Every ring containing a unity has a maximal right ring of quotients. In this paper, we investigate a skew $ n $-derivation $ \phi $ on a class of triangular rings and use the theory of maximal right ring of quotients to demonstrate that $ \phi $ is an extremal skew $ n $-derivation. This result not only significantly generalizes previous findings on derivations, but also forges a strong connection between the theory of derivations and that of rings of quotients, providing a tool for characterizing functional identities in various specific operator algebras.
Citation: He Yuan, Zhendi Gu, Jinwang Dai. Characterizing skew $ n $-derivations on triangular rings[J]. Electronic Research Archive, 2025, 33(12): 7570-7583. doi: 10.3934/era.2025334
Every ring containing a unity has a maximal right ring of quotients. In this paper, we investigate a skew $ n $-derivation $ \phi $ on a class of triangular rings and use the theory of maximal right ring of quotients to demonstrate that $ \phi $ is an extremal skew $ n $-derivation. This result not only significantly generalizes previous findings on derivations, but also forges a strong connection between the theory of derivations and that of rings of quotients, providing a tool for characterizing functional identities in various specific operator algebras.
| [1] | Y. Utumi, On quotient rings, Osaka J. Math., 8 (1956), 1–18. https://doi.org/10.18910/8001 |
| [2] | K. I. Beidar, W. S. Martindale, A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, New York Basel Hong Kong, 1996. |
| [3] |
W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc., 63 (2001), 117–127. https://doi.org/10.1112/S0024610700001642 doi: 10.1112/S0024610700001642
|
| [4] |
Y. Wang, Y. Wang, Y. Q. Du, $n$-Derivations of triangular algebras, Linear Algebra Appl., 439 (2013), 463–471. https://doi.org/10.1016/j.laa.2013.03.032 doi: 10.1016/j.laa.2013.03.032
|
| [5] |
X. W. Xu, Y. Liu, W. Zhang, Skew $n$-derivations on semiprime rings, Bull. Korean Math. Soc., 50 (2012), 1863–1871. https://doi.org/10.4134/BKMS.2013.50.6.1863 doi: 10.4134/BKMS.2013.50.6.1863
|
| [6] |
D. Eremita, Functional identities of degree 2 in triangular rings revisited, Linear Multilinear Algebra, 63 (2015), 534–553. https://doi.org/10.1080/03081087.2013.877012 doi: 10.1080/03081087.2013.877012
|
| [7] |
Y. Wang, Functional identities of degree 2 in arbitrary triangular rings, Linear Algebra Appl., 479 (2015), 171–184. https://doi.org/10.1016/j.laa.2015.04.018 doi: 10.1016/j.laa.2015.04.018
|
| [8] |
D. Eremita, Biderivations of triangular rings revisited, Bull. Malays. Math. Sci. Soc., 40 (2017), 505–522. https://doi.org/10.1007/s40840-017-0451-6 doi: 10.1007/s40840-017-0451-6
|
| [9] |
D. Benkovič, Biderivations of triangular algebras, Linear Algebra Appl., 431 (2009), 1587–1602. https://doi.org/https://doi.org/10.1016/j.laa.2009.05.029 doi: 10.1016/j.laa.2009.05.029
|
| [10] |
Y. Wang, Biderivations of triangular rings, Linear Multilinear Algebra, 64 (2016), 1952–1959. https://doi.org/10.1080/03081087.2015.1127887 doi: 10.1080/03081087.2015.1127887
|
| [11] |
X. F. Liang, L. L. Zhao, Bi-Lie $n$-derivations on triangular rings, AIMS Math., 8 (2023), 15411–15426. https://doi.org/10.3934/math.2023787 doi: 10.3934/math.2023787
|
| [12] |
X. F. Liang, H. N. Guo, Characterization of $n$-Lie-type derivations on triangular rings, Commun. Algebra, 52 (2024), 4368–4379. https://doi.org/10.1080/00927872.2024.2346301 doi: 10.1080/00927872.2024.2346301
|
| [13] | E. C. Posner, Derivations in prime rings, Proc. Am. Math. Soc., 8 (1957), 1093–1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0 |
| [14] |
M. Brešar, W. S. Martindale, C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161 (1993), 342–357. https://doi.org/10.1006/jabr.1993.1223 doi: 10.1006/jabr.1993.1223
|
| [15] | H. Yuan, X. K. Li, $\sigma$-Biderivations of triangular rings (in Chinese), Adv. Math., 49 (2020), 20–28. |
| [16] | W. S. Cheung, Mappings on Triangular Algebras, Ph.D thesis, University of Victoria, 2000. |
| [17] |
M. Brešar, On generalized biderivations and related maps, J. Algebra, 172 (1995), 764–786. https://doi.org/10.1006/jabr.1995.1069 doi: 10.1006/jabr.1995.1069
|
| [18] |
Y. Q. Du, Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 4483–4499. https://doi.org/10.1016/j.laa.2013.02.017 doi: 10.1016/j.laa.2013.02.017
|