄−α + ρ̄−α−
5q−6

2(q−3)Eρ(0)
5q−6

2(q−3) )(∥ρut∥Lq + ∥ρ(u · ∇)u∥Lq + ∥2ξ(ρ)∇ × w∥Lq)

≤ C(ρ̄−α + ρ̄−α−
5q−6

2(q−3) )(∥ρut∥Lq + ρ̄∥∇u∥
6(q−1)
5q−6

L2 ∥∇u∥
4q−6
5q−6

W1,q + ρ̄
β∥∇ × w∥Lq)

≤
1
2
∥∇u∥W1,q +Cρ̄−α∥ρut∥Lq +Cρ̄(1−α) 5q−6

q ∥∇u∥
6(q−1)

q

L2 +Cρ̄β−α∥∇ × w∥Lq ,

provided ρ̄ ≥ 1. Next, we rewrite (1.1)3 as

µ̄∆w + (µ̄ + λ̄)∇divw = −2µ̄ρ−1∇ρ · D(w) − λ̄ρ−1∇ρ(divw) + ρwt + ρ(u · ∇)w + 4ξ(ρ)w − 2ξ(ρ)∇ × u.

The standard Lp-estimate and (3.4) yield that

∥w∥W2,q ≤ Cρ̄−α(∥ρwt∥Lq + ∥ρ(u · ∇)w∥Lq + ∥2ξ(ρ)∇ × w∥Lq)

≤ Cρ̄−α(∥ρwt∥Lq + ρ̄∥∇u∥L2∥∇w∥
q

5q−6

L2 ∥∇w∥
4q−6
5q−6

W1,q + ρ̄
β∥∇ × w∥Lq)

≤
1
2
∥∇w∥W1,q +Cρ̄−α∥ρwt∥Lq +Cρ̄(1−α) 5q−6

q ∥∇u∥
5q−6

q

L2 ∥∇w∥L2 +Cρ̄β−α∥∇u∥Lq .

The proof of (3.13) and (3.14) are similar to those of (3.15) and (3.16), respectively, and thus omitted.
Thus, the proof is complete. □

We are now ready to derive the estimates of Eu(T ) and Ew(T ).

Lemma 3.4. Under the conditions of Proposition 3.1, there exists a positive constant M2 such that

Eu(T ) + Ew(T ) ≤ 2Kρ̄α, (3.17)

sup
t∈[0,T ]

ρ̄αt
(
∥∇u∥2L2 + ∥∇w∥2L2

)
+

∫ T

0
t
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
dt ≤ Cρ̄, (3.18)

sup
t∈[0,T ]

ρ̄αt2
(
∥∇u∥2L2 + ∥∇w∥2L2

)
+

∫ T

0
t2

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
dt ≤ Cρ̄, (3.19)

and

sup
t∈[0,T ]

ρ̄αeκ(ρ̄)t
(
∥∇u∥2L2 + ∥∇w∥2L2

)
+

∫ T

0
eκ(ρ̄)t

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
dt ≤ Cρ̄α, (3.20)

provided ρ̄ ≥ M2(Ω,C0, µ̄, ξ̄, η̄, λ̄, α, β, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2).
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Proof. Making the L2-inner product of (1.1)2–(1.1)3 with (ut,wt)⊤ and integrating by parts, we have

1
2

d
dt

(∫ (
µ̄ρα + ξ̄ρβ

)
|D(u)|2dx + 2η̄

∫
ρα|D(w)|2dx + λ̄

∫
ρα(divw)2dx

)
+ 2ξ̄

d
dt

∫
ρβ|w|2dx +

∫
ρ(|ut|

2 + |wt|
2)dx

= −

∫
ρu · ∇u · utdx −

∫
ρu · ∇w · wtdx + 2ξ̄

∫
ρβ (ut · ∇ × w + wt · ∇ × u) dx

+
1
2

∫
(αµ̄ρα−1 + βξ̄ρβ−1)ρt|D(u)|2dx +

η̄α

2

∫
ρα−1ρt|D(w)|2dx

+
λ̄α

2

∫
ρα−1ρt(divw)2dx + 2ξ̄β

∫
ρβ−1ρt|w|2dx

:=
7∑

j=1

I j. (3.21)

It follows from the Hölder and Sobolev inequalities that

I1 + I2 = −

∫
ρu · ∇u · utdx −

∫
ρu · ∇w · wtdx

≤ Cρ̄
1
2 ∥u∥L6

(
∥
√
ρut∥L2∥∇u∥L3 + ∥

√
ρwt∥L2∥∇w∥L3

)
≤ Cρ̄

1
2 ∥
√
ρut∥L2∥∇u∥

3
2
L2∥∇u∥

1
2
H1 +Cρ̄

1
2 ∥
√
ρwt∥L2∥∇u∥L2∥∇w∥

1
2
L2∥∇w∥

1
2
H1

≤ Cρ̄
1
2 ∥
√
ρut∥L2∥∇u∥

3
2
L2

(
ρ̄

1
2−α∥
√
ρut∥L2 + ρ̄2−2α∥∇u∥3L2 + ρ̄

β−α∥∇w∥L2

) 1
2

+Cρ̄
1
2 ∥
√
ρwt∥L2∥∇u∥L2∥∇w∥

1
2
L2

(
ρ̄

1
2−α∥
√
ρwt∥L2 + ρ̄2−2α∥∇u∥2L2∥∇w∥L2 + ρ̄β−α∥∇u∥L2

) 1
2

≤
1
6

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+Cρ̄3−2α

(
∥∇u∥6L2 + ∥∇u∥4L2∥∇w∥2L2

)
+Cρ̄1+β−α∥∇u∥3L2∥∇w∥L2

≤
1
6

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+C

(
ρ̄3−2α + ρ̄1+β−α

)
∥∇u∥2L2 , (3.22)

where we have also used (3.13), (3.14), and ρ̄ > 1. Next, we have

I3 = 2ξ̄
∫
ρβ (ut · ∇ × w + wt · ∇ × u) dx

≤ Cρ̄β−
1
2
(
∥
√
ρut∥L2∥∇w∥L2 + ∥

√
ρwt∥L2∥∇u∥L2

)
≤

1
6

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+Cρ̄2β−1

(
∥∇u∥2L2 + ∥∇w∥2L2

)
. (3.23)

Using (1.1)1, (3.13), and the Hölder and Sobolev inequalities, we get

I4 = −
1
2

∫
(αµ̄ρα−1 + βξ̄ρβ−1)u · ∇ρ|D(u)|2dx

≤ Cρ̄α−1∥u∥
L

2q
q−2
∥∇ρ∥Lq∥∇u∥2L4

≤ Cρ̄α−1∥∇u∥
1
2
L2∥∇

2u∥
3
2
L2
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≤ Cρ̄α−1∥∇u∥
1
2
L2

(
ρ̄

1
2−α∥
√
ρut∥L2 + ρ̄2−2α∥∇u∥3L2 + ρ̄

β−α∥∇w∥L2

) 3
2

≤
1
6
∥
√
ρut∥

2
L2 +Cρ̄−1−2α∥∇u∥2L2 + ρ̄

2−2α∥∇u∥5L2 +Cρ̄
3
2β−

α
2−1∥∇u∥

1
2
L2∥∇w∥

3
2
L2

≤
1
6
∥
√
ρut∥

2
L2 +Cρ̄2−2α∥∇u∥2L2 +Cρ̄

3
2β−

α
2−1∥∇u∥

1
2
L2∥∇w∥

3
2
L2 . (3.24)

Similarly, it follows from (1.1)1 and (3.14) that

I5 + I6 =
η̄α

2

∫
ρα−1ρt|D(w)|2dx +

λ̄α

2

∫
ρα−1ρt(divw)2dx

≤ Cρ̄α−1∥u∥
L

2q
q−2
∥∇ρ∥Lq∥∇w∥2L4

≤ Cρ̄α−1∥∇w∥
1
2
L2∥∇

2w∥
3
2
L2

≤ Cρ̄α−1∥∇w∥
1
2
L2

(
ρ̄

1
2−α∥
√
ρwt∥L2 + ρ̄2−2α∥∇u∥2L2∥∇w∥L2 + ρ̄β−α∥∇u∥L2

) 3
2

≤
1
6
∥
√
ρwt∥

2
L2 +Cρ̄−1−2α∥∇w∥2L2 + ρ̄

2−2α∥∇u∥3L2∥∇w∥2L2 +Cρ̄
3
2β−

α
2−1∥∇u∥

3
2
L2∥∇w∥

1
2
L2

≤
1
6
∥
√
ρwt∥

2
L2 +Cρ̄2−2α∥∇w∥2L2 +Cρ̄

3
2β−

α
2−1∥∇u∥

3
2
L2∥∇w∥

1
2
L2 . (3.25)

Next, it follows from (1.1)1 and Poincaré’s inequality that

I7 ≤ Cρ̄α−1∥u∥
L

2q
q−2
∥∇ρ∥Lq∥w∥2L4 ≤ Cρ̄α−1∥w∥

1
2
L2∥∇w∥

3
2
L2 ≤ Cρ̄α−1∥∇w∥2L2 . (3.26)

Substituting (3.22)–(3.25) into (3.21), we obtain

1
2

d
dt

(∫ (
µ̄ρα + ξ̄ρβ

)
|D(u)|2dx + 2η̄

∫
ρα|D(w)|2dx + λ̄

∫
ρα(divw)2dx

)
+ 2ξ̄

d
dt

∫
ρβ|w|2dx +

1
2

∫
ρ(|ut|

2 + |wt|
2)dx

≤ C
(
ρ̄3−2α + ρ̄1+β−α

)
∥∇u∥2L2 +Cρ̄2β−1

(
∥∇u∥2L2 + ∥∇w∥2L2

)
+Cρ̄2−2α∥∇u∥2L2

+Cρ̄
3
2β−

α
2−1∥∇u∥

1
2
L2∥∇w∥

3
2
L2 +Cρ̄2−2α∥∇w∥2L2 +Cρ̄

3
2β−

α
2−1∥∇u∥

3
2
L2∥∇w∥

1
2
L2 +Cρ̄α−1∥∇w∥2L2

≤ C
(
ρ̄3−2α + ρ̄1+β−α + ρ̄2β−1 + ρ̄α−1

) (
∥∇u∥2L2 + ∥∇w∥2L2

)
. (3.27)

Integrating (3.27) with respect to t over (0,T ], we obtain from (3.7) and (3.8) that

sup
t∈[0,T ]

ρ̄α
(
∥∇u∥2L2 + ∥∇w∥2L2

)
+

∫ T

0

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
dt

≤ C1ρ̄
α +C

(
ρ̄3−2α + ρ̄1+β−α + ρ̄2β−1 + ρ̄α−1

) ∫ T

0

(
∥∇u∥2L2 + ∥∇w∥2L2

)
dt

≤ C1ρ̄
α +C2

(
ρ̄4−3α + ρ̄2+β−2α + ρ̄2β−α + 1

)
.

Taking K ≥ C1 and M2 sufficiently large, such that

M2 ≥ M1, and C2

(
ρ̄4−3α + ρ̄2+β−2α + ρ̄2β−α + 1

)
≤ C1ρ̄

α, (3.28)
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we complete the proof of (3.17).
For simplicity, we denote

E(t) :=
∫ (
µ̄ρα + ξ̄ρβ

)
|D(u)|2dx + 2η̄

∫
ρα|D(w)|2dx + λ̄

∫
ρα(divw)2dx + 4ξ̄

∫
ρβ|w|2dx. (3.29)

It is easy to see that there exists a positive constant C independent of ρ̄, such that

C−1ρ̄α
(
∥∇u∥2L2 + ∥∇w∥2L2

)
≤ E(t) ≤ Cρ̄α

(
∥∇u∥2L2 + ∥∇w∥2L2

)
, (3.30)

and (3.27) can be rewritten as

d
dt
E(t) +

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
≤ C

(
ρ̄3−2α + ρ̄1+β−α + ρ̄2β−1 + ρ̄α−1

) (
∥∇u∥2L2 + ∥∇w∥2L2

)
. (3.31)

Multiplying (3.31) by tk for k = 1, 2, we obtain

d
dt

(tkE(t)) + tk
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
≤ C(tk + tk−1)

(
ρ̄3−2α + ρ̄1+β−α + ρ̄2β−1 + ρ̄α−1

) (
∥∇u∥2L2 + ∥∇w∥2L2

)
≤ C(tk + tk−1)ρ̄α

(
∥∇u∥2L2 + ∥∇w∥2L2

)
. (3.32)

Integrating (3.32) with respect to t over (0,T ] and using (3.9), we obtain (3.18) and (3.19).
On the other hand, multiplying (3.31) by eκ(ρ̄)t, we get

d
dt

(
eκ(ρ̄)tE(t)

)
+ eκ(ρ̄)t

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
≤ Ceκ(ρ̄)t(1 + κ̄ρ̄α−1)

(
ρ̄3−2α + ρ̄1+β−α + ρ̄2β−1 + ρ̄α−1

)
≤ Ceκ(ρ̄)t

(
ρ̄2−α + ρ̄β + ρ̄α+2β−2 + ρ̄2α−2

) (
∥∇u∥2L2 + ∥∇w∥2L2

)
. (3.33)

Integrating (3.33) with respect to t over (0,T ] and using (3.9), we obtain (3.20). This completes the
proof of Lemma 3.4. □

Remark 3.1. When we complete the proof of Proposition 3.1, all the a priori estimates, including (3.9)
and (3.20), hold when t ∈ R+. This leads to the exponentially stability (1.10).

In order to close the estimate of Eρ, we need the following time-weight estimates.

Lemma 3.5. Under the conditions of Proposition 3.1, there exists a positive constant M3 such that

sup
0≤t≤T

t
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+ ρ̄α

∫ T

0
t
(
∥∇ut∥

2
L2 + ∥∇wt∥

2
L2

)
dt ≤ Cρ̄α, (3.34)

and

sup
0≤t≤T

t2
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+ ρ̄α

∫ T

0
t2

(
∥∇ut∥

2
L2 + ∥∇wt∥

2
L2

)
dt ≤ Cρ̄. (3.35)

Provided ρ̄ ≥ M3(Ω,C0, µ̄, ξ̄, η̄, λ̄, α, β, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2).
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Proof. Taking the t-derivative of (1.1)2–(1.1)3 and multiply the resulting equation by (tut, twt)⊤, after
integration by parts, we obtain

t
2

d
dt

∫
ρ(|ut|

2 + |wt|
2)dx + 2t

∫ (
µ̄ρα + ξ̄ρβ

)
|D(ut)|2dx

+ 4ξ̄t
∫
ρβ|wt|

2dx + 2η̄t
∫
ρα|D(wt)|2dx + λ̄t

∫
ρα(divwt)2dx

= t
∫

u · ∇ρ(|ut|
2 + |wt|

2)dx − t
∫
ρut · ∇u · utdx − t

∫
ρut · ∇w · wtdx

+ t
∫

(u · ∇ρ)(u · ∇u · ut)dx + t
∫

(u · ∇ρ)(u · ∇w · wt)dx + 4βξ̄t
∫
ρβ−1(u · ∇ρ)w · wtdx

+ 2t
∫ (
αµ̄ρα−1 + βξ̄ρβ−1

)
(u · ∇ρ)D(u) : ∇utdx

+ 2αη̄t
∫
ρα−1(u · ∇ρ)D(w) : ∇wtdx + αλ̄t

∫
ρα−1(u · ∇ρ)divwdivwtdx

− 2βξ̄t
∫
ρβ−1(u · ∇ρ) (ut · (∇ × w) + wt · (∇ × u)) dx + 2ξ̄t

∫
ρβ (ut · (∇ × wt) + wt · (∇ × ut)) dx

=:
11∑
i=1

Ji, (3.36)

where the terms Ji (i = 1, · · · , 11) can be estimated as follows.

J1 ≤ Ct
∫
|∇ρ · u|(|ut|

2 + |wt|
2)dx

≤ Ct∥∇ρ∥Lq∥u∥
L

2q
q−2

(∥ut∥
2
L4 + ∥wt∥

2
L4)

≤ Ctρ̄−
1
4 ∥∇ρ∥Lq∥u∥

q−3
q

L2 ∥∇u∥
3
q

L2

(
∥
√
ρut∥

1
2
L2∥∇ut∥

3
2
L2 + ∥

√
ρwt∥

1
2
L2∥∇wt∥

3
2
L2

)
≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄−3α−1∥∇ρ∥4Lq∥∇u∥

12
q

L2 (∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2)

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄−3α−1∥∇u∥

12
q

L2 (∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2), (3.37)

J2 + J3 ≤ Ct
∫

(|ρ∇u||ut|
2 + |ρ∇w||ut||wt|)dx

≤ Ctρ̄
1
2 ∥
√
ρut∥L2(∥∇u∥L3∥ut∥L6 + ∥∇w∥L3∥wt∥L6)

≤ Ctρ̄
1
2 ∥
√
ρut∥L2(∥∇u∥

1
2
L2∥∇u∥

1
2

L6∥∇ut∥L2 + ∥∇w∥
1
2
L2∥∇w∥

1
2

L6∥∇wt∥L2)

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄1−α∥

√
ρut∥

2
L2(∥∇u∥L2∥∇u∥H1 + ∥∇w∥L2∥∇w∥H1)

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄

3
2−2α∥∇u∥L2∥

√
ρut∥

3
L2 +Ctρ̄3−3α∥∇u∥4L2∥

√
ρut∥

2
L2

+Ctρ̄1+β−2α∥∇u∥L2∥∇w∥L2∥
√
ρut∥

2
L2 +Ctρ̄

3
2−2α∥∇w∥L2∥

√
ρut∥

2
L2∥
√
ρwt∥L2

+Ctρ̄3−3α∥∇u∥2L2∥∇w∥2L2∥
√
ρut∥

2
L2 , (3.38)
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where we have used (3.13) and (3.14). Similarly, we have

J4 + J5 ≤ Ct
∫
|∇ρ||u|2(|∇u||ut| + |∇w||wt|)dx

≤ Ct∥∇ρ∥Lq∥u∥2L6

(
∥∇u∥

L
2q

q−2
∥ut∥L6 + ∥∇w∥

L
2q

q−2
∥wt∥L6

)
≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄−α∥∇ρ∥2Lq∥∇u∥

6(q−1)
q

L2 ∥∇u∥
6
q

H1

+Ctρ̄−α∥∇ρ∥2Lq∥∇u∥4L2∥∇w∥
2− 6

q

L2 ∥∇w∥
6
q

H1

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄−α+

6
q ( 1

2−α)
∥∇u∥

6(q−1)
q

L2 ∥
√
ρut∥

6
q

L2

+Ctρ−α+2(1−α) 6
q ∥∇u∥

6+ 12
q

L2 +Ctρ̄−α+
6
q (β−α)
∥∇u∥

6(q−1)
q

L2 ∥∇w∥
6
q

L2

+Ctρ̄−α+
6
q ( 1

2−α)
∥∇u∥4L2∥∇w∥

2− 6
q

L2 ∥
√
ρwt∥

6
q

L2

+Ctρ−α+2(1−α) 6
q ∥∇u∥

4+ 12
q

L2 ∥∇w∥2L2 +Ctρ̄−α+
6
q (β−α)
∥∇u∥

4+ 6
q

L2 ∥∇w∥
2− 6

q

L2

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ct

(
ρ̄−α+2(1−α) 6

q + ρ̄−α+
6
q (β−α)

)
∥∇u∥4L2 (3.39)

+Ctρ̄−α+
6
q ( 1

2−α)
(
∥∇u∥2L2(∥

√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2) + ∥∇u∥

4+ 6
q−3

L2 (∥∇u∥2L2 + ∥∇w∥2L2)
)
,

J6 + J7 + J8 + J9 + J10

≤ Ctρ̄α−1
∫
|u||∇ρ| (|w||wt| + |∇w||∇wt| + |∇u||∇ut| + |∇w||ut| + |∇u||wt|) dx

≤ Ctρ̄α−1∥∇ρ∥Lq∥u∥
L

3q
q−3

(∥∇u∥L6∥∇ut∥L2 + ∥∇w∥L6∥∇wt∥L2 + ∥∇u∥L2∥wt∥L6 + ∥∇w∥L2∥ut∥L6)

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄α−2∥∇ρ∥2Lq∥∇u∥

3− 6
q

L2 ∥∇u∥
6
q−1

H1 (∥∇u∥2H1 + ∥∇w∥2H1)

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 +Ctρ̄−

3
2+( 1

2−α) 6
q ∥∇u∥

3− 6
q

L2 ∥
√
ρut∥

1+ 6
q

L2 +Ctρ̄−α+2(1−α) 6
q ∥∇u∥4L2

+Ctρ̄β−2+(β−α) 6
q ∥∇u∥

3− 6
q

L2 ∥∇w∥
1+ 6

q

L2 +Ctρ̄−
3
2+( 1

2−α) 6
q ∥∇u∥

3− 6
q

L2 ∥
√
ρut∥

6
q−1

L2 ∥
√
ρwt∥

2
L2

+Ctρ̄β−2+(β−α) 6
q ∥∇u∥

5− 6
q

L2 ∥∇w∥
6
q−1

L2 . (3.40)

Next, taking M3 large enough, such that

M3 ≥ M2, and Cρ̄β ≤
1
10

min{µ̄, η̄}ρ̄α,

we have

J11 ≤ Ctρ̄β(∥ut∥L2∥∇wt∥L2 + ∥wt∥L2∥∇ut∥L2)
≤ Ctρ̄β∥∇ut∥L2∥∇wt∥L2

≤ Ctρ̄β(∥∇ut∥
2
L2 + ∥∇wt∥

2
L2)

≤
µ̄

10
tρ̄α∥∇ut∥

2
L2 +

η̄

10
tρ̄α∥∇wt∥

2
L2 . (3.41)
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Substituting (3.37)–(3.41) into (3.36), then using (3.4) and (3.8), we deduce

d
dt

(
t
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

))
+ tρ̄α

(
µ̄∥∇ut∥

2
L2 + η̄∥∇wt∥

2
L2

)
≤ ∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2 +Ct

(
ρ̄

3
2−2α + ρ̄−

3
2+( 1

2−α) 6
q
)

(∥∇u∥L2 + ∥∇w∥L2)
(
∥
√
ρut∥

3
L2 + ∥

√
ρwt∥

3
L2

)
+Ct

(
ρ̄3−3α + ρ̄1+β−2α + ρ̄−α+

6
q ( 1

2−α)
) (
∥∇u∥2L2 + ∥∇w∥2L2

) (
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+Ct

(
ρ̄−α+2(1−α) 6

q + ρ̄−α+
6
q (β−α) + ρ̄−α+

6
q ( 1

2−α) + ρ̄β−2+(β−α) 6
q
) (
∥∇u∥4L2 + ∥∇w∥4L2

)
, (3.42)

due to q ∈ (3, 6) and (3.4). Thus, Gronwall’s inequality yields

sup
0≤t≤T

t
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+ ρ̄α

∫ T

0
t
(
∥∇ut∥

2
L2 + ∥∇wt∥

2
L2

)
dt

≤ C
∫ T

0

(
t
(
ρ̄−α+2(1−α) 6

q + ρ̄−α+
6
q (β−α) + ρ̄−α+

6
q ( 1

2−α) + ρ̄β−2+(β−α) 6
q
) (
∥∇u∥4L2 + ∥∇w∥4L2

)
+ ∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
dt

· exp
{(
ρ̄

3
2−2α + ρ̄−

3
2+( 1

2−α) 6
q
) ∫ T

0
(∥∇u∥L2 + ∥∇w∥L2)

(
∥
√
ρut∥L2 + ∥

√
ρwt∥L2

)
dt

}
· exp

{(
ρ̄3−3α + ρ̄1+β−2α + ρ̄−α+

6
q ( 1

2−α)
) ∫ T

0

(
∥∇u∥2L2 + ∥∇w∥2L2

)
dt

}
. (3.43)

Now we estimate the terms on the right-hand side of (3.43). By (3.4), (3.8), and (3.18), we have∫ T

0
t
(
∥∇u∥4L2 + ∥∇w∥4L2

)
dt ≤ sup

t∈[0,T ]
t(∥∇u∥2L2 + ∥∇w∥2L2)

∫ T

0
(∥∇u∥2L2 + ∥∇w∥2L2)dt ≤ Cρ̄2(1−α). (3.44)

Next, Hölder’s inequality yields∫ T

0
(∥∇u∥L2 + ∥∇w∥L2)

(
∥
√
ρut∥L2 + ∥

√
ρwt∥L2

)
dt

≤

(∫ T

0
(∥∇u∥2L2 + ∥∇w∥2L2)dt

) 1
2
(∫ T

0

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
dt

) 1
2

≤ Cρ̄
1
2 . (3.45)

Inserting (3.44)–(3.45) into (3.43), one gets

sup
0≤t≤T

t
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+ ρ̄α

∫ T

0
t
(
∥∇ut∥

2
L2 + ∥∇wt∥

2
L2

)
dt ≤ Cρ̄α exp {Cρ̄−A} ≤ Cρ̄α. (3.46)

For some constant A > 0. This completes the proof of (3.34).
On the other hand, multiplying (3.42) by t, one has

d
dt

(
t2

(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

))
+ t2ρ̄α

(
µ̄∥∇ut∥

2
L2 + η̄∥∇wt∥

2
L2

)
≤ Ct(∥

√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2) +Ct2

(
ρ̄

3
2−2α + ρ̄−

3
2+( 1

2−α) 6
q
)

(∥∇u∥L2 + ∥∇w∥L2)
(
∥
√
ρut∥

3
L2 + ∥

√
ρwt∥

3
L2

)
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+Ct2
(
ρ̄3−3α + ρ̄1+β−2α + ρ̄−α+

6
q ( 1

2−α)
) (
∥∇u∥2L2 + ∥∇w∥2L2

) (
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+Ct2

(
ρ̄−α+2(1−α) 6

q + ρ̄−α+
6
q (β−α) + ρ̄−α+

6
q ( 1

2−α) + ρ̄β−2+(β−α) 6
q
) (
∥∇u∥4L2 + ∥∇w∥4L2

)
. (3.47)

Applying Gronwall’s inequality yields

sup
0≤t≤T

t2
(
∥
√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2

)
+ ρ̄α

∫ T

0
t2

(
∥∇ut∥

2
L2 + ∥∇wt∥

2
L2

)
dt

≤ C
∫ T

0

(
t2

(
ρ̄−α+2(1−α) 6

q + ρ̄−α+
6
q (β−α) + ρ̄−α+

6
q ( 1

2−α) + ρ̄β−2+(β−α) 6
q
) (
∥∇u∥4L2 + ∥∇w∥4L2

)
+ t(∥

√
ρut∥

2
L2 + ∥

√
ρwt∥

2
L2)

)
dt · exp {ρ̄−A}

≤ Cρ̄ · exp {ρ̄−A}

≤ Cρ̄, (3.48)

which completes the proof of (3.35). □

Finally, we are in a position to close the a priori assumption of Eρ, the key observation is that
∥∇u∥L1

t L∞x is uniformly bounded with respect to time T .

Lemma 3.6. Under the conditions of Proposition 3.1, there exists a positive constant M4 such that

Eρ(T ) ≤ 2Eρ(0), (3.49)

provided ρ̄ ≥ M4(Ω,C0, µ̄, ξ̄, η̄, λ̄, α, β, ∥∇ρ0∥Lq , ∥u0∥H2 , ∥w0∥H2).

Proof. Applying the operator ∇ to (1.1)1, we get

∇ρt + u · ∇2ρ + ∇u · ∇ρ = 0. (3.50)

Making the L2-inner product of (3.50) with |∇ρ|q−2∇ρ and then integrating by parts, we have

1
q

d
dt
∥∇ρ∥

q
Lq = −

∫
∇ρ · ∇u · ∇ρ|∇ρ|q−2dx ≤ C∥∇u∥L∞∥∇ρ∥

q
Lq . (3.51)

It follows from Gronwall’s inequality that

∥∇ρ∥Lq ≤ ∥∇ρ0∥Lq · exp
{
C

∫ T

0
∥∇u∥L∞dt

}
. (3.52)

Therefore, if we can prove the estimate ∫ T

0
∥∇u∥L∞dt ≤ Cρ̄−B, (3.53)

for some constant B > 0, then by taking M4 sufficiently large such that M4 ≥ M3 and Cρ̄−B ≤ ln 2, we
complete the proof of Lemma 3.6.
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Adding (3.15) and (3.16) together, we get

∥u∥W2,q + ∥w∥W2,q ≤ C
(
ρ̄−α(∥ρut∥Lq + ∥ρwt∥Lq) + ρ̄(1−α) 5q−6

q ∥∇u∥
5q−6

q

L2 (∥∇u∥L2 + ∥∇w∥L2)
)
. (3.54)

It follows from (3.8), (3.17), and (3.54) that∫ T

0
∥∇u∥L∞dt ≤ C

∫ T

0
∥∇u∥W1,qdt

≤ Cρ̄−α
∫ T

0
(∥ρut∥Lq + ∥ρwt∥Lq) dt +Cρ̄(1−α) 5q−6

q

∫ T

0
∥∇u∥

5q−6
q

L2 (∥∇u∥L2 + ∥∇w∥L2)dt

≤ Cρ̄−α
∫ T

0
(∥ρut∥Lq + ∥ρwt∥Lq) dt +Cρ̄(1−α) 5q−6

q

∫ T

0
∥∇u∥2L2dt

≤ Cρ̄−α
∫ T

0
(∥ρut∥Lq + ∥ρwt∥Lq) dt +Cρ̄

6(q−1)
q (1−α). (3.55)

Using the Gagliardo-Nirenberg inequality, (3.34), and (3.35), we have∫ T

0
(∥ρut∥Lq + ∥ρwt∥Lq) dt ≤ Cρ̄

5q−6
4q

∫ T

0

(
∥
√
ρut∥

6−q
2q

L2 ∥∇ut∥
3(q−2)

2q

L2 + ∥
√
ρwt∥

6−q
2q

L2 ∥∇wt∥
3(q−2)

2q

L2

)
dt

≤ Cρ̄
5q−6

4q

(
sup

0≤t≤min{1,T }
t∥
√
ρut∥

2
L2dt

) 6−q
4q

·

(∫ min{1,T }

0
t∥∇ut∥

2
L2dt

) 3(q−2)
4q

(∫ min{1,T }

0
t−

2q
q+6 dt

) q+6
4q

+Cρ̄
5q−6

4q

(
sup

min{1,T }≤t≤T
t2∥
√
ρut∥

2
L2dt

) 6−q
4q

·

(∫ T

min{1,T }
t2∥∇ut∥

2
L2dt

) 3(q−2)
4q

(∫ T

min{1,T }
t−

4q
q+6 dt

) q+6
4q

+Cρ̄
5q−6

4q

(
sup

0≤t≤min{1,T }
t∥
√
ρwt∥

2
L2dt

) 6−q
4q

·

(∫ min{1,T }

0
t∥∇wt∥

2
L2dt

) 3(q−2)
4q

(∫ min{1,T }

0
t−

2q
q+6 dt

) q+6
4q

+Cρ̄
5q−6

4q

(
sup

min{1,T }≤t≤T
t2∥
√
ρwt∥

2
L2dt

) 6−q
4q

·

(∫ T

min{1,T }
t2∥∇wt∥

2
L2dt

) 3(q−2)
4q

(∫ T

min{1,T }
t−

4q
q+6 dt

) q+6
4q

≤ Cρ̄
5q−6

4q +α
6−q
4q +Cρ̄

5q−6
4q +

6−q
4q +(1−α) 3(q−2)

4q

≤ Cρ̄
5q−6

4q +α
6−q
4q . (3.56)
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Combining (3.55) and (3.56), we obtain∫ T

0
∥∇u∥L∞dt ≤ Cρ̄

5q−6
4q +α

6−q
4q −α +Cρ̄

6(q−1)
q (1−α)

≤ Cρ̄−D, (3.57)

where

D = min
{

5q − 6
4q

(α − 1),
6(q − 1)

q
(α − 1)

}
.

Thus, we complete the proof. □

At last, combining Lemmata 3.4 and 3.6 then taking M = M4, we have proved Proposition 3.1. With
the help of Lemmata 3.1–3.6, Theorem 1.1 can be established through a standard bootstrap argument
(see [29]). We omit it here.
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