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Abstract: This paper addresses the numerical method for the generalized Allen—Cahn equation fea-
turing nonlinear mobility and a convection term. We propose a linear second—order finite difference
scheme that adheres to the discrete maximum bound principle (MBP). The scheme is discretized using
the leapfrog finite difference approach, incorporating a stabilized term in time, an upwind scheme for
the convection term, and a central—difference scheme for the diffusion term. It is demonstrated that
the discrete MBP holds under reasonable constraints on both the time step size and the coefficient of
the stabilized term. Additionally, we provide an L™—error estimate for our proposed scheme. Several
numerical experiments are conducted to validate our theoretical findings.
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1. Introduction

In this paper, we investigate the numerical method for the generalized Allen—Cahn equation

(;—(f+v-V¢:M(¢)(8A¢— iF’((ﬁ)), xeQ, te(0,T],

¢(x,0) = ¢o(x), x€Q,

subject to appropriate boundary conditions, including periodic boundary conditions, homogeneous
Dirichlet boundary conditions, and homogeneous Neumann boundary conditions. Here,  represents
a bounded domain in RY (d = 1,2,3) with C'=smooth boundary 9Q2. The diffuse interface width
parameter is positive, and 7 > 0O denotes the terminal time. The function M(¢) is a nonnegative
mobility functional, while F(¢) = 1(¢* — 1)? serves as a double-well potential. Additionally, v(x, f)
signifies a given velocity field.

(1.1)
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Recently, the Allen—Cahn equation has been extensively employed to model various phenomena
such as mean curvature flow [1,2], image segmentation [3], crystalline solids [4], and numerous issues
within materials science. Notably, it has emerged as a fundamental model equation for the diffuse in-
terface approach developed to examine phase transitions and interfacial dynamics in materials science;
see references [5,6]. In these contexts, an involved velocity field plays a crucial role in the Allen—Cahn
phase equation. This aspect serves as one of our motivations for studying this generalized model. An-
other motivation stems from the fact that nonlinear degenerate mobility can more accurately capture
the physics of phase separation since pure phases must exhibit vanishing mobility (see [7, 8]).

In contrast to the conventional Allen—Cahn equation [4], the generalized Allen—Cahn equation (1.1)
exhibits enhanced complexity due to the incorporation of an additional velocity field and nonlinear mo-
bility. Nevertheless, it maintains the maximum bound principle (MBP) akin to its standard counterpart;
specifically, if ligolloc < 1, then ll¢(-, Nllow < 1,V € (0, T1.

Given the inherent difficulty in obtaining exact solutions for these phase—field models, numerical
methodologies play an important role in their investigation. Over recent decades, substantial research
efforts have been devoted to developing numerical techniques that guarantee MBP and other intrinsic
properties for both the Allen—Cahn equation and more generalized phase—field models. Notably, Shen
and Tang et al. [9, 10] introduced MBP—preserving, energy—stable implicit—explicit schemes for both
standard and generalized Allen—Cahn equations. Hou et al. [11] developed a second—order finite differ-
ence scheme with dual parameters that ensures MBP preservation and energy stability. Furthermore,
Hou and Leng [12] investigated a Crank—Nicolson/Adams—Bashforth finite difference scheme for the
standard Allen—Cahn equation, demonstrating its capability to maintain MBP and energy stability. Ad-
ditionally, Hou et al. [13] proposed a linear stabilized Crank—Nicolson (CN) scheme that preserves
MBP and energy stability for the standard Allen—Cahn equation with general mobility.

Zhu et al. [14] conducted a comprehensive investigation into the nonuniform second—order back-
ward differentiation formula (BDF2) applied to the Allen—Cahn model incorporating general potential
and variable mobility. Under moderate temporal step constraints and specific time—step ratio condi-
tions, the nonuniform BDF2 scheme has been rigorously demonstrated to satisfy the discrete MBP.
The innovative kernel recombination methodology and MBP—preserving iterative approach have made
significant contributions to this analytical framework. Ye et al. [15] investigated the generalized Allen—
Cahn-type phase—field crystal model with face—centered—cubic ordering structure (PFC-FCC). They
implemented the operator splitting method for this model and developed an efficient second—order
numerical scheme, employing the Fourier spectral method for spatial discretization and the strong sta-
bility preserving Runge—Kutta (SSP-RK) method for temporal discretization. Shen and Zhang [16]
utilized a first—order accurate stabilized implicit—explicit time discretization scheme combined with
a fourth—order accurate finite difference method to solve a generalized Allen—Cahn equation coupled
with passive convection under a given incompressible velocity field. They demonstrated that the dis-
crete MBP holds under appropriate mesh size and time step constraints, and this finding is extendable
to the construction of bound—preserving schemes for any passive convection scenario with an incom-
pressible velocity field. Yang [17] investigated the stabilized semi—implicit temporal scheme and the
splitting scheme for the Allen—Cahn equation, which emerges from phase transition phenomena in
materials science. Tang [18] developed a second—order accurate, energy—stable, and MBP—preserving
scheme for the Allen—Cahn equation with a general mobility, utilizing the stabilized exponential scalar
auxiliary variable (SESAV) methodology. Hou et al. [19] proposed a linear second—order numerical ap-
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proach for the Allen—Cahn equation with general mobility. Their scheme integrates two—step first— and
second—order backward differentiation formulas for temporal approximation with central finite differ-
ence for spatial discretization, supplemented by two additional stabilization terms. Li et al. [20] demon-
strated that the classical fourth—order accurate compact finite difference scheme, when combined with
high—order strong stability preserving time discretizations for convection—diffusion problems, satisfies
a weak monotonicity property. This property indicates that a straightforward limiter can enforce the
bound—preserving property without compromising conservation or high—order accuracy. Ju et al. [21]
developed and analyzed novel first— and second—order stabilized exponential—scalar auxiliary variable
(SAV) schemes for a class of Allen—Cahn—type equations. These schemes are proven to simultaneously
preserve the energy dissipation law and MBP in discrete settings. Furthermore, optimal error estimates
for the numerical solutions are rigorously derived for both schemes. Yang et al. [22] implemented a
kth-order single—step temporal scheme combined with a lumped mass finite element method in space,
utilizing piecewise rth—order polynomials and Gauss—Lobatto quadrature. They introduced a cut—off
post—processing technique to eliminate values that violate the MBP at finite element nodal points at
each time level, thereby guaranteeing that the numerical solution adheres to the MBP. Zhang et al. [23]
developed and analyzed a class of up to fourth—order maximum principle preserving integrators for
the Allen—Cahn equation, addressing the critical question of whether high—order temporal integrators
can maintain the MBP. Zhang et al. [24] introduced a class of explicit structure—preserving schemes
up to third—order precision for solving the modified Allen—Cahn equation, incorporating either a non-
local Lagrange multiplier or a local-nonlocal Lagrange multiplier. Zhang and Du [25] investigated
numerical approximations for Allen—Cahn-type diffuse interface models, with particular emphasis on
the models’ performance in approaching the sharp interface limit and the efficacy of high—order dis-
cretization schemes. They also conducted a comparative analysis of various spatial discretizations of
an energy functional within the diffuse interface framework. Nan and Song [26] developed high—order
schemes that maintain the MBP. These schemes are derived by integrating scalar variables with ex-
plicit strong stability preserving Runge—Kutta methods and are specifically designed for a particular
class of gradient flows. Yang et al. [27] proposed and rigorously analyzed an efficient discontinuous
Galerkin method for solving the stochastic Allen—Cahn equation with multiplicative noise. The pro-
posed scheme employs the symmetric interior penalty discontinuous Galerkin finite element for spatial
discretization and the implicit Euler scheme for temporal discretization.

In addition, some finite element methods have also been applied to solve the phase—field models
such as the Allen—Cahn equation, sometimes enriched with suitable basis functions. Xiao et al. [28]
proposed two distinct types of unconditionally maximum principle—preserving finite element schemes
for both the standard and conservative surface Allen—Cahn equations. To ensure the preservation of
the discrete MBP, they employed the surface finite element method for spatial discretization. For the
temporal discretization of the standard Allen—Cahn equation, the stabilized semi—implicit and convex
splitting schemes were reformulated into lumped mass forms. Li et al. [29] not only designed and
analyzed a second—order numerical method for the Allen—Cahn equation (a model that describes the
coarsening of the anti—phase domain in binary alloys), but also conducted rigorous numerical valida-
tions to confirm its unconditional energy stability. Yang et al. [30] developed fourth—order temporal
unconditional structure—preserving schemes for the Allen—Cahn equation and its conservative forms
via mass—lumping finite element space discretization, integrating the integrating factor Runge—Kutta
method and the stabilization technique. Recently, Nudo [31] proposed two one—parameter families of
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quadratic polynomial enrichments aimed at improving the accuracy of the classical Crouzeix—Raviart
finite element method. These enrichments are implemented by employing weighted line integrals as
enriched linear functionals and quadratic polynomial functions as enrichment basis. Nudo [32] elab-
orated a general strategy to improve the Crouzeix—Raviart finite element through the integration of
quadratic polynomial functions and three additional general degrees of freedom. In pursuit of this aim,
he established a characterization result on the enriched degrees of freedom, providing the necessary
support for defining a new enriched finite element. Dell’ Accio et al. [33] proposed quadratic and cubic
polynomial enrichments for the classical Crouzeix—Raviart finite element, with the objective of con-
structing accurate approximations within the enriched elements. To achieve this, they incorporated
three and seven weighted line integrals, respectively, as additional degrees of freedom.

When solving the Allen—Cahn equation using the linear BDF2 scheme [34], two solves are required
at each step, whereas the leapfrog format only requires one solve. Additionally, the leapfrog scheme
does not introduce new variables, unlike the SESAV scheme [18], which necessitates adding an expo-
nential scalar auxiliary variable. This increases the complexity of mathematical derivations and incurs
additional computational and storage costs associated with this variable.

In this study, we develop a stabilized leapfrog scheme specifically tailored for the generalized Allen—
Cahn equation. The remainder of this paper is organized as follows. Section 2 presents the fully
discrete scheme. Section 3 is devoted to the proof of the discrete MBP. In Section 4, we derive an
L*—error estimate. Finally, in Section 5, we carry out numerical experiments to validate the theoretical
results.

2. The fully discretized scheme

In this section, we present the fully discretized scheme for (1.1). For the sake of simplicity, we
only consider the 1D case (Q = (a, b)) with homogeneous Dirichlet boundary conditions. It should be
noted that the proof techniques for two—dimensional and three—dimensional cases with either periodic
or homogeneous Neumann boundary conditions follow a similar approach.

The spatial interval (a, b) and temporal interval (0, 7] are discretized using a uniform mesh, where
the spatial step size is defined as & = (b — a)/(N + 1) and the temporal step size as 7 = T/L, with N
and L being positive integers. The set of grid points are denoted by x; = a + (i — 1)k and ¢, = nt for
I <i<N+2and0 < n < L. For notational convenience, we define @" = ®(x, 7,) and O = O(x;, 1,,).

To solve Eq (1.1), we employ the following leapfrog scheme with a stabilization term, which can
be expressed as

n+l _ gn—1 D . . . . D(n+1_|_ n—l) 1 oo
N+ v o -2 = Ny (e 2D ), @
27 2 e
where n > 1, 8 > 0, ¢" represents the vector of numerical solution at nth level.
For the first step, we use the following second—order CN scheme:

¢! — ¢° 1.1 ! TR T LAl

—A[AN;P? = A, | eApp? — ;F (p2)| — k(o2 — @2), (2.2)
T
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where 65% is obtained via the following first—order stabilized semi—implicit scheme:

$: — ¢’
T/2

L1 Al 1 Al
—AJAPT = Ay (SAh¢2 - ;F'(¢O)) — k(¢ - ¢°). (2.3)

The differential matrix D, is given by

I -2

NXN

the convection term is discretized by upwind scheme, which is expressed as

AT = diag(abs(V™h), V= o4t vt
[ 2 1—sgn(v)
1 +sgn (vg“) -2 1 —sgn (vg“)
A= = : :
2 1 +sgn (v”NJr_ll) -2 1 —sgn (vf‘\,ﬂl)
1 +sgn (va”) -2

“NXN
and A}, = diag(M(¢")), where M(¢") = (M(#"). ... M(¢"N))T.

3. The discrete maximum principle

In this section, we will demonstrate that the scheme (2.1) preserves the discrete MBP. This preser-
vation result is established based on the following three lemmas, each of which plays a crucial role in
laying the necessary theoretical groundwork for our subsequent proof.

Lemma 3.1. ( [34]) Let ¢° = (¢o(x1), po(x2), ..., po(xy)T. Assume that the initial data satisfies
lldollo.co < 1. Then the scheme (2.2) preserves the discrete MBP provided that

1

k> - H[1a1X1] (M'(x)F'(x) + M(x)F" (x)), 3.1
& xe[-1,

2 262 1

z >k + ﬁ”M”C[—l,l] + E”V”C(O,T;C[a,h])- (3.2)

Definition 3.1. Let A = (a;;) € R™" be an n—order real square matrix. A is called a negative diagonally
dominant (NDD) matrix if it satisfies the following two core conditions:

1) All diagonal entries are negative, i.e., for any i € {1,2,...,n}, a; <0;
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2) The absolute value of each diagonal entry is greater than or equal to the sum of the absolute values
of all other non—diagonal entries in the same row (row—wise diagonal dominance), i.e., for any

ie€{l,2,...,n}, the inequality
la;| > Z |a;;|
=1

i
holds.

Lemma 3.2. ( [10]) Let B = (b;;) € R"*N and A = al — B, where a > 0. Suppose that B is an NDD
matrix. Then we have

1
1A oo < =
a

Lemma 3.3. ( [34]) Denote
g(x) =pBx— éM(x)F’(x), xe[-1,1].

Then, we have
g < B
under the condition

B> é max (M’ (x)F'(x) + M(x)F" (x)). (3.3)

Theorem 3.1. Assume that the initial value satisfies maX e p lpo(x)] < 1. Then the fully discrete
scheme (2.1) preserves the discrete MBP provided that

1 1 4 ’ 144
B = max {E”V”C(O,T;C[a,b])a ; xg[l_%x]] (M’ (x)F'(x) + M(x)F (x))} s (3.4)

T< : .
2(8+ &IMlic-1.n)

Proof. First, it is evident that ||¢°||.. < 1. Meanwhile, according to Lemma (3.1), we have ||¢']l < 1
if k satisfies condition (3.1) and 7 satisfies condition (3.2). Then we employ mathematical induction to
establish the proof of this theorem. Assume that ||¢" ||, < 1 and ||¢"||c < 1 for some n. By rearranging
(2.1) and taking L™ norm, we have

(3.5)

2 ’ n naAn n n n—
6" Moo < ||G7|_ 11287¢" — ST F (@) + (BTl + 2TAADG" + (1 = 2B7) + TeN} D¢ oo

where G = (1 + 287)] — te/A},D;,.

Given that A} and D), are NDD matrices, combined with the nonnegativity of A7 and A’j,, and
considering the property that the product of a nonnegative diagonal matrix and an NDD matrix remains
NDD, it can be directly verified that both A{A} and A}, D, are NDD matrices.

Observe that each element of S¢" — éA’}WF "(¢") is of the form g(x) = Bx — éM (x)F’(x). It follows

from Lemma (3.3) and ||¢"||.c < 1 that we obtain

2
HZBTQS" - ETA’&F'((/)”) < 2p7l¢"|l., < 28T (3.6)
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Applying Lemma (3.2), we get
G|, <@ +280)7" 3.7)

Since A}, Dy, 1s an NDD matrix and 7 satisfies condition (3.5), we conclude that
I(1 = 287)¢" " + 1eA}Dyp" Il < 1 - 2B1. (3.8)
And as ATA] is NDD and g satisfies condition (3.4), we have
(2671 + 2TATAY)Y" || < 2T. (3.9
Combining the arguments presented in (3.6)—(3.9), we finish the proof.

Remark 3.1. The core origin of conditions (3.2), (3.4), and (3.5) lies in the properties of NDD ma-
trices: By constraining the relationships between parameters &,  and steps 7, h, we ensure that the
coeflicient matrix corresponding to the discrete scheme satisfies the NDD property, thus providing
matrix-level guarantees for preserving the MBP. Conditions (3.1) and (3.3) stem from the need to
control the nonlinear source term. By limiting the values of time step k and 3, we prevent the non-
linear potential term from causing the numerical solution to exceed the range [—1, 1] during discrete
iterations.

Remark 3.2. It should be noted that conditions (3.1)—(3.5) are purely sufficient conditions for MBP
preservation, rather than necessary ones. In practice, the MBP may still hold for parameter combina-
tions slightly outside these bounds.

4. Error analysis

In this section, we shall derive the maximum-norm error estimate for the numerical solution gen-
erated by the leapfrog scheme (2.1), with the derivation proceeding rigorously based on the discrete
MBP preservation result established in Theorem 3.1. Assume ¢(¢,) is the exact solution vector of (1.1)
at the grid points. Then ¢(z,) satisfies

A(tns1) — P(ta-1)

— NATS(t,) + B(P(tnr1) + G(ta-1) — 2¢(1,))

2T
_ An 8Dh(¢(tn+1) + ¢(trz—1))
- M
2 @.1)
w o EDO(tarr) + $(t1)) P + £g! ‘
+ (At - NS D E ) B 250w
o S et 1 : ;
+ (Ap(t,) — Amf - ;AM(tn)F (¢(2,)) + R".
Assume that the exact solution ¢ is sufficiently smooth. Thus, it is easy to get
IR"l., < C(T* + h). (4.2)

Lemma 4.1. ( [34]) Assume that the exact solution of (1.1) is sufficiently smooth and the initial data
lldollo.o < 1. Then we have the following error estimate:

le']l., < €@+ .
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Theorem 4.1. Assume that the exact solution of (1.1) is smooth, and the initial value is smooth and
bounded by 1, i.e., ||pollo.o < 1. If the time step T satisfies condition (3.5) and B satisfies condition (3.4),
the following error estimate holds for the scheme (2.1):

16" — ¢(t)llw < C(e, B, T)(T + h).

Proof. Denote the error as e" = ¢" — ¢(¢,). Subtracting (4.1) from (2.1), we obtain

1 et\?, D 1 et\!,D
(5 +B0I - TMh] el = [(5 — Bl + TMh] W+ Wo+ W+ Wy — TR, (4.3)
where - -
Wi = EAM(tn)F "(p(ty)) — ;A’qu (9", 4.4)
D t, + o1, n+1 + n—1
W2 = T(A’& _ AM(ln)) [8 h(¢( +12) ¢( 1)) _ 8¢xx 2 8¢xx , (4'5)
; ephy +edl!
Wi = 1(A)y, — AM(tn))fa (4.6)
Wy = 1281 + AA))e". 4.7
Since A},D;, and AJA} are NDD matrices, we have
1 et Dy 1
S s S R o
1 et\!,D 1 1
e b et
2 2 w 2 2 (,3 + h%||M||C[—1,1])
1
Wallo < 2B7ll€"l0, B> Z”V”C(O,T;C[a,b])- (4.10)

By leveraging the established numerical MBP in conjunction with the existing continuum maximum
principle, we can rigorously demonstrate that for any p,q € {x € R : ||x|l < 1}

IAM(P) = Au(@lleo < Lullp = gllw,  I1F'(P) = F'(@llw < LEllP = gllw, (4.11)

IAMPlle < M, IF'(Pllc < Mpr, (4.12)

where Ly, and L}, are the Lipschitz constants over [—1, 1] and M and M represent the bound of Ay,
and F’, respectively. It is noted that these constants depend only on the continuous problem, not on
(h, 7). By employing Eqs (4.11) and (4.12), we are able to estimate (4.4)—(4.6) as

<)

IWille < = (IAuE)F @) = Au(E)F @)l + [ At F' (@) = AjyF (4")

: (4.13)
<~ (ML + MpLy) €]l

IWalleo < C18Th Liglle"||co, (4.14)
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[IW3lleo < CreTLpylle" |- (4.15)
It follows from (4.8)—(4.15) that

1 1 1
5 +Bo)lle" oo < & —Bo)lle" Ml + 7|28 + ;(ML% + MpLy) + CsLy | 1€"]l + CT(7* + h), (4.16)

namely,
; ABT . Cep)r. Ct(t> + h)
lle"™ Ml < (1= L)Ile Moo + u lle"llo + ———=5—. (4.17)
1+2p7 1+2p7 1 +287
Since S > 0, we have
1€ Nl = ll€" !l < Cle,Byrle’lls +lle"™ ) + C( + ). (4.18)
Summing up (4.18) from 1 to/ -1 (2 <[ < L), we have
I-1
le'lle + el < C& BT D (el + 11" ll) + C(e, TIE + B +lle' e + Il (4.19)

n=1

Taking into account ||¢°||., = 0 and utilizing Lemma (4.1), we proceed to apply the discrete Gronwall
inequality to Eq (4.19), which gives the following estimate:

lle" Ml < C(e,B, T)(T* + h).

5. Numerical experiments

In this section, we conduct a series of comprehensive numerical experiments focused on the gener-
alized Allen—Cahn equation given by (1.1), with the primary aim of validating the theoretical results
associated with the proposed stabilized leapfrog scheme (2.1). Specifically, these experiments are de-
signed to verify two key aspects of the scheme: first, its ability to preserve the discrete MBP, which
is a critical theoretical guarantee for the physical plausibility of numerical solutions; and second, its
temporal convergence rates, which reflect the accuracy of the scheme in approximating the exact solu-
tion. For the purpose of these numerical tests, the nonlinear mobility term is fixed as M(¢) = 1 — ¢?,
a commonly adopted form in studies of Allen—-Cahn—type equations that captures relevant nonlinear
diffusion behaviors. The experiments will cover a range of parameter settings, initial conditions, and
computational grids to ensure the robustness and generality of the validation results.

Example 1. We consider the 1D problem with the initial value
¢o(x) = 0.3rand(x), x € (0, 1),

the velocity v(x, 1) = €' sin(x), and € = 0.04, 7 = 0.01. We set t,,; = 1/160.

The maximum values of the numerical solutions corresponding to different time step sizes 7 are
presented in Figures 1-4. The right part of Figure 1 shows that the scheme (2.1) preserves the discrete
MBP when 7 = 0.21,,;, 0.8¢,,;, while in the case 7 = 1.2, it violates the discrete MBP.
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Example 2. We consider the 2D Allen—Cahn equation with the initial value

#o(x) = 0.9sin(x) sin(y), (x,y) € (0,27)%,

with convection term v, (x, y, ) = m — x, v2(x,y,t) = y — «r, and the parameters are set as € = 0.1, k = 4.
To evaluate the temporal convergence rate, we fix the spatial step size as & = 1/500 and define the
error as err = ||(D2M - oM ||£><> The approximate values of the theoretical error bounds, denoted as C,,
are also listed in Tables 1 and 2. As can be seen from Tables 1 and 2, the obtained convergence order
is very close to 2, which verifies the theoretical result presented in Theorem 4.1.

Table 1. Temporal convergence for 5 = 20, 40.

B =20 B =40
T err C, rate err C, rate
1/200  2.9204e-04 11.6816 — 9.0504e-04 36.2016 —

1/400  8.0910e-05 12.9456 1.8518 2.5791e-04 41.2656 1.8111
1/800  2.1534e-05 13.7818 1.9097 7.0738e-05 45.2723 1.8663
1/1600 5.5718e-06 14.2638 1.9504 1.8688e-05 47.8413 1.9204
1/3200 1.4193e-06 14.5336 1.9729 4.8159e-06 49.3148 1.9562

Table 2. Temporal convergence for 5 = 60, 80.

B =60 B =280
T err C, rate err C, rate
1/200  0.0018 72 — 0.0030 120 —

1/400  5.1772e-04 82.8352  1.8015 8.5192e-04 136.3072 1.8116
1/800  1.4505e-04 92.8320 1.8356 2.4194e-04 154.8416 1.8161
1/1600 3.9019e-05 99.8886  1.8943 6.6080e-05 169.1648 1.8724
1/3200 1.0170e-05 104.1408 1.9398 1.7406e-05 178.2374 1.9246
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Figure 5. Evolutions of numerical solution for M(¢) = 1 — ¢°.

Example 3. Consider the 2D Allen—Cahn equation with the following random initial data:
@do(x,y) = 0.5rand(x,y) — 0.25, (x,y) € (0, 27)2.

The convection term is defined as v(x, y, ) = (m — x, y — «), and the parameter € = 0.1. The spatial grid
is fixed with N, = N, = 100. The evolutions of grain coarsening are displayed in Figure 5, where the
ordering and coarsening phenomena induced by the convection can be clearly observed.

Table 3. Comparison of time discretization methods for numerical schemes.

T.l me . MBP conditions Convergence
discretization order
1 1 ! 4 144
B > max {E”VHC(O,T;C[a,b]), 2 xg[l_alxl] (M'(x)F’"(x) + M(x)F (x))} ,
Leapfrog 1 ’ 2 +h
T <

2B+ &IMll1n)

k= % max (M'()F'(x) + M()F"(x)),

2&? 1
—>k+ —|IM||lci=1.11 + =Ilv .
- 7 IM|lcr-1,1 h” lleo,r:crapn

Linearized CN

[\

Example 4. For the generalized Allen—Cahn equation, we consider two linear schemes for comparison,
namely the leapfrog scheme and the linearized CN scheme [34]. To begin, a comparison is conducted
regarding the conditions for the preservation of the MBP, linearity/nonlinearity, and the convergence
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order of the schemes, as presented in Table 3. We consider the 1D problem with the initial value
do(x) = 0.1sin(27x), x € (0, 1), and the velocity v(x, ) = €'sin(x). For parameter settings, we take
B =40, N = 150, k = 4, and € = 0.05. We then calculate the numerical errors under this set of
parameter configurations. It is observed from Table 4 that the proposed scheme in this paper has a
shorter CPU time.

Table 4. Temporal convergence with different 7.

T err Order CPU time (s)
Leapfrog 1/200  7.0891e-05 — 0.7676
1/400  1.7840e-05 1.9905 1.4625
1/800 4.4677¢-05 1.9975 3.0412
1/1600 1.1170e-06 1.9999 5.9659
1/3200 2.7926¢-07 2.0000 11.2308
Linearized CN 1/200 3.0147¢-05 — 0.8269
1/400  8.0756e-06 1.9004 1.5509
1/800  2.0946¢-06 1.9469 3.3442
1/1600 5.3373e-07 1.9860 6.5729
1/3200 1.3473e-07 2.0000 11.4581

6. Conclusions

In this study, we investigate numerical approximations for the generalized Allen—Cahn equation,
incorporating polynomial potential free energy, nonlinear mobility, and an additional convection term.
The stability analysis of the proposed scheme is conducted using a stabilized leapfrog temporal dis-
cretization, complemented by central finite difference for the diffusion term and upwind scheme for
the advection term in spatial discretization. We establish that the proposed scheme maintains the
discrete MBP under appropriate constraints. Numerical experiments are performed to validate the sta-
bilized scheme, and the computational results demonstrate the efficacy of the proposed methodology
and corroborating the theoretical findings presented in this work. To conclude, seeking linear tempo-
ral schemes with improved order of accuracy that can retain the numerical maximum principle is a
worthwhile direction for future studies.
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